
Kito D. Mann
Foreword by Ed Burns

M A N N I N G

JAVASERVER
FACES

IN ACTION

JavaServer Faces
in Action

KITO D. MANN

M A N N I N G
Greenwich
(74° w. long.)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2005 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

All screens shots of Oracle JDeveloper in appendix B are reproduced with
the permission of Oracle Corp. Copyright Oracle Corp, 2004.

All screens shots of WebSphere Studio in appendix B are reproduced with
the permission of IBM Corp. Copyright IBM Corp, 2004.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-932394-11-7
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

To my beautiful wife and best friend, Tracey.

This book would not exist without you, and I’m eternally grateful
for the positive influence you’ve had on my life,

always pushing me to be the best I can be.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

PART 1 EXPLORING JAVASERVER FACES 1

1 ■ Introducing JavaServer Faces 3

2 ■ JSF fundamentals 38

3 ■ Warming up: getting around JSF 88

4 ■ Getting started with the standard components 137

5 ■ Using the input and data table components 185

6 ■ Internationalization, validators, and converters 234

PART 2 BUILDING USER INTERFACES 275

7 ■ Introducing ProjectTrack 277

8 ■ Developing a user interface without Java code:
the Login page 287

9 ■ Developing a user interface without Java code:
the other pages 316

10 ■ Integrating application functionality 354

brief contents
vii

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

viii BRIEF CONTENTS

PART 3 DEVELOPING APPLICATION LOGIC 407

11 ■ The JSF environment 409

12 ■ Building an application: design issues and
foundation classes 456

13 ■ Building an application: backing beans, security,
and internationalization 499

14 ■ Integrating JSF with Struts and
existing applications 568

PART 4 WRITING CUSTOM COMPONENTS, RENDERERS,
VALIDATORS, AND CONVERTERS 603

15 ■ The JSF environment: a component
developer’s perspective 605

PART 5 WRITING CUSTOM COMPONENTS, RENDERERS,
VALIDATORS, AND CONVERTERS: EXAMPLES 703

16 ■ UIInputDate: a simple input component 705

17 ■ RolloverButton renderer: a renderer
with JavaScript support 727

18 ■ UIHeadlineViewer: a composite,
data-aware component 756

19 ■ UINavigator: a model-driven toolbar component 794

20 ■ Validator and converter examples 839

ONLINE EXTENSION

The five chapters in part 5 (plus four additional
appendixes) are not included in the print edition.
They are available for download in PDF format from
the book’s web page to owners of this book. For free
access to the online extension please go to www.

manning.com/mann.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

http://www.manning.com/mann

foreword xxi
preface xxiii
acknowledgments xxv
about this book xxvii
about the title and cover xxxiii

PART 1 EXPLORING JAVASERVER FACES 1

1 Introducing JavaServer Faces 3
1.1 It’s a RAD-ical world 4

So, what is JavaServer Faces? 5 ■ Industry support 10
1.2 The technology under the hood 10

Hypertext Transfer Protocol (HTTP) 11 ■ Servlets 12
Portlets 13 ■ JavaBeans 14 ■ JSP and other display
technologies 15

1.3 Frameworks, frameworks, frameworks 16
Why do we need frameworks? 16 ■ She’s a Model 2 17
JSF, Struts, and other frameworks 18

1.4 Components everywhere 19

contents
ix

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

x CONTENTS

1.5 Hello, world! 22
Dissecting hello.jsp 24 ■ Dissecting goodbye.jsp 31
Examining the HelloBean class 32 ■ Configuration with
faces-config.xml 34 ■ Configuration with web.xml 36

1.6 Summary 37

2 JSF fundamentals 38
2.1 The key pieces of the pie 39

User interface components 41 ■ Renderers 43
Validators 44 ■ Backing beans 45 ■ Converters 48
Events and listeners 49 ■ Messages 55 ■ Navigation 56

2.2 The Request Processing Lifecycle 57
Phase 1: Restore View 61 ■ Phase 2: Apply Request Values 63
Phase 3: Process Validations 65 ■ Phase 4: Update Model
Values 66 ■ Phase 5: Invoke Application 66 ■ Phase 6:
Render Response 68

2.3 Understanding component and client identifiers 69
Naming containers 72 ■ Referencing identifiers 73

2.4 Exploring the JSF expression language 76
Understanding scoped variables 80 ■ Using implicit
variables 81 ■ Using the EL with components 83

2.5 Summary 86

3 Warming up: getting around JSF 88
3.1 Setting up your JSF environment 89

Basic requirements 89 ■ Choosing a JSF implementation 89
Directory structure 90 ■ Configuration 92

3.2 The role of JSP 102
Using JSP includes 103 ■ Using JSF with JSTL and other JSP
custom tags 104

3.3 Creating and initializing beans 110
Declaring managed beans 113 ■ Declaring Lists and Maps as
managed beans 123 ■ Setting values with value-binding
expressions 125

3.4 Navigating the sea of pages 129

3.5 Summary 136
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

CONTENTS xi

4 Getting started with the standard components 137
4.1 It’s all in the components 138

Using HTML attributes 142 ■ Understanding facets 143
The power of tools 145 ■ The render kit behind the scenes 148

4.2 Common component properties 148

4.3 Controlling the page with UIViewRoot 149

4.4 Setting component parameters with UIParameter 151

4.5 Displaying data with the Output components 153
Displaying ordinary text with HtmlOutputText 153 ■ Using
UIOutput with the <f:verbatim> tag 155 ■ Creating input
labels with HtmlOutputLabel 158 ■ Using HtmlOutputFormat
for parameterized text 160 ■ Displaying hyperlinks with
HtmlOutputLink 165

4.6 Displaying images with HtmlGraphicImage 167

4.7 Displaying component messages
with HtmlMessage 169

4.8 Displaying application messages
with HtmlMessages 172

4.9 Grouping and layout with the Panel components 176
Grouping components with HtmlPanelGroup 176
Creating tables with HtmlPanelGrid 178

4.10 Summary 184

5 Using the input and data table components 185
5.1 Registering event listeners 186

Declaring value-change listeners 187
Declaring action listeners 187

5.2 Common component properties 189

5.3 Handling forms with HtmlForm 190

5.4 Handling basic user input 192
Declaring basic text fields with HtmlInputText 193 ■ Using
HtmlInputTextarea for memo fields 194 ■ Displaying password
fields with HtmlInputSecret 195 ■ Declaring hidden fields with

HtmlInputHidden 197

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xii CONTENTS

5.5 Using HtmlSelectBooleanCheckbox
for checkboxes 198

5.6 Defining item lists 199
Using UISelectItem for single items 200 ■ Using UISelectItems
for multiple items 203

5.7 Handling multiple-item selections 205
Using HtmlSelectManyCheckbox for checkbox groups 205
Displaying listboxes with HtmlSelectManyListbox 208
Using HtmlSelectManyMenu for single-item listboxes 210

5.8 Handling single-item selections 212
Using HtmlSelectOneRadio for radio button groups 212
Using single-select listboxes with HtmlSelectOneListbox 215
Declaring combo boxes with HtmlSelectOneMenu 217

5.9 Executing application commands 219
Declaring buttons with HtmlCommandButton 219
Creating an action link with HtmlCommandLink 221

5.10 Displaying data sets with HtmlDataTable 223

5.11 Summary 233

6 Internationalization, validators, and converters 234
6.1 Internationalization and localization 235

Looking into locales 236 ■ Creating resource bundles 238
Using resource bundles with components 241
Internationalizing text from back-end code 244

6.2 Input validation 245
Using validator methods 245 ■ Using validators 246
Using the standard validators 247 ■ Combining different
validators 251

6.3 Type conversion and formatting 251
Using converters 254 ■ Working with the
standard converters 255

6.4 Customizing application messages 269

6.5 Summary 273
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

CONTENTS xiii

PART 2 BUILDING USER INTERFACES 275

7 Introducing ProjectTrack 277
7.1 Requirements 278

7.2 The conceptual model 281

7.3 User interface 283

7.4 Development team 284

7.5 Summary 286

8 Developing a user interface without Java code:
the Login page 287

8.1 Getting started 289
Setting up web.xml 289 ■ Setting up faces-config.xml 290

8.2 Creating the Login page 291
Starting with HtmlGraphicImage and HtmlOutputText
components 292 ■ Adding a form 295

8.3 Sprucing things up 300
Using an image for the button 301 ■ Integrating with
JavaScript 301 ■ Adding Cascading Style Sheets 303

8.4 Adding validators 304
Customizing validation messages 307

8.5 Improving layout with HtmlPanelGrid 308

8.6 Summary 314

9 Developing a user interface without Java code:
the other pages 316

9.1 Building the header with a custom component 317
Using a custom toolbar component 321 ■ Configuring the
navigation rule 323

9.2 Prototyping data tables with panels 324
The Inbox page 325 ■ Configuring the navigation rule 329
The Show All page 330 ■ Configuring the
navigation rule 330
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xiv CONTENTS

9.3 Creating input forms 331
The Approve a Project page 331 ■ Configuring the navigation
rule 337 ■ The Reject a Project page 338 ■ Configuring the
navigation rule 341 ■ The Create a Project page 341
Configuring the navigation rule 347

9.4 The Project Details page 347
Configuring the navigation rule 351

9.5 Summary 353

10 Integrating application functionality 354
10.1 Understanding JSF development approaches 355

10.2 Exploring the application environment 357

10.3 Reorganizing pages for security 360

10.4 The Login page 360
Updating the navigation rule 364

10.5 The header 365
Updating the navigation rule 369

10.6 Integrating data grids 370
The Inbox page 370 ■ The Show All page 378

10.7 Integrating input forms 379
Updating the includes 379 ■ The Approve a Project page 382
The Reject a Project page 385 ■ The Create a Project
page 386

10.8 The Project Details page 390
Updating the navigation rule 395

10.9 Adding an error page 396
Updating web.xml 397 ■ Updating the navigation rule 397

10.10 Internationalizing and localizing the UI 398
Externalizing text into the resource bundle 398
Internationalizing the header 400
Localizing for Russian 402

10.11 Summary 404
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

CONTENTS xv

PART 3 DEVELOPING APPLICATION LOGIC 407

11 The JSF environment 409
11.1 From servlets to JSF 410

11.2 The application foundation 413
Application 413 ■ Evaluation expressions 417

11.3 It’s all in the context 419
FacesContext 420 ■ FacesMessage 422
ExternalContext 424

11.4 Event handling 428
FacesEvent 430 ■ Handling action events 432 ■ Handling
value-change events 434 ■ Handling phase events 435

11.5 Components revisited 438
UIComponent 442 ■ UIViewRoot 446
ValueHolder 449 ■ EditableValueHolder 451
SelectItem and SelectItemGroup model beans 453

11.6 Summary 455

12 Building an application: design issues
and foundation classes 456

12.1 Layers of the pie 457

12.2 Roasting the beans 460
The importance of toString 461 ■ Serialization for
breakfast 462 ■ It’s all in the properties 462
Exposing beans 472

12.3 Exploring the business layer and data layers 473

12.4 Developing the application layer 476
Handling constants 478 ■ Organizing utility methods 480
Initializing singletons 482 ■ Adapting business objects 484

12.5 Writing a visit object for session state 491

12.6 Developing a base backing bean class 494

12.7 Summary 498
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xvi CONTENTS

13 Building an application: backing beans, security,
and internationalization 499

13.1 Writing backing beans 500
Thread safety 501 ■ Handling errors 501 ■ Performing
authentication 505 ■ Listing projects with UIData and
parameterizing listeners 511 ■ Updating projects 522
Creating new projects 528 ■ Paging through the project
history with UIData 534 ■ Working with JDBC ResultSets
and UIData 540

13.2 Adding security 545
Container-based vs. custom security 546
Using custom security 547

13.3 Supporting internationalization in code 551
Internationalizing text with resource bundles 552
Internationalizing messages 557

13.4 Design consequences and alternatives 562
Accessing the business layer 562 ■ Organizing beans by
function 563 ■ Action methods implemented by backing
beans 564 ■ Initializing backing bean properties with the
Managed Bean Creation facility 565

13.5 Summary 566

14 Integrating JSF with Struts and existing
applications 568

14.1 What integration means 569

14.2 When to use JSF with other frameworks 569

14.3 The many faces of requests and responses 571

14.4 Integrating JSF with Struts applications 572
First steps 575 ■ Migrating Struts JSP tags 577
Using JSF action methods and managed beans 597
Who’s controlling whom? 599

14.5 Integrating JSF with non-Struts applications 600

14.6 Summary 601
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

CONTENTS xvii

PART 4 WRITING CUSTOM COMPONENTS, RENDERERS,
VALIDATORS, AND CONVERTERS 603

15 The JSF environment: a component
developer’s perspective 605

15.1 Three steps to UI extension nirvana 606

15.2 Developing UI components 607
Deciding when to write a UI component 608 ■ Classes and
interfaces 610 ■ Event handling with method bindings 623
Registration 624 ■ JSP integration 627

15.3 Developing renderers 636
Deciding when to write a renderer 640 ■ Renderer 641
RenderKit 643 ■ Registration 644 ■ JSP integration 647

15.4 Developing validators 648
Validator 649 ■ Registration 650 ■ JSP integration 652

15.5 Developing converters 654
Converter 654 ■ Registration 657 ■ JSP integration 658

15.6 Handling internationalization 660

15.7 Packaging UI extensions 660

15.8 Summary 661

appendix A: Using JSF without JSP 665

references 675

index 679

online extension: See page xviii for contents
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The online extension consists of five chapters in part 5 as well as four
appendixes that are not included in the print edition. They are available
for free download from the book’s web site at www.manning.com/mann.
This is the table of contents for the online extension.

PART 5 WRITING CUSTOM COMPONENTS, RENDERERS,
VALIDATORS, AND CONVERTERS: EXAMPLES 703

16 UIInputDate: a simple input component 705
16.1 Writing the UIInputDate class 708

Encoding 709 ■ Decoding 715 ■ Implementing
StateHolder methods 717

16.2 Registering the component 718

16.3 JSP integration 718
Writing the JSP custom tag 718 ■ Validating the tag 721
Adding the tag to the tag library 722

16.4 Using the component 724

online extension
xviii

16.5 Summary 726

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

http://www.manning.com/mann

ONLINE EXTENSION xix

17 RolloverButton renderer: a renderer with
JavaScript support 727

17.1 Writing the RolloverButtonRenderer class 729
Encoding 731 ■ Decoding 735
Registering the renderer 736

17.2 JSP Integration 737
Writing the HtmlBaseTag class 738 ■ Writing the JSP custom
tag 741 ■ Validating the tag 744 ■ Adding the tag to the
tag library 745

17.3 Using the renderer 748

17.4 Wrapping an existing renderer 750
Developing the RolloverButtonDecoratorRenderer class 750

17.5 Summary 754

18 UIHeadlineViewer: a composite, data-aware
component 756

18.1 RSS and the Informa API 758

18.2 Using UIData with Informa 763

18.3 Subclassing DataModel 765

18.4 Writing the UIHeadlineViewer class 768

18.5 Registering the component 780

18.6 JSP integration 781
Writing the JSP custom tag 781
Adding the tag to the tag library 787

18.7 Using the component 789

18.8 Summary 793

19 UINavigator: a model-driven toolbar component 794
19.1 Writing the model classes 796

19.2 Writing the UINavigator class 801
Implementing ActionSource methods 803 ■ Overriding
UIComponentBase methods 806 ■ Implementing StateHolder

■
methods 807 Developing NavigatorActionListener:
a custom ActionListener 809

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xx ONLINE EXTENSION

19.3 Registering the component 810

19.4 Writing the ToolbarRenderer class 811
Encoding 811 ■ Decoding 820

19.5 Registering the renderer 821

19.6 JSP integration 822
Writing the Navigator_ToolbarTag component tag 822
Writing the NavigatorItemTag tag handler 826
Adding the tags to the tag library 831

19.7 Using the component 834

19.8 Summary 838

20 Validator and converter examples 839
20.1 Validator methods vs. validator classes 840

20.2 Developing a validator 840
Writing the RegularExpressionValidator class 842
Registering the validator 847 ■ Integrating with JSP 847
Using the validator 852

20.3 When custom converters are necessary 854

20.4 Developing a converter 854
Writing the UserConverter class 856 ■ Registering the
converter 865 ■ JSP integration 866
Using the converter 870

20.5 Summary 872

appendix B: A survey of JSF IDEs and implementations 873

appendix C: Extending the core JSF classes 935

appendix D: JSF configuration 958

appendix E: Time zone, country, language, and currency codes 976
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

foreword
As I write this foreword, I am collaborating with four leading user interface
(UI) component vendors on a presentation for the 2004 JavaOneSM conference.
In our presentation, the vendors will show how they leverage JavaServerTM

Faces technology in their products. While developing the presentation, I am
learning some things about the work we’ve been doing on JavaServer Faces for
the past three years. The vendors have their own set of concerns unique to
adapting their product for JavaServer Faces, but they all voice one opinion
loud and clear: they are very relieved to finally have a standard for web-based
user interfaces.

 The absence of a standard for web-based UIs forced these component ven-
dors to write special case code for every integrated development environment
(IDE) into which they wanted to plug. Now that we have the JavaServer Faces
standard, any IDE can declare compliance to that standard, and any vendor that
also complies with the standard can plug components into the IDE with much
less work. Of course, this means that any components you develop will also be
able to plug into tools without too much additional work.

 The JavaServer Faces specification was developed by a community of lead-
ing minds in the field of web UI development. We took the best ideas from
many different approaches to UI frameworks and assembled them into one
coherent whole. The trouble with standards is that they get rather complex in
xxi

order to solve the problems they are addressing. For JavaServer Faces, that

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xxii FOREWORD

problem is providing an easy-to-use UI framework built on top of a collection of
technologies not well suited to UIs at all. This has led to a particularly complex
specification to implement. Thankfully, the number of people actually implement-
ing the spec is relatively small compared to those using those implementations,
but as it turns out, knowing the specification in detail is still helpful in order to use it.

 As a member of the expert group developing the next version of JavaServer
Pages, Kito is no stranger to technology standards. Kito grasps the key value-adds
of JavaServer Faces and has explained them in a book that is accessible and in-
depth. You will see what sets JavaServer Faces apart from other web UI frame-
works, including its first-class component model, its well-defined state manage-
ment system, and its conceptual similarity to JavaBeans. Kito is familiar with the
abstractions being used by the specification, and, more important, he understands
why we used those abstractions. Understanding the why of the specification leads
to a superior explanation for you, the reader. For example, look at the “relation-
ship of concepts” diagram in chapter 2. This is a great way to understand the ratio-
nale for the design of JavaServer Faces.

 Kito also understands the marketplace into which this technology fits. This
means you get the most important information first, so you can get your job done
quickly and completely. He spends just enough time building a firm foundation of
the technology underlying JavaServer Faces, making the book ideal for getting
started from scratch.

 Finally, the book has all the things you’ve come to expect from a top-quality
software technology book: a descriptive table of contents that can serve as a frame-
work for understanding, chapter goals and summaries to save you time, and lots
of working examples that you can use in your own projects. One thing I’ve seen in
this book that I haven’t seen in others is an in-depth look at the currently shipping
IDEs that support JavaServer Faces. This is especially valuable because such tools
can save you time, once you understand the underlying technology they support.

 In addition to the unique insight this book offers on shipping IDEs, Kito brings
to bear his experience as the principal of JSFCentral.com to inform the entire book.
This site is a high-quality aggregation of articles, interviews, and, most important,
an up-to-the-minute picture of the state of industry and community offerings
related to JavaServer Faces. Kito has separate sections that cover components,
render kits, implementations, and more. I think you’ll find this site—and this
book—extremely valuable as you explore JavaServer Faces programming.
ED BURNS

JavaServer Faces Specification Lead

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

preface
I’ve always enjoyed writing. I was one of those computer geeks who found
humanities classes easier, in some ways, than computer science courses—that
is, if I could manage to convince my professors that I had actually read the
dozens of books they gave me. In the late 1990s, I finally fused my affection
for writing with my obsession for software development by writing magazine
articles and performing technical book reviews. Then, in 2000, after years of
financial consulting with Fortune 500 companies, I took the start-up plunge.

 Okay, so it was a little late. But I was jealous of my friends who had joined
start-ups and intrigued by all of those wonderful stories in magazine articles.
The start-up I chose was an educational application service provider (recently
acquired by McGraw-Hill) that, surprisingly, had a real business plan. A key
part of our product was a web-based application, and one of my tasks, as chief
architect, was to build it (with, of course, the help of other poor souls). Instead
of using my own homegrown web application framework, I chose Struts, which
at the time was a good decision. As I directed development through a couple
of release cycles, I gained an understanding of the good and bad parts of
Struts, as well as the issues involved with developing a mission-critical web
application with team members who all had different backgrounds.

 After two years of burning myself out and neglecting my girlfriend Tracey,
I resigned and spent some time getting to know the stranger called Sleep. After
xxiii

we had been sufficiently reacquainted, I inhaled as much information as possible

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xxiv PREFACE

about new technologies, and stumbled across the Java Specification Request (JSR)
127—JavaServer Faces (JSF). JSF seemed like an answer to the growing problem of
framework mania. Moreover, since JSF abstracts so many tedious details of web
application development, it seemed superior to Struts in many ways. It was clear
to me that JSF was the Next Big Thing in Java web development.

 Because I was anxious to get back into writing something other than architec-
ture specifications and memos, writing a book on JSF seemed like a good idea. I
had reviewed several books for Manning, so I contacted the publisher to discuss
writing one about JSF. After some lobbying, Manning agreed, and the JavaServer
Faces in Action project was born. Little did we know that the specification would
go through radical changes before its final (late) release in March 2004. (If I had
a crystal ball, I would certainly not have written so much of it in early 2003;
rewriting is just not fun.)

 Throughout the last year and half, a lot has happened. In May 2003, I mar-
ried Tracey (I suppose leaving the start-up was a good thing after all). Later that
year, I launched JSF Central, a web site dedicated to the JSF community, chock-
full of resources and a handy FAQ. And finally, on March 3, 2004, JSF 1.0 was
released (with the 1.1 maintenance release appearing in May). The result is a
solid technology that I believe will add fire to the world of Java web develop-
ment, not only by making life easier for day-to-day development but also by
igniting a third-party user interface (UI) component industry, à la Microsoft’s
ASP.NET Web Forms.

 To that end, I’ve worked hard to ensure that this book will serve as a catalyst
on both fronts, not only helping you understand what JSF is, how it works, and
how to use it, but also teaching you how to write your own UI components. I’ve
also worked with representatives from Oracle, IBM, and Sun to paint a picture of
how JSF is integrated into different IDEs. In addition, this text was influenced by
my role as editor-in-chief of JSF Central, where I have gained a unique vantage
point of the growing JSF ecosystem.

 So, there you have it. I hope JavaServer Faces in Action will inspire in you the
enthusiasm that I have for this technology and serve as a useful tool in your own
projects. In the meantime, I intend to reacquaint myself with that old friend,
Sleep. Feel free to send your comments about this book to kmann@virtua.com or
post them in the Author Online forum for this book at www.manning.com/mann;
once awake, I’ll be happy to read them.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

http://www.manning.com/mann

acknowledgments
Most projects are not one-person endeavors, even if they start out that way.
Technical books require the talents of an enormous range of people, many of
whom donate their free time. (I will, however, take the prize for that particular
sacrifice.) Let’s start at the beginning with Clay Anders, the person at Manning
who believed that this book was a good idea, well before anyone else was talking
about JavaServer Faces. Then, there’s Marjan Bace, Manning’s publisher, who
authorized the project, then promptly ripped the first draft of my introduction
to shreds. Without Marjan, this book would have already put you to sleep. (If
you’re holding open your eyelids with your fingertips right now, blame him.)

 Next, there’s Jackie Carter—I couldn’t dream of a better developmental
editor. Jackie didn’t just critique and guide my work; she was a true partner
throughout the process. I’d also like to thank the legions of technical reviewers
who let my words consume their evenings without compensation: Roland Bar-
cia, Todd Cunningham, Jeff Duska, Carl Hume, Will Forster, Aleksandar Kol-
undzija, Jason LeCount, Josh Oberwetter, Michael Nash, Russ Pearlman, Mark
Pippins, Matthew Schmidt, Keyur Shah, Sang Shin, and Henri Yandell. Ted
Kennedy (rest in peace) and Dave Roberson deserve mention for doing a com-
mendable job coordinating the review process.

 Several members of the JSF Expert Group (Eric Lazarus, Brian Murray,
Adam Winer, and especially Michael Nash) helped ensure the technical accu-
xxv

racy of this book, and Ed Burns (the co-spec lead) wrote an excellent foreword.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xxvi ACKNOWLEDGMENTS

Along the same lines, several vendors gave me insight into their products well
before they had public releases available. Beverly Dewitt provided general infor-
mation about IBM WebSphere Studio, and Roland Barcia wrote the portion of
online extension appendix B about that product (in addition to providing an
extremely thorough technical review). Jim Inscore from Sun Microsystems made
sure I had access to early releases of Java Studio Creator.

 Jonas Jacobi and his team at Oracle (Brian Albers, John Fowler, and Adam
Winer) went above and beyond the call of duty by not only providing details
about JDeveloper but also conducting informal reviews and serving as a general
JSF resource. Jonas also wrote about JDeveloper’s JSF support and Oracle’s ADF
Faces Components in online extension appendix B.

 In addition, I enlisted the assistance of my good friend Ed LaCalle for Span-
ish translations, as well as my world-traveling brother, John A. Mann II, for Rus-
sian translations. My wife Tracey Burroughs provided general technical guidance
and support. She also wrote most of appendix E—she has an uncanny knack for
detail, and she’s way too brilliant for her own good.

 There’s also the production team, who worked to create the early-access ver-
sion of this book (available in PDF) as well as the print version. Henri Yandell is
an extremely meticulous technical editor who made sure that everything I wrote
made sense. Liz Welch, the copyeditor, corrected all of my bad grammar and
made sure I followed Manning’s guidelines. Susan Forsyth proofread every word,
Denis Dalinnik typeset every single page, and Susan Edwards tackled the
extremely tedious job of indexing. Finally, Mary Piergies coordinated the pro-
duction process.

 If you have seen this book mentioned on a web site or received a free copy or
excerpt, you have Helen Trimes to thank—she’s done an outstanding marketing
job. I’d also like to thank a few others at Manning: Lianna J. Wlasiuk, Susan Cap-
parelle, Syd Brown, and Iain Shigeoka.

 And then there are my parents—the strongest and kindest people I know.
Whenever I look at where I am in life, I can see a profound imprint of their love
and encouragement.

 All of these people worked hard to make JavaServer Faces in Action a quality
product. Lastly, I’d like to thank you, the reader, for buying this book. (Okay,
maybe you’re just flipping through it, but that counts for something too.)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

about this book
This book is written for people who currently develop Java web applications—
architects, application developers, and front-end developers. From my per-
spective, architects worry about the application’s design, which technologies
are used, and how the development process will work. Application developers
build model objects, application logic, and so on, while front-end developers
concentrate on building the GUI, usually with a display technology like Java-
Server Pages (JSP) or Velocity. In many shops, these roles are performed by the
same people, or those in different roles have overlapping skill sets. JSF is a
web application framework like Struts, WebWork, or Tapestry, but this book is
accessible even if you haven’t used a web framework before.

 JavaServer Faces in Action is divided into five parts. The first part covers JSF
basics. Chapter 1 explains the motivation behind JSF, examines how it fits into
the current landscape, and has the requisite Hello, world! example. This
chapter also provides a brief overview of the foundation technologies JSF uses:
HTTP, servlets, portlets, and display technologies like JSP. Chapter 2 delves
further into JSF by examining its core concepts and explaining in detail how
JSF performs its magic. Chapter 3 covers everyday topics like configuration,
JSP integration, JavaBean initialization, and navigation. Chapters 4 and 5
cover the standard UI components, and chapter 6 examines internationaliza-
tion, validation, and type conversion. All of these chapters explain JSF as a
xxvii

technology, but also reveal how it is used within tools.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xxviii ABOUT THIS BOOK

 Part 2 is focused on building a UI using all of the concepts outlined in part 1.
It begins with chapter 7, which introduces the case study that is used throughout
parts 2 and 3. Chapters 8, 9, and 10 build a working prototype of the case study
using UI components and JSP without any Java code.

 Part 3 focuses on the application code required to turn the prototype into a real
application. Chapter 11 outlines JSF’s Java API from an application developer’s
perspective, while chapters 12 and 13 walk through design and development of the
application. Chapter 14 examines integration with existing frameworks like Struts.

 Part 4 looks at the other side of the coin: extending JSF with UI components,
renders, validators, and converters. Chapter 15 examines the JSF API from a
component developer’s perspective. The print edition ends with appendix A,
which looks at using JSF without JSP.

 Following appendix A is an online extension (part 5) which is downloadable
at no charge from http://www.manning.com/mann. The online extension is
chockfull of examples that build upon the foundation laid in part 4. Chapter 16
shows how to develop a basic UI component, and chapter 17 examines render-
ers. Chapters 18 and 19 show how to build more sophisticated UI components,
and chapter 20 walks through developing a validator and a converter. All of
these chapters use examples that are applicable to everyday web development.

 The online extension ends with four appendices that cover a range of addi-
tional topics. Appendix B provides thorough coverage of JSF support in Oracle
JDeveloper, IBM WebSphere Studio, and Sun Java Studio Creator. Appendix C
looks more closely at JSF’s architecture and shows how to extend it with pluggable
classes. The last two appendices are references: appendix D covers every config-
uration element, and appendix E lists time zone, language, and country codes.

How to use this book

This book is part tutorial, part case study, and part reference. It’s written so that
it can be read sequentially, but I have tried to ensure that individual sections
make some sense in isolation. That being said, if you have the time, just start
from the beginning and skip the sections that don’t seem relevant. Be careful
skipping entire chapters, because each chapter may have a nugget of informa-
tion that you find useful.

 Of course, few people believe that they have any time (let alone the time), so
here are a few guidelines. If you’re an architect, you should peruse most of this
book, but pay close attention to chapters 1, 2, 3, 6, 8, 12, 13, and 15. You may

also want to peruse appendix A, and online extension appendices B and C.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

http://www.manning.com/mann
http://www.manning.com/mann
http://www.manning.com/mann

ABOUT THIS BOOK xxix

 Application developers should read most of parts 1–3, but you can skim chap-
ters 4 and 5. You only need to read chapter 14 if you’re working with an existing
web application, or if you’re currently using Struts. Advanced developers should
certainly read parts 4 and 5 (online), as well as appendix A, and online extension
appendices B and C.

 Front-end developers should read all of parts 1 and 2, with the possible
exception of parts of chapter 2. In general, this book becomes more complicated
as you get closer to the end.

References

References to web sites, books, and articles are denoted in brackets ([]) and can
be found in the References section at the end of this book. For example, the
author’s community site, JSF Central [JSF Central] is a great place to find out
more information about JSF news, products, and resources. In the References
section, the bracketed text maps to the actual URL:

 [JSF Central] JSF Central community web site, http://www.jsfcentral.com.

The bracketed name looks the same regardless of whether it’s a web site, a prod-
uct, a book, or an article.

Conventions

Like in any good book, this text is mostly self-explanatory. I do, however, use a few
conventions, which are explained in the following sections.

Boldface type
I use boldface type to emphasize portions of code segments (which could be in
Java, XML, or JSP). Usually I’m trying to point out the meat of the code or draw
attention to text that was added to a previous listing.

Italicized type
Italics are used when I’m defining a word. I also use them to emphasize particu-
lar words, in the usual way.

Courier type
Courier type (like this) is used for code (Java, XML, or JSP). I use it in code list-

ings, but also for Java class names, XML tags, and anything else you might type
into a development tool.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xxx ABOUT THIS BOOK

Component tables
In chapters 4 and 5, I use specialized tables to describe JSF UI components. The
first is a Component Summary table; here’s an example:

Don’t worry about what this means quite yet—the point is that all of the standard
JSF UI components are described this way. The idea is to give you all of the basic
details about the component in one single table.

 UI component examples are handled in tables as follows:

HtmlOutputText summary

Component HtmlOutputText

Family javax.faces.Output

Possible IDE
Display Names

Output Text

Display
Behavior

Converts the value to a string and displays it with optional support CSS styles. (If the id
or style property is set, encloses the text in a element.)

Tag Tibrary HTML

JSP Tag <h:outputText>

Pass-Through
Properties

style, title

Common
Properties

id, value, rendered, converter, styleClass, binding (see table 4.2)

Property Type
Default
Value

Required? Description

escape boolean true No Controls whether or not HTML or XML
characters are escaped (displayed
literally in a browser).

HtmlOutputText example: Text is escaped by default.

HTML What are <i>you</i> looking at?

Component Tag <h:outputText value="What are <i>you</i> looking at?"/>

Browser Display
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

ABOUT THIS BOOK xxxi

Here, I show the HTML output, the JSP component tag, and the browser display,
all in one table. This way, you can easily see how the three different pieces are
related. The HTML is displayed first for those who think in terms of HTML.

Code annotations
I use code annotations because they look much cooler than comments. Here’s an
example:

public String myAction()
{
 // Do something
}

Sometimes I’ll expand upon annotations in paragraphs after the code listing,
using numbered cueballs like this: b.

Callouts
I use the typical callouts like NOTE, WARNING, DEFINITION, and so on through-
out the text to emphasize specific points that may otherwise get buried in ordi-
nary text. Here’s an example:

DEFINITION A UI component, or control, is a component that provides specific func-
tionality for interacting with an end user. Classic examples include tool-
bars, buttons, panels, and calendars.

In addition, I use a couple of unique ones:

Makes a point that isn’t essential to the current text, but may be useful
anyway. Usually, I’m attempting to address related questions you may
have.

SOAPBOX My own personal opinion. Take these with a grain of salt.

Source code and the online extension

All of the source code for this book can be downloaded from the book’s web site:
http://www.manning.com/mann. The downloadable files contain instructions for
installation and compilation. From the same site, book owners can also download

This is an
action method

 b

BY THE
WAY
an additional 300 pages of this book, called the online extension, in PDF format.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xxxii ABOUT THIS BOOK

Author Online

Manning maintains a forum for us authors to spew our biased views at our
beloved readers. The one for JavaServer Faces in Action is available at http://
www.manning.com/mann. If you have any questions about JSF or comments
about this book, feel free to drop by. I will personally be checking this forum
from time to time, as I’m keenly interested in what you have to say.

About the author

Kito D. Mann is a consultant specializing in enterprise architecture, mentoring,
and development. A programmer since the tender age of 12, he has written sev-
eral articles on Java-related technologies, and also speaks at user groups and
conferences. He has consulted with several Fortune 500 companies, and has
been the chief architect of an educational application service provider. Kito is
also the founder of the JSF Central community web site, and a member of JSF 1.2
and JSP 2.1 expert groups. He holds a B.A. in Computer Science from Johns
Hopkins University, and lives in Stamford, Connecticut, with his wife, four cats,
and two parrots. In his spare time, he enjoys making incomplete compositions
with electronic music equipment.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

about the title and cover
About the title

By combining introductions, overviews, and how-to examples, the In Action
books are designed to help learning and remembering. According to research
in cognitive science, the things people remember are things they discover dur-
ing self-motivated exploration.

 Although no-one at Manning is a cognitive scientist, we are convinced that
for learning to become permanent it must pass through stages of exploration,
play, and, interestingly, re-telling of what is being learned. People understand
and remember new things, which is to say they master them, only after actively
exploring them. Humans learn in action. An essential part of an In Action book
is that it is example-driven. It encourages the reader to try things out, to play
with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our read-
ers are busy. They use books to do a job or solve a problem. They need books
that allow them to jump in and jump out easily and learn just what they want
just when they want it. They need books that aid them in action. The books in
this series are designed for such readers.
xxxiii

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

xxxiv ABOUT THE TITLE AND COVER

About the cover illustration

The figure on the cover of JavaServer Faces in Action is a “Saka,” or a Turkish water
carrier. The illustration is taken from a collection of costumes of the Ottoman
Empire published on January 1, 1802, by William Miller of Old Bond Street, Lon-
don. The title page is missing from the collection and we have been unable to
track it down to date. The book’s table of contents identifies the figures in both
English and French, and each illustration bears the names of two artists who
worked on it, both of whom would no doubt be surprised to find their art gracing
the front cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an Ameri-
can based in Ankara, Turkey, and the transaction took place just as he was
packing up his stand for the day. The Manning editor did not have on his person
the substantial amount of cash that was required for the purchase and a credit
card and check were both politely turned down.

 With the seller flying back to Ankara that evening the situation was getting
hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed
that the money be transferred to him by wire and the editor walked out with the
bank information on a piece of paper and the portfolio of images under his arm.
Needless to say, we transferred the funds the next day, and we remain grateful
and impressed by this unknown person’s trust in one of us. It recalls something
that might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of two
centuries ago. They recall the sense of isolation and distance of that period‹and
of every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at
the time, has faded away. It is now often hard to tell the inhabitant of one conti-
nent from another. Perhaps, trying to view it optimistically, we have traded a cul-
tural and visual diversity for a more varied personal life. Or a more varied and
interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional
life of two centuries ago brought back to life by the pictures from this collection.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Part 1

Exploring JavaServer Faces

Part 1 introduces and explores the world of JavaServer Faces programming.
We provide an overview of the technology and explain how JSF fits into the
current web development landscape. Next, we discuss a sample application,
explore how JSF works, and examine its fundamental concepts. This part of
the book concludes with chapters that cover all of the standard JSF compo-
nents, as well as features like internationalization and validation.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Introducing
JavaServer Faces
This chapter covers
■ What JavaServer Faces is, and what it’s not
■ Foundation technologies (HTTP, servlets, portlets,

JavaBeans, and JSP)
■ How JavaServer Faces relates to existing web

development frameworks
■ Building a simple application
3

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

4 CHAPTER 1
Introducing JavaServer Faces

Welcome to JavaServer Faces in Action. JavaServer Faces (JSF, or simply “Faces”)
makes it easy to develop web applications by bringing support for rich, powerful
user interface components (such as text boxes, list boxes, tabbed panes, and data
grids) to the web development world. A child of the Java Community Process,1

JSF is destined to become a part of Java 2 Enterprise Edition (J2EE). This book
will help you understand exactly what JSF is, how it works, and how you can use it
in your projects today.

1.1 It’s a RAD-ical world

A popular term in the pre-Web days was Rapid Application Development (RAD). The
main goal of RAD was to enable you to build powerful applications with a set of
reusable components. If you’ve ever used tools like Visual Basic, PowerBuilder,
or Delphi, you know that they were a major leap forward in application develop-
ment productivity. For the first time, it was easy to develop complex user inter-
faces (UIs) and integrate them with data sources.

 You could drag application widgets—UI controls and other components—
from a palette and drop them into your application. Each of these components
had properties that affected their behavior. (For example, font is a common
property for any control that displays text; a data grid might have a dataSource
property to represent a data store.) These components generated a set of events,
and event handlers defined the interaction between the UI and the rest of the
application. You had access to all of this good stuff directly from within the inte-
grated development environment (IDE), and you could easily switch between
design and code-centric views of the world.

 RAD tools were great for developing full-fledged applications, but they were
also quite useful for rapid prototyping because they could quickly create a UI
with little or no code. In addition, the low barrier to entry allowed both experi-
enced programmers and newbies to get immediate results.

 These tools typically had four layers:

■ An underlying component architecture
■ A set of standard widgets
■ An application infrastructure
■ The tool itself

1
 The Java Community Process (JCP) is the public process used to extend Java with new application programming
interfaces (APIs) and other platform enhancements. New proposals are called Java Specification Requests (JSRs).

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s a RAD-ical world 5

The underlying component architectures were extensible enough to spawn an in-
dustry of third-party component developers like Infragistics and Developer Express.

 Of course, the RAD philosophy never went away—it just got replaced by other
hip buzzwords. It’s alive and well in some Java IDEs and other development envi-
ronments like Borland Delphi and C++Builder. Those environments, however,
stop short of using RAD concepts for web projects. The adoption of RAD in the
web development world has been remarkably slow.

 This sluggishness is due in part to the complexity of creating such a simple,
cohesive view of application development in a world that isn’t simple or cohe-
sive. Web applications are complex if you compare them to standard desktop
applications. You’ve got a ton of different resources to manage—pages, configu-
ration files, graphics, and code. Your users may be using different types of brows-
ers running on different operating systems. And you have to deal with HTTP, a
protocol that is ill suited for building complex applications.

 The software industry has become good at masking complexity, so it’s no sur-
prise that many RAD web solutions have popped up over the last few years.
These solutions bring the power of visual, component-oriented development to
the complex world of web development. The granddaddy is Apple’s WebOb-
jects,2 and Microsoft has brought the concept to the mainstream with Visual Stu-
dio.NET and ASP.NET Web Forms. In the Java world, many frameworks have
emerged, several of them open source. Some have tool support, and some don’t.

 However, the lack of a standard Java RAD web framework is a missing piece of
the Java solution puzzle—one that Microsoft’s. NET Framework has covered from
day one. JavaServer Faces was developed specifically to fill in that hole.

1.1.1 So, what is JavaServer Faces?
In terms of the four layers of a RAD tool, JavaServer Faces defines three of them:
a component architecture, a standard set of UI widgets, and an application infra-
structure. JSF’s component architecture defines a common way to build UI widgets.
This architecture enables standard JSF UI widgets (buttons, hyperlinks, check-
boxes, text fields, and so on), but also sets the stage for third-party components.
Components are event oriented, so JSF allows you to process client-generated
events (for instance, changing the value of a text box or clicking on a button).

 Because web-based applications, unlike their desktop cousins, must often
appease multiple clients (such as desktop browsers, cell phones, and PDAs), JSF

2
 WebObjects has a full-fledged environment that includes a J2EE server, web services support, and ob-
ject persistence, among other things.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

6 CHAPTER 1
Introducing JavaServer Faces

has a powerful architecture for displaying components in different ways. It also
has extensible facilities for validating input (the length of a field, for example)
and converting objects to and from strings for display.

 Faces can also automatically keep your UI components in synch with Java
objects that collect user input values and respond to events, which are called
backing beans. In addition, it has a powerful navigation system and full support
for multiple languages. These features make up JSF’s application infrastruc-
ture—basic building blocks necessary for any new system.

 JavaServer Faces defines the underpinnings for tool support, but the imple-

Figure 1.1 IBM’s WebSphere Application Developer (WSAD) has been expanded to support JSF
applications in addition to the seemingly endless amount of other technologies it supports. You can
visually build JSF applications, and mix-and-match other JSP tag libraries using WSAD’s familiar
Eclipse-based environment.
mentation of specific tools is left to vendors, as is the custom with Java. You have

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s a RAD-ical world 7

a choice of tools from industry leaders that allow you to visually lay out a web UI
in a way that’s quite familiar to users of RAD development tools such as Visual Stu-
dio. NET. (Figures 1.1, 1.2, and 1.3 show what Faces development looks like in
IDEs from IBM, Oracle, and Sun, respectively.) Or, if you prefer, you can develop
Faces applications without design tools.

 Just in case all of this sounds like magic, we should point out a key difference

Figure 1.2 Oracle’s JDeveloper [Oracle, JDeveloper] will have full-fledged support for JSF, complete
with an extensive array of UIX components, which will integrate with standard JSF applications. It will
also support using JSF components with its Application Development Framework (ADF) [Oracle, ADF].
(This screen shot was taken with UIX components available with JDeveloper 10g, which are the basis
of JSF support in the next version of JDeveloper.)
between JavaServer Faces and desktop UI frameworks like Swing or the Standard

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

8 CHAPTER 1
Introducing JavaServer Faces

Widget Toolkit (SWT): JSF runs on the server. As such, a Faces application will run
in a standard Java web container like Apache Tomcat [ASF, Tomcat], Oracle
Application Server [Oracle, AS], or IBM WebSphere Application Server [IBM,
WAS], and display HTML or some other markup to the client.

 If you click a button in a Swing application, it will fire an event that you can
handle directly in the code that resides on the desktop. In contrast, web browsers

Figure 1.3 Sun’s Java Studio Creator [Sun, Creator] is an easy-to-use, visually based environment
for building JavaServer Faces applications. You can easily switch between designing JSF pages
visually, editing the JSP source, and writing associated Java code in an environment that should seem
familiar to users of Visual Studio.NET, Visual Basic, or Delphi.
don’t know anything about JSF components or events; they just know how to

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s a RAD-ical world 9

display HTML.3 So when you click on a button in a Faces application, it causes a
request to be sent from your web browser to the server. Faces is responsible for
translating that request into an event that can be processed by your application
logic on the server. It’s also responsible for making sure that every UI widget
you’ve defined on the server is properly displayed to the browser.

 Figure 1.4 shows a high-level view of a Faces application. You can see that the
application runs on the server and can integrate with other subsystems, such as En-
terprise JavaBeans (EJB) services or databases. However, JSF provides many addi-
tional services that can help you build powerful web applications with less effort.

 JavaServer Faces has a specific goal: to make web development faster and eas-
ier. It allows developers to think in terms of components, events, backing beans,
and their interactions, instead of requests, responses, and markup. In other
words, it masks a lot of the complexities of web development so that developers
can focus on what they do best—build applications.

3

Figure 1.4 A high-level view of a JavaServer Faces application. JSF makes web development easy
by providing support for UI components and handling a lot of common web development tasks.
Technically, they do a lot of other things, like execute JavaScript or VBScript, display XML and
XHTML, and so on.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

10 CHAPTER 1
Introducing JavaServer Faces

NOTE JSF is a technology, and this book covers it as thoroughly as possible in
several hundred pages. Tools sugarcoat a lot of pieces of the develop-
ment puzzle with graphical user interface (GUI) designers that generate
JSP, screens that edit configuration files, and so forth. Throughout this
book, we’ll show you the real Java, JSP, and XML code and configuration
that JSF uses, while giving you a sense of where the tools can make your
life easier. With this approach, you’ll have a full understanding of what
an IDE does behind the scenes, which is extremely useful for mainte-
nance of your application after it’s built, and also for situations where
you need to move from one IDE vendor to another. And, of course, if
you don’t like IDEs at all, knowing how things actually work is essential.
(If you are a big IDE fan, don’t worry—we show screen shots of different
tools throughout the book, and online extension appendix B covers
three of them in detail).

1.1.2 Industry support

One of the best things about the Java Community Process (JCP), Sun Microsys-
tems’s way of extending Java, is that a lot of great companies, organizations, and
individuals are involved. Producing a spec through the JCP isn’t exactly speedy,
but the work can be quite good. JavaServer Faces was introduced as Java Specifi-
cation Request (JSR) 127 by Sun in May 2001; the final version of the specifica-
tion, JSF 1.0, was released on March 3, 2004, and JSF 1.1 (a maintenance release)
arrived on May 27th, 2004. The companies and organizations (other than Sun)
involved in developing Faces include the Apache Software Foundation, BEA Sys-
tems, Borland Software, IBM, Oracle, Macromedia, and many others.

 The products developed by these companies can be put into three categories
(many fit in more than one): J2EE containers, development tools, and UI frame-
works. Because JavaServer Faces is a UI component framework that works with tools
and runs inside J2EE containers, this makes good sense. What’s significant is the
fact that the group includes many industry heavyweights. This means that you
can expect JSF to have a lot of industry support. And if your vendor doesn’t sup-
port JSF, you can download Sun’s reference implementation for free [Sun, JSF RI].

 To keep up with the latest JSF news, articles, products and vendors, check out
JSF Central [JSF Central], a community site run by the author.

1.2 The technology under the hood

All JSF applications are standard Java web applications. Java web applications

speak the Hypertext Transfer Protocol (HTTP) via the Servlet API and typically

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The technology under the hood 11

use some sort of display technology, such as JavaServer Pages (JSP), as shown in
figure 1.4. The display technology is used to define UIs that are composed of
components that interact with Java code. Faces applications can also work inside
of portlets, which are similar to servlets. JSF’s component architecture uses Java-
Beans for exposing properties and event handling.

 In this section, we briefly describe these technologies and explain how they
relate to JSF. If you’re already familiar with Java web development basics and
understand how they relate to JSF, you may want to skip this section.

1.2.1 Hypertext Transfer Protocol (HTTP)

Diplomats and heads of state come from many different cultures and speak
many different languages. In order to communicate, they follow specific rules of
ceremony and etiquette, called protocols. Following protocols helps to ensure that
they can correspond effectively, even though they come from completely differ-
ent backgrounds.

 Computers use protocols to communicate as well. Following an established set
of rules allows programs to communicate regardless of the specific software,
hardware, or operating system.

 The World Wide Web (WWW) started as a mechanism for sharing documents.
These documents were represented via the Hypertext Markup Language (HTML)
and allowed people viewing the documents to easily move between them by sim-
ply clicking on a link. To serve up documents and support this hyperlinking
capability, the Hypertext Transfer Protocol (HTTP) was developed. It allowed
any web browser to grab documents from a server in a standard way.

DEFINITION The Web was originally designed for static content such as academic
documents, which do not change often. In contrast, dynamic content,
such as stock information or product orders, changes often. Dynamic
content is what applications usually generate.

HTTP is a simple protocol—it’s based on text headers. A client sends a request to a
server, and the server sends a response back to the browser with the requested doc-
ument attached. The server is dumb4—it doesn’t remember anything about the cli-
ent if another document is requested. This lack of memory means that HTTP is a
“stateless” protocol; it maintains no information about the client between requests.
4 Web servers have grown to be quite sophisticated beasts, but initially they were pretty simple.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

12 CHAPTER 1
Introducing JavaServer Faces

 The stateless nature of HTTP means that it’s able to scale well (it is, after all,
the protocol of the Internet, and the Internet is a huge place). This property isn’t
a problem for the static documents that HTTP was originally developed to serve.

 But imagine what it’d be like if a valet parked your car but didn’t give you a
ticket and didn’t remember your face. When you came back, he’d have a hard
time figuring out which car to retrieve. That’s what it’s like to develop an appli-
cation in a stateless environment. To combat this problem, there are two possibil-
ities: cookies and URL rewriting. They’re both roughly the same as the valet
giving you a ticket and keeping one himself.

 No matter what language you use, if you’re writing a web application, it will
use HTTP. Servlets and JSP were developed to make it easier to build applications
on top of the protocol. JavaServer Faces was introduced so that developers can
forget that they’re using the protocol at all.

1.2.2 Servlets

HTTP is great for serving up static content, and web servers excel at that function
out of the box. But creating dynamic content requires writing code. Even though
HTTP is simple, it still takes some work to write programs that work with it. You
have to parse the headers, understand what they mean, and then create new
headers in the proper format. That’s what the Java Servlet application program-
ming interface (API) is all about: providing an object-oriented view of the world
that makes it easier to develop web applications.5 HTTP requests and responses
are encapsulated as objects, and you get access to input and output streams so
that you can read a user’s response and write dynamic content. Requests are han-
dled by servlets—objects that handle a particular set of HTTP requests.

 A standard J2EE web application is, by definition, based on the Servlet API.
Servlets run inside a container, which is essentially a Java application that per-
forms all of the grunt work associated with running multiple servlets, associating
the resources grouped together as a web application, and managing all sorts of
other services. The most popular servlet container is Tomcat [ASF, Tomcat], but
J2EE application servers such as IBM WebSphere [IBM, WAS] and the Sun Java
System Application Server [Sun, JSAS] provide servlet containers as well.

 As we mentioned in the previous section, one of the big problems with HTTP
is that it’s stateless. Web applications get around this problem through the use of

5 Technically, the Servlet API can be used to provide server functionality in any request/response envi-

ronment—it doesn’t necessarily have to be used with HTTP. In this section, we’re referring to the
java.servlet.http package, which was designed specifically for processing HTTP requests.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The technology under the hood 13

sessions—they make it seem as if the users are always there, even if they’re not.
Sessions are one of the biggest benefits that the Servlet API provides. Even
though behind the scenes they make use of cookies or URL rewriting, the pro-
grammer is shielded from those complexities.

 The Servlet API also provides lots of other goodies, like security, logging, life-
cycle events, filters, packaging and deployment, and so on. These features all
form the base of JavaServer Faces. As a matter of fact, JSF is implemented as a
servlet, and all JSF applications are standard J2EE web applications.

 JSF takes things a bit further than the Servlet API, though. Servlets cover the
basic infrastructure necessary for building web applications. But at the end of the
day, you still have to deal with requests and responses, which are properties of the
underlying protocol, HTTP. JSF applications have UI components, which are asso-
ciated with backing beans and can generate events that are consumed by applica-
tion logic. Faces uses the Servlet API for all of its plumbing, but the developer gets
the benefit of working at a higher level of abstraction: You can develop web appli-
cations without worrying about HTTP or the specifics of the Servlet API itself.

1.2.3 Portlets

Most web applications serve dynamic content from a data store—usually a data-
base. (Even if the business logic is running on another type of server, like an EJB
or Common Object Request Broker Architecture [CORBA] server, eventually
some code talks to a database.) Since the early days of the Web, however, there
has been a need for software that aggregates information from different data
sources into an easy-to-use interface. These types of applications, called portals,
were originally the domain of companies like Netscape and Yahoo! However,
more and more companies now realize that the same concept works well for
aggregating information from different internal data sources for employee use.

 So a variety of vendors, including heavyweights like IBM, BEA, and Oracle,
offer portal products to simplify this task. Each data source is normally displayed
in a region within a web page that behaves similarly to a window—you can close
the region, customize its behavior, or interact with it independent of the rest of
the page. Each one of these regions is called a portlet.

 Each of these vendors developed a completely different API for writing portlets
that work with their portal products. In order to make it easier to develop portlets
that work in multiple portals, the JCP developed the Portlet specification [Sun,
Portlet], which was released in late 2003. All of the major portal vendors (including

Sun, BEA, IBM, and Oracle) and open source organizations like the Apache Software
Foundation have announced support for this specification in their portal products.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

14 CHAPTER 1
Introducing JavaServer Faces

 The Portlet specification defines the Portlet API, which, like the Servlet API,
defines a lot of low-level details but doesn’t simplify UI development or mask
HTTP. That’s where JSF comes into the picture; it was developed so that it can
work with the Portlet API (which is similar in many ways to the Servlet API). You
can use ordinary JSF components, event handling, and other features inside
portlets, just as you can inside servlets.

NOTE Throughout this book, we mostly talk about JSF in relation to servlets.
However, most of our discussions apply to portlets as well.

1.2.4 JavaBeans

Quite a few Java web developers think that JavaBeans are simply classes with
some properties exposed via getter and setter methods (accessors and mutators).
For example, a Java class with the methods getName and setName exposes a read-
write property called name. However, properties are just the tip of the iceberg;
JavaBeans is a full-fledged component architecture designed with tool support
in mind.

 This is significant, because it means there’s a lot more to it than just proper-
ties. JavaBeans conform to a set of patterns that allow other Java classes to
dynamically discover events and other metadata in addition to properties. As a
matter of fact, JavaBeans is the technology that enables Swing and makes it pos-
sible for IDEs to provide GUI builders for desktop applications and applets.
Using JavaBeans, you can develop a component that not only cooperates nicely
with a visual GUI builder but also provides a specialized wizard (or customizer) to
walk the user through the configuration process. JavaBeans also includes a pow-
erful event model (the same one used with Swing and JSF components), persis-
tence services, and other neat features.

 Understanding the power of JavaBeans will help you comprehend the full
power of JSF. Like Swing components, every JSF component is a full-fledged Java-
Bean. In addition, Faces components are designed to work with backing beans—
objects that are implemented as JavaBeans and also handle events.

 If you’re just planning to write application code or build UIs, then a basic
knowledge of JavaBeans (mutators and accessors) is sufficient. If you’re going to
be developing custom components, a deep understanding of JavaBeans will
make your life much easier.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The technology under the hood 15

1.2.5 JSP and other display technologies

Servlets are great low-level building blocks for web development, but they don’t
adequately simplify the task of displaying dynamic content. You have to manu-
ally write out the response to every request.

 Let’s say that every line of HTML you were sending was written as a separate
line of Java code. You have about 30 pages in your application, and each page
has about 80 lines of HTML. All of the sudden, you have 2400 lines of code that
looks a lot like this:

out.println("This is a really repetitive task, and \"escaping\"" +
 " text is a pain. ");

This is really tedious work, especially because you have to escape a lot of charac-
ters, and it’s hard to quickly make changes. Clearly there has to be a better way.

 To solve this problem, Sun introduced JavaServer Pages (JSP) as a standard
template mechanism. JavaServer Pages look like an HTML page, but they have
special tags that do custom processing or display JavaBean values, and can also
have Java code embedded in them.6 Ultimately, they behave like a servlet that
looks a lot like the previous code snippet. The JSP translator does the boring
work so that you don’t have to.

 You can create your own custom tags7 to perform additional processing (such
as accessing a database), and there’s a useful set of standard tags called the Java-
Server Pages Standard Tag Library (JSTL) [Sun, JSTL]. The idea is that you can
define the UI with HTML-like tags, not Java code.

 Even though JSP is the industry standard display technology, you can choose
among many alternatives. You could use a full Extensible Markup Language/
Extensible Style Sheet Language Transformations (XML/XSLT) approach with
something like Cocoon [ASF, Cocoon], or a stricter template-based approach like
Velocity [ASF, Velocity] or WebMacro [WebMacro]. Many other options are avail-
able as well.

 One of the key design goals of JSF was to avoid relying on a particular display
technology. So JSF provides pluggable interfaces that allow developers to integrate

6 The ability to have Java code embedded in JSPs is considered bad design (and a bad practice) by many
and is the topic of one of those huge religious wars. The main argument is that it doesn’t enforce sep-
aration between display and business logic. That “feature” is one of the main reasons there are differ-
ent choices for display technologies. In JSP 2.0, you can turn off this feature.

7
 Custom tags are technically called “custom actions,” but we use the more common term “custom tags”
throughout this book.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

16 CHAPTER 1
Introducing JavaServer Faces

it with various display technologies. However, because JSF is a standard Java
technology, and so is JSP, it’s no surprise that Faces comes with a JSP implementa-
tion (via custom tags) right out of the box. And because JSP is the only display
technology that must be integrated with JavaServer Faces, most of the examples
in this book use JSP as well.

1.3 Frameworks, frameworks, frameworks

Earlier, we said that JavaServer Faces is a “framework” for developing web-based
UIs in Java. Frameworks are extremely common these days, and for a good rea-
son: they help make web development easier. Like most Java web frameworks,
JSF enforces a clean separation of presentation and business logic. However, it
focuses more on the UI side of things and can be integrated with other frame-
works, like Struts.

1.3.1 Why do we need frameworks?

As people build more and more web applications, it becomes increasingly obvi-
ous that although servlets and JSPs are extremely useful, they can’t handle many
common tasks without tedious coding. Frameworks help simplify these tasks.

 The most basic of these tasks is form processing. HTML pages have forms,
which are collection of user input controls like text boxes, lookup lists, and
checkboxes. When a user submits a form, all of the data from the input fields is
sent to the server. A text field in HTML might look like this:

<input maxLength=256 size=55 name="userName" value="">

In a standard servlet application, the developer must retrieve those values directly
from the HTTP request like this:

String userName = (String)request.getParameter("userName");

This can be tedious for large forms, and because you’re dealing directly with the
value sent from the browser, the Java code must also make sure all of the request
parameters are valid. In addition, each one of these parameters must be manu-
ally associated with the application’s objects.

 Forms are just one example of tasks that servlets and JSP don’t completely
solve. Web applications have to manage a lot of pages and images, and referenc-
ing all of those elements within larger applications can become a nightmare if
you don’t have a central way of managing it.

 Management of the page structure is another issue. Although JSP provides a

simple mechanism for creating a dynamic page, it doesn’t provide extensive support

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Frameworks, frameworks, frameworks 17

for composing a page out of smaller, reusable parts. Other fun things that servlets
don’t handle include internationalization, type conversion, and error handling.

 To handle all of these tasks in a simplified manner, several frameworks have
emerged. Some of the more popular ones are Struts [ASF, Struts] and WebWork
[OpenSymphony, WebWork]. The goal of any framework is to facilitate develop-
ment by handling many common tasks.

1.3.2 She’s a Model 2

Basic organization and management services are a necessity for larger web appli-
cations, but they need structure as well. Most web frameworks, including JSF,
enforce some variation of the Model-View-Controller (MVC) design pattern. To
understand exactly what MVC is, let’s look at a driving analogy.

 When you’re driving down the highway in one direction, there’s usually a
median between you and the traffic heading in the opposite direction. The
median is there for a good reason—fast traffic moving in opposite directions
doesn’t mix too well. Without the median, a rash of accidents would inevita-
bly result.

 Applications have similar issues: Code for business logic doesn’t mix too well
with UI code. When the two are mixed, applications are much harder to main-
tain, less scalable, and generally more brittle. Moreover, you can’t have one team
working on presentation code while another works on business logic.

 The MVC pattern is the standard solution to this problem. When you watch a
story on the news, you view a version of reality. An empirical event exists, and the
news channel is responsible for interpreting the event and broadcasting that
interpretation. Even though you see the program on your TV, a distinct differ-
ence lies between what actually took place, how people doing the reporting
understand it, and what you’re seeing on your TV. The news channel is controlling
the interaction between the TV program—the view—and the actual event—the
model. Even though you may be watching the news on TV, the same channel
might be broadcasting via the Internet or producing print publications. These
are alternate views. If the pieces of the production weren’t separate, this wouldn’t
be possible.

 In software, the view is the presentation layer, which is responsible for inter-
acting with the user. The model is the business logic and data, and the controller
is the application code that responds to user events and integrates the model
and view. This architecture ensures that the application is loosely coupled, which

reduces dependencies between different layers.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

18 CHAPTER 1
Introducing JavaServer Faces

Model 2 (shown in figure 1.5) is a variation of MVC that’s specific to web applica-
tions. The basic point is that:

■ The model can consist of plain old Java objects (POJOs), EJBs, or some-
thing else.

■ The view can be JSPs or some other display technology.
■ The controller is always implemented as a servlet.

So if the JSP page contains an error, it doesn’t affect the application code or the
model. If there’s an error in the model, it doesn’t affect the application code or
the JSP page. This separation allows for unit testing at each layer, and also lets
different parties work with the layers independently. For instance, a front-end
developer can build a JSP before the business objects and the application code
are complete. Portions of some layers can even be integrated before all three
have been completed.

 These benefits are exactly why most frameworks, including JSF, support some
variation of the MVC design pattern.

1.3.3 JSF, Struts, and other frameworks

Let’s face it: there are a lot of Java web frameworks available. Some of them, like
Struts [ASF, Struts] and WebWork [OpenSymphony, WebWork], help with form
processing and other issues such as enforcing Model 2, integrating with data

Figure 1.5 Most web frameworks use some variation of the Model 2 design pattern.
sources, and controlling references to all of the application’s resources centrally via

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Components everywhere 19

XML configuration files. These foundation frameworks provide extensive under-
pinnings but don’t mask the fundamental request/response nature of HTTP.

 Other frameworks, like Tapestry [ASF, Tapestry], Oracle’s Application Devel-
opment Framework (ADF) UIX [Oracle, ADF UIX], and SOFIA [Salmon, SOFIA],
provide a UI component model and some sort of event processing. The purpose
of these UI frameworks, which include JSF, is to simplify the entire programming
model. Often, foundation and UI frameworks have overlapping functionality.

 To understand this overlap, you can think of web application infrastructure as
a stack of services. The services close to the bottom of the stack don’t abstract too
many details of the underlying protocol; they’re more like plumbing. The ser-
vices toward the top of the stack hide more of the gory details; they provide
higher levels of abstraction. The lowest services are handled by web servers, the
Servlet API, and JSP. Most frameworks provide some subsection of the additional
services. Figure 1.6 shows this stack in relation to JSF, Struts, servlets, JSP, and a
traditional web server.

 You can see from the figure that JSF supports enough services to make it quite
powerful by itself, and in many cases, it’s all you’ll need. Subsequent releases of
Faces will most likely cover additional services as well.

 However, even though Faces overlaps with frameworks like Struts, it doesn’t
necessarily replace them. (As a matter of fact, the lead developer of Struts, Craig
McClanahan, was instrumental in the development of JavaServer Faces.) If you inte-
grate the two, you get access to all the services of the stack (chapter 14 covers Struts
integration). You can also use JSF with other frameworks like Spring [Spring-Faces].

 For UI-oriented frameworks, JSF may overlap with a large set of their func-
tionality. Some of those projects have pledged support for JSF in future versions.
Faces has the distinction of being developed by a consortium of industry heavy-
weights through the JCP and will be part of J2EE. As a result, it enjoys heavy tool
support and will ship standard with many J2EE servers.

1.4 Components everywhere

Sadly, overuse of the term “component” is rampant in the industry today. An
operating system is a component, an application is a component, EJBs are com-
ponents, a library is a component, and so is the kitchen sink. Numerous books
about components are available, and the good ones point out that many defini-
tions exist.

 The excessive use of this word isn’t that strange if you know what it really

means. If you look up “component” in the dictionary, you’ll see that it’s a

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

20 CHAPTER 1
Introducing JavaServer Faces

synonym for constituent—a part of a whole. So, if you use the literal meaning of
the word, an operating system really is a component in the context of a distrib-
uted application.

 What’s funny is that conceptually, a kitchen sink has more in common with
Faces components than an operating system does. If you remodel your kitchen,
you get to pick out a kitchen sink. You don’t have to build it from scratch—you
just have to pick a sink that fulfills your requirements: size, color, material, num-
ber of bowls, and so on. The same thing goes for other kitchen items, like cabi-
nets and countertops. All of these components have specific interfaces that allow
them to integrate with one another, but they depend on specific environmental
services (plumbing, for instance). The end result may be unique, but the whole is
made up of independent, reusable parts.

Figure 1.6 Web application infrastructure can be viewed as a stack of services. The services on the
bottom provide basic plumbing but little abstraction. The services at the top of the stack provide
more abstraction. Having all of the services together is extremely powerful.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Components everywhere 21

 If we take the concepts of kitchen components and apply them to software, we
end up with this definition:

DEFINITION A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to composition by
third parties [Szyperski].

The “context dependencies” in a kitchen are things like the room itself, plumb-
ing, and electrical circuits. In essence, the context is the container for all of the
components. A container is a system that hosts components and provides a set of
services that allow those components to be manipulated. Sometimes that manip-
ulation is within an IDE (during design time); sometimes it’s in a deployment envi-
ronment, like a J2EE server (during runtime).

 The phrase “deployed independently” means that a component is a self-
contained unit and can be installed into a container. Kitchen sinks are individ-
ual, self-contained items made to fit into a countertop.

 When you remodel your kitchen, you hire a contractor, who assembles the
components you’ve selected (cabinets, drawers, sink, and so on) into a full-
fledged kitchen. When we build software using component architectures, we
assemble various components to create a working software system.

 JSF components, Swing components, servlets, EJBs, JavaBeans, ActiveX con-
trols, and Delphi Visual Component Library (VCL) components all fit this defini-
tion. But these components concentrate on different things. JSF and Swing
components are aimed solely at UI development, while ActiveX and VCL controls
may or may not affect the UI. Servlets and EJBs are much more coarse-grained—
they provide a lot of functionality that’s more in the realm of application logic
and business logic.

 Because JSF is focused on UI components, let’s narrow our component defini-
tion appropriately:

DEFINITION A UI component, or control, is a component that provides specific func-
tionality for interacting with an end user. Classic examples include tool-
bars, buttons, panels, and calendars.

If you’ve done traditional GUI development, then the concept of a UI compo-
nent should be quite familiar to you. What’s great about JavaServer Faces is that

it brings a standard UI component model to the web world. It sets the stage for

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

22 CHAPTER 1
Introducing JavaServer Faces

things desktop developers take for granted: a wide selection of packaged UI
functionality with extensive tools support. It also opens the door for creating cus-
tom components that handle tasks specific to a particular business domain—like
a report viewer or an interest calculator.

1.5 Hello, world!

Now that you have a basic understanding of the problems JavaServer Faces is
meant to solve, let’s begin with a simple Faces application. This section assumes
you’re familiar with Java web applications and JSP. (For more about these tech-
nologies, see section 1.2 for an overview.) We’ll dissect a simple HTML-based
web application that has two pages: hello.jsp and goodbye.jsp.

 The hello.jsp page does the following:

■ Displays the text “Welcome to JavaServer Faces!”
■ Has a single form with a text box that requires an integer between 1 and 500
■ Stores the last text box value submitted in a JavaBean property called

numControls

■ Has a grid underneath the text box
■ Has a button labeled “Redisplay” that when clicked adds numControls output

UI components to the grid (clearing it of any previous UI components first)
■ Has a button labeled “Goodbye” that displays goodbye.jsp if clicked

The goodbye.jsp page does the following:

■ Displays the text “Goodbye!”
■ Displays the value of the JavaBean property numControls

JSF performs most of the work of our Hello, world! application, but in addition
to the JSP pages, there are a few other requirements:

■ The HelloBean backing bean class
■ A Faces configuration file
■ A properly configured deployment descriptor

Some tools will simplify creation of some or all of these requirements, but in this
section, we’ll examine the raw files in detail.

 Before we get into those details, let’s see what Hello, world! looks like in a web
browser. The application starts with hello.jsp, as shown in figure 1.7. The text

box on this page is associated with a JavaBean property of the HelloBean class;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Hello, world! 23

when someone enters a value into this box, the property will be updated auto-
matically (if the value is valid).

 If you enter the number “64” into the text box and click the Redisplay button,
the page redisplays as shown in figure 1.8—a total of 64 UI components are dis-
played in the grid. If you clear the text box and click the Redisplay button, you’ll
get a validation error, as shown in figure 1.9. You’ll also get a validation error if

Figure 1.7 The Hello, world! application before any data has been submitted.

Figure 1.8 The Hello, world! application after you enter "64" and click the Redisplay

button. The grid is populated with 64 UI components.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

24 CHAPTER 1
Introducing JavaServer Faces

you enter the number “99999” into the text box and click the Redisplay button,
as shown in figure 1.10.

 Don’t worry about the text of the error messages—in your own applications
you can customize it. The important point is that in both cases, when the form
was submitted the associated JavaBean property wasn’t modified.

 If you click the Goodbye button, you see the goodbye.jsp page, shown in fig-
ure 1.11. Even though this is an entirely different page, the value of the Java-
Bean property is displayed. JSF components can reference a JavaBean living in
any application scope.

 Our Hello, world! example is a standard Java web application, as specified by
the Servlet API (it does require the standard Faces libraries, though). All five of
these figures were generated with two JSPs. Let’s look at them in detail.

1.5.1 Dissecting hello.jsp

Our main page, hello.jsp, provides the interface for figures 1.7 to 1.10. JSF is
integrated with JSP through the use of custom tag libraries. The JSF custom tags
enable JSPs to use Faces UI components. Tools will often allow you to design JSF

Figure 1.9 The Hello, world! application after you submit a blank value for the
required text box field and click the Redisplay button. Because a validation error
occurred, the value of the associated JavaBean property didn’t change.
pages by dragging and dropping JSF components from a palette. As a matter of

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Hello, world! 25

Figure 1.10 The Hello, world! application after you enter in the value "99999" into
the text box and click the Redisplay button. The field only accepts numbers between
1 and 500, so a validation error is shown. Because a validation error occurred, the
value of the associated JavaBean property didn’t change.

Figure 1.11 The Hello, world! application after you click the Goodbye button. Note

that the JavaBean property, which was synchronized with the text box of the first
page, is displayed on this page.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

26 CHAPTER 1
Introducing JavaServer Faces

fact, figures 1.1 to 1.3 are screen shots of designing hello.jsp in different IDEs.
These IDEs ultimately generate something like listing 1.1 (and, of course, you
can create JSF pages by hand).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
 <html>
 <head>
 <title>
 JSF in Action - Hello, world!
 </title>
 </head>
 <body>
 <h:form id="welcomeForm">
 <h:outputText id="welcomeOutput"
 value="Welcome to JavaServer Faces!"
 style="font-family: Arial, sans-serif; font-size: 24;
 color: green;"/>
 <p>
 <h:message id="errors" for="helloInput" style="color: red"/>
 </p>
 <p>
 <h:outputLabel for="helloInput">
 <h:outputText id="helloInputLabel"
 value="Enter number of controls to display:"/>
 </h:outputLabel>
 <h:inputText id="helloInput" value="#{helloBean.numControls}"
 required="true">
 <f:validateLongRange minimum="1" maximum="500"/>
 </h:inputText>
 </p>
 <p>
 <h:panelGrid id="controlPanel"
 binding="#{helloBean.controlPanel}"
 columns="20" border="1" cellspacing="0"/>
 </p>
 <h:commandButton id="redisplayCommand" type="submit"
 value="Redisplay"
 actionListener="#{helloBean.addControls}"/>

 <h:commandButton id="goodbyeCommand" type="submit" value="Goodbye"

Listing 1.1 hello.jsp: opening page of our Hello, world! application (browser output
shown in figures 1.7–1.10)

JSF tag
libraries

 b

Tag enclosing
all JSF tags

 c

HtmlForm
component d

HtmlOutputText
component e

 HtmlMessage
component f

HtmlOutputLabel with
child HtmlOutputText g

HtmlInputText
component

 h

HtmlPanelGrid
component i

HtmlCommandButton
components

 j
 action="#{helloBean.goodbye}" immediate="true"/>
 </h:form>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Hello, world! 27

 </body>
 </html>
</f:view>

First, we import the core JavaServer Faces tag library. This library provides cus-
tom tags for such basic tasks as validation and event handling. Next, we import
the basic HTML tag library, which provides custom tags for UI components like
text boxes, output labels, and forms. (The prefixes “f ” and “h” are suggested, but
not required.)
The <f:view> custom tag must enclose all other Faces-related tags (from both the
core tag library and the basic HTML tag library).
The <h:form> tag represents an HtmlForm component, which is a container for
other components and is used for posting information back to the server. You
can have more than one HtmlForm on the same page, but all input controls must
be nested within a <h:form> tag.
The <h:outputText> tag creates an HtmlOutputText component, which simply dis-
plays read-only data to the screen. This tag has an id attribute as well as a value
attribute. The id attribute is optional for all components; it’s not required unless
you need to reference the component somewhere else. (Components can be ref-
erenced with client-side technologies like JavaScript or in Java code.) The value
attribute specifies the text you want to display.
The <h:message> tag is for the HtmlMessage component, which displays validation
and conversion errors for a specific component. The for attribute tells it to display
errors for the control with the identifier helloInput, which is the identifier for the
text box on the page (h). If no errors have occurred, nothing is displayed.
The <h:outputLabel> tag creates a new HtmlOutputLabel component, which is
used as a label for input controls. The for property associates the label with
an input control, which in this case is helloInput (h). HtmlOutputLabels don't
display anything, so we also need a child HtmlOutputText (created by the
nested <h:outputText> tag) to display the label's text.
The <h:inputText> tag is used to create an HtmlInputText component that accepts
text input. Note that the value property is "#{helloBean.numControls}", which is
a JSF Expression Language (EL) expression referencing the numControls property
of a backing bean, called helloBean. (The JSF EL is a based upon the EL intro-
duced with JSP 2.0.)

 Faces will automatically search the different scopes of the web application
(request, session, application) for the specified backing bean. In this case, it will
find a bean stored under the key helloBean in the application’s session. The

 b

 c

 d

 e

 f

 g

 h
value of the component and helloBean’s numControls property are synchronized

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

28 CHAPTER 1
Introducing JavaServer Faces

so that if one changes, the other one will change as well (unless the text in the
HtmlInputText component is invalid).

 Input controls have a required property, which determines whether or not
the field must have a value. In this case, required is set to true, so the compo-
nent will only accept non-empty input. If the user enters an empty value, the
page will be redisplayed, and the HtmlMessage (f) component will display an
error message, as shown in figure 1.9.

 JSF also supports validators, which are responsible for making sure that the user
enters an acceptable value. Each input control can be associated with one or more
validators. The <f:validateLongRange> tag registers a LongRange validator for
this HtmlInputText component. The validator checks to make sure that any input
is a number between 1 and 500, inclusive. If the user enters a value outside that
range, the validator will reject the input, and the page will be redisplayed with the
HtmlMessage (f) component displaying the error message shown in figure 1.10.

 Whenever the user’s input is rejected, the object referenced by the HtmlInput-
Text component’s value property will not be updated.
An HtmlPanelGrid component is represented by the <h:panelGrid> tag. HtmlPanel-
Grid represents a configurable container for other components that is displayed as
an HTML table.

 Any JSF component can be associated directly with a backing bean via its JSP
tag’s binding attribute. (Some tools will do this automatically for all of the com-
ponents on a page.) The tag’s binding attribute is set to "#{helloBean.control-
Panel}". This is a JSF EL expression that references helloBean’s controlPanel
property, which is of type HtmlPanelGrid. This ensures that helloBean always has
access to the HtmlPanelGrid component on the page.
The <h:commandButton> specifies an HtmlCommandButton component that’s displayed
as an HTML form button. HtmlCommandButtons send action events to the applica-
tion when they are clicked by a user. The event listener (a method that executes
in response to an event) can be directly referenced via the actionListener prop-
erty. The first HtmlCommandButton’s actionListener property is set to "#{hello-
Bean.addControls}", which is an expression that tells JSF to find the helloBean
object and then call its addControls method to handle the event. Once the method
has been executed, the page will be redisplayed.

 The second HtmlCommandButton has an action property set instead of an
actionListener property. The value of this property, "#{helloBean.goodbye}",
references a specialized event listener that handles navigation. This is why clicking
on this button loads the goodbye.jsp page instead of redisplaying the hello.jsp

 i

 j
page. This button also has the immediate property set to true, which tells JSF to

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Hello, world! 29

execute the associated listener before any validations or updates occur. This way,
clicking this button still works if the value of the input control is incorrect.

That’s it for hello.jsp. Listing 1.2 shows the HTML output after a validation error
has occurred (the browser’s view is shown in figure 1.10).

 <html>
 <head>
 <title>
 JSF in Action - Hello, world!
 </title>
 </head>
 <body>
 <form id="welcomeForm" method="post"
 action="/jia-hello-world/faces/hello.jsp"
 enctype="application/x-www-form-urlencoded">

 <span id="welcomeForm:welcomeOutput"
 style="font-family: Arial, sans-serif; font-size: 24
 color: green;">Welcome to
JavaServer Faces!
 <p>

Validation Error: Specified attribute is not between the expected values
 of 1 and 500.
 </p>
 <p>
 <label for="welcomeForm:helloInput">

Enter number of controls to display:
 </label>
 <input id="welcomeForm:helloInput" type="text"
 name="welcomeForm:helloInput" value="99999"/>
 </p>
 <p>
 <table id="welcomeForm:controlPanel" border="1" cellspacing="0">
 <tbody>
 <tr>
 <td> 0 </td>
 ...
 <td> 19 </td>
 </tr>
 <tr>
 <td> 20 </td>
 ...

Listing 1.2 The HTML output of hello.jsp (this code is the source for figure 1.10)

HtmlForm
component

 b

HtmlOutputText
component

HtmlMessage
component

 c

HtmlOutputLabel
with
HtmlOutputText

HtmlInputText
component

HtmlPanelGrid
component

 d
 <td> 39 </td>
 </tr>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

30 CHAPTER 1
Introducing JavaServer Faces

 <tr>
 <td> 40 </td>
 ...
 <td> 59 </td>
 </tr>
 <tr>
 <td> 60 </td>
 ...
 <td> 63 </td>
 </tr>
 </tbody>
 </table>
 </p>
 <input id="welcomeForm:redisplayCommand" type="submit"
 name="welcomeForm:redisplayCommand" value="Redisplay" />

 <input id="welcomeForm:goodbyeCommand" type="submit"
 name="welcomeForm:goodbyeCommand" value="Goodbye" />
 ...
 </form>
 </body>
 </html>

You can see from the listing that every component defined in the JSP has a repre-
sentation in the displayed HTML page. Note that the <h:form> tag (b), which rep-
resents an HtmlForm component, has an action attribute that actually points back
to the calling JSP but with the preface “faces”. This is an alias for the Faces servlet,
which is defined in the application’s deployment descriptor. Redisplaying the
calling page is the default behavior, but a Faces application can also navigate to
another page (which is what happens when the user clicks the Goodbye button).

 The output of the HtmlMessage component (c) is the text “Validation Error:
Specified attribute is not between the expected values of 1 and 500.” As you
might expect, this message was generated by the LongRange validator we regis-
tered in the JSP page. When the validator rejected the attempt to post an incor-
rect value, the validator created a new error message and the framework
refrained from updating the associated JavaBean property’s value.

 Each HTML element that maps to a JSF component has an id attribute that’s
derived from the id specified in the JSP (if no id is specified, one will be created
automatically). This is called the client identifier, and it’s what JSF uses to map an
input value to a component on the server. Some components also use the name
attribute for the client identifier.

HtmlPanelGrid
component

 d

HtmlCommandButton
components
 The output of the HtmlPanelGrid component (d) is an HTML table. Note that
the border and cellspacing properties specified in the JSP were passed through

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Hello, world! 31

directly to the HTML. (Most of the standard HTML components expose HTML-
specific properties that are simply passed through to the browser.) Each cell in
the table is the output of an HtmlOutputText component that was added to the
HtmlPanelGrid in Java code, in response to a user clicking the Redisplay button.
(In the real HTML, there are 64 cells because that’s the number that was entered
into the text box; we left some of them out of the listing because, well, that’s a lot
of lot of extra paper!)

 We’ll examine the Java code soon enough, but let’s look at goodbye.jsp first.

1.5.2 Dissecting goodbye.jsp

The goodbye.jsp page, shown in figure 1.11, is displayed when the user clicks the
Goodbye button. The page (listing 1.3) contains some of the same elements as
the hello.jsp page: imports for the JSF tag libraries, an HtmlForm component, and
HtmlOutputText components. One of the HtmlOutputText components references
the same helloBean object as the previous page. This works fine because the object
lives in the application’s session and consequently survives between page requests.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<f:view>
 <html>
 <head>
 <title>
 JSF in Action - Hello, world!
 </title>
 </head>
 <body>
 <h:form id="goodbyeForm">
 <p>
 <h:outputText id="welcomeOutput" value="Goodbye!"
 style="font-family: Arial, sans-serif; font-size: 24;
 font-style: bold; color: green;"/>
 </p>
 <p>
 <h:outputText id="helloBeanOutputLabel"
 value="Number of controls displayed:"/>
 <h:outputText id="helloBeanOutput"

Listing 1.3 goodbye.jsp: Closing page of our Hello, world! application (the browser
output is shown in figure 1.11)

Same backing

 value="#{helloBean.numControls}"/>
 </p>

bean as hello.jsp

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

32 CHAPTER 1
Introducing JavaServer Faces

 </h:form>
 </body>
 </html>
</f:view>

There’s nothing special about the HTML generated by this page that we didn’t
cover in the previous section, so we’ll spare you the details. What’s important is
that we were able to build a functional application with validation and page nav-
igation with only two simple JSPs. (If we didn’t want to show navigation, the first
page would have been good enough.)

 Now, let’s look at the code behind these pages.

1.5.3 Examining the HelloBean class

Both hello.jsp and goodbye.jsp contain JSF components that reference a backing
bean called helloBean through JSF EL expressions. This single JavaBean con-
tains everything needed for this application: two properties and two methods.
It’s shown in listing 1.4.

package org.jia.hello;

import javax.faces.application.Application;
import javax.faces.component.html.HtmlOutputText;
import javax.faces.component.html.HtmlPanelGrid;
import javax.faces.context.FacesContext;
import javax.faces.event.ActionEvent;

import java.util.List;

public class HelloBean
{
 private int numControls;
 private HtmlPanelGrid controlPanel;

 public int getNumControls()
 {
 return numControls;
 }

 public void setNumControls(int numControls)
 {
 this.numControls = numControls;
 }

Listing 1.4 HelloBean.java: The simple backing bean for our Hello, world! application

No required superclass b

Property
referenced on
both JSPs

 c
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Hello, world! 33

 public HtmlPanelGrid getControlPanel()
 {
 return controlPanel;
 }

 public void setControlPanel(HtmlPanelGrid controlPanel)
 {
 this.controlPanel = controlPanel;
 }

 public void addControls(ActionEvent actionEvent)
 {
 Application application =
 FacesContext.getCurrentInstance().getApplication();
 List children = controlPanel.getChildren();
 children.clear();
 for (int count = 0; count < numControls; count++)
 {
 HtmlOutputText output = (HtmlOutputText)application.
 createComponent(HtmlOutputText.COMPONENT_TYPE);
 output.setValue(" " + count + " ");
 output.setStyle("color: blue");
 children.add(output);
 }
 }

 public String goodbye()
 {
 return "success";
 }
}

Unlike a lot of other frameworks, JSF backing beans don’t have to inherit from a
specific class. They simply need to expose their properties using ordinary Java-
Bean conventions and use specific signatures for their event-handling methods.
The numControls property is referenced by the HtmlInputText component on
hello.jsp and an HtmlOutputText component on goodbye.jsp. Whenever the user
changes the value in the HtmlInputText component, the value of this property is
changed as well (if the input is valid).
The controlPanel property is of type HtmlPanelGrid, which is the actual Java
class created by the <h:panelGrid> tag used in hello.jsp. That tag’s binding
attribute associates the component instance created by the tag with the control-
Panel property. This allows HelloBean to manipulate the actual code—a task it
happily performs in e.

Property
bound to
HtmlPanelGrid

 d

Executed by Redisplay
HtmlCommandButton e

Executed by Goodbye
HtmlCommandButton

 f

 b

 c

 d
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

34 CHAPTER 1
Introducing JavaServer Faces

addControls is a method designed to handle action events (an action listener
method); you can tell, because it accepts an ActionEvent as its only parameter. The
Redisplay HtmlCommandButton on hello.jsp references this method with its action-
Listener property. This tells JSF to execute the method when handling the action
event generated when the user clicks the Redisplay button. (Associating a compo-
nent with an event listener method may seem strange if you’re used to frameworks
like Swing that always require a separate event listener interface. JSF supports
interface-style listeners as well, but the preferred method is to use listener meth-
ods because they alleviate the need for adapter classes in backing beans.)

 When this method is executed, it adds a new HtmlOutputText component to the
controlPanel numControls times (clearing it first). So, if the value of numControls
is 64, as it is in our example, this code will create and add 64 HtmlOutputText
instances to controlPanel. Each instance’s value is set to equal its number in the
sequence, starting at zero and ending at 64. And finally, each instance’s style
property is set to "color: blue".

 Because controlPanel is an HtmlPanelGrid instance, it will display all of these
child controls inside an HTML table; each HtmlOutputText component wll be
displayed in a single cell of the table. Figure 1.8 shows what controlPanel looks
like after this method has executed.
Like addControls, the goodbye method is a type of event listener. However, it is
associated with JSF’s navigation system, so its job is to return a string, or a logical
outcome, that the navigation system can use to determine which page to load
next. These types of methods are called action methods.

 The goodbye method is associated with the Goodbye HtmlCommandButton on
hello.jsp via its action property. So when a user clicks the Goodbye button, the
goodbye method is executed. In this case, goodbye doesn’t do any work to deter-
mine the logical outcome; it just returns "success". This outcome is associated
with a specific page in a Faces configuration file, which we cover next.

 Because goodbye doesn’t perform any processing (as it would in a real applica-
tion), we could have achieved the same effect by hardcoding the text "success"
in the button’s action property. This is because the navigation system will either
use the literal value of an HtmlCommandButton’s action property or the outcome of
an action method (if the property references one).

1.5.4 Configuration with faces-config.xml

Like most frameworks, Faces has a configuration file; it’s called, believe it or not,
faces-config.xml. (Technically, JSF supports multiple configuration files, but we’ll

 e

 f
keep things simple for now.) This XML file allows you to define rules for

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Hello, world! 35

navigation, initialize JavaBeans, register your own custom JSF components and
validators, and configure several other aspects of a JSF application. This simple
application requires configuration only for bean initialization and navigation;
the file is shown in listing 1.5.

<?xml version="1.0"?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_0.dtd">

<faces-config>

 <managed-bean>
 <description>The one and only HelloBean.</description>
 <managed-bean-name>helloBean</managed-bean-name>
 <managed-bean-class>org.jia.hello.HelloBean
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>

 <navigation-rule>
 <description>Navigation from the hello page.</description>
 <from-view-id>/hello.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/goodbye.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

</faces-config>

First and foremost, a JSF configuration file is an XML document whose root node
is <faces-config> (b). In this file, you can declare one or more JavaBeans for
use in your application. You can give each one a name (which can be referenced
via JSF EL expressions), a description, and a scope, and you can even initialize its
properties. Objects declared in a configuration file are called managed beans. In
the listing, we have declared the helloBean object used throughout the Hello,
world! application (c). Note that the name of the object is “helloBean”, which is
the same name used in JSF EL expressions on the two JSPs. The class is org.
jia.hello.HelloBean, which is the name of the backing bean class we examined
in the previous section. The managed bean name and the object’s class name

Listing 1.5 faces-config.xml: The Faces configuration file for Hello, world!

Encloses all configuration elements b

Declares
HelloBean in
the session

 c

Declares
navigation
case

 d
don’t have to be the same.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

36 CHAPTER 1
Introducing JavaServer Faces

 Declaring navigation is as simple as declaring a managed bean. Each JSF
application can have one or more navigation rules. A navigation rule specifies the
possible routes from a given page. Each route is called a navigation case. The
listing shows the navigation rule for Hello, world!’s hello.jsp page (d). hello.jsp
has a Goodbye button that loads another page, so there is a single navigation
case: if the outcome is "success", the page goodbye.jsp will be displayed. This
outcome is returned from helloBean’s goodbye method, which is executed when
a user clicks the Goodbye button.

 It’s worthwhile to point out that some aspects of JSF configuration, particu-
larly navigation, can be handled visually with tools. Now, let’s see how our appli-
cation is configured at the web application level.

1.5.5 Configuration with web.xml

All J2EE web applications are configured with a web.xml deployment descriptor;
Faces applications are no different. However, JSF applications require that you
specify the FacesServlet, which is usually the main servlet for the application. In
addition, requests must be mapped to this servlet. The deployment descriptor
for our Hello, world! application is shown in listing 1.6. You can expect some
tools to generate the required JSF-related elements for you.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3/

/EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>Hello, World!</display-name>
 <description>Welcome to JavaServer Faces</description>

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
</web-app>

Listing 1.6 web.xml: The deployment descriptor for our Hello, world! application

JSF
servlet

Standard JSF
mapping
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 37

That’s it—Hello, world! dissected. You can see that JSF does a lot of things for
you—validation, event handling, navigation, UI component management, and
so on. As we walk through the various aspects of JSF in more detail, you’ll gain a
deep understanding of all of the services it provides so that you can concentrate
on building the application and avoid that joyous thing they call grunt work.

1.6 Summary

JavaServer Faces (JSF, or “Faces”) is a UI framework for building Java web appli-
cations; it was developed through the Java Community Process (JCP) and will
become part of Java 2 Enterprise Edition (J2EE). One of the main goals of Faces
is to bring the RAD style of application development, made popular by tools like
Microsoft Visual Basic and Borland Delphi, to the world of Java web applications.

 JSF provides a set of standard widgets (buttons, hyperlinks, checkboxes, and
so on), a model for creating custom widgets, a way to process client-generated
events on the server, and excellent tool support. You can even synchronize a UI
component with an object’s value, which eliminates a lot of tedious code.

 All JSF applications are built on top of the Servlet API, communicate via
HTTP, and use a display technology like JSP. JavaServer Faces applications don’t
require JSP, though. They can use technologies like XML/XSLT, other template
engines, or plain Java code. However, Faces implementations are required to
provide basic integration with JSP, so most of the examples in this book are in JSP.

 The component architecture of Faces leverages JavaBeans for properties, fun-
damental tool support, an event model, and several other goodies. JSF is consid-
ered a web application framework because it performs a lot of common
development tasks so that developers can focus on more fun things like business
logic. One of the key features is support of the Model 2 design pattern, which
enforces separation of presentation and business logic code. However, Faces
focuses on UI components and events. As such, it integrates quite nicely with the
other frameworks like Struts, and overlaps quite a bit with the functionality of
higher-level frameworks.

 The Hello, world! example demonstrates the basic aspects of a JavaServer
Faces application. It shows how easy it is to define a UI with components like text
boxes, labels, and buttons. It also shows how Faces automatically handles input
validation and updating a JavaBean based on the value of a text control.

 In the next chapter, we’ll look at the core JSF concepts and examine how the
framework masks the request/response nature of HTTP.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF fundamentals
This chapter covers
■ Key terms and concepts
■ How JSF processes an incoming request
■ The JSF expression language
38

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The key pieces of the pie 39

If you’re anything like me, you probably still have a lot of questions about how Java-
Server Faces works. But it’s hard to understand how something works if you don’t
know the lingo. You can’t even begin to understand how a circuit works if you don’t
know what an AND or OR gate is. Similarly, construction would be a bit of a mystery
without knowledge of terms like “scaffolding.” In this chapter, we discuss the key
concepts that are essential for building Faces applications. We then walk through
how the framework processes a single Hypertext Transfer Protocol (HTTP) request,
so you can see how Faces abstracts the low-level details of web development.

2.1 The key pieces of the pie

Like most technologies, Faces has its own set of terms that form a conceptual
base for the features it provides. We’re talking about such elements as user inter-
face (UI) components, validators, and renderers. You may have a good idea
about what they are, but in order to write Faces applications, you must under-
stand what they are in the JSF world. In the following sections, we cover these key
concepts and explain how they relate to one another.

 Eight core terms come into play when you’re developing JSF applications (see
table 2.1).

Table 2.1 These terms are the key pieces of the JSF pie.

Term Description

UI component (also
called a control or simply
a component)

A stateful object, maintained on the server, that provides specific functionality
for interacting with an end user. UI components are JavaBeans with proper-
ties, methods, and events. They are organized into a view, which is a tree of
components usually displayed as a page.

Renderer Responsible for displaying a UI component and translating a user’s input into
the component's value. Renderers can be designed to work with one or more
UI components, and a UI component can be associated with many different
renderers.

Validator Responsible for ensuring that the value entered by a user is acceptable. One
or more validators can be associated with a single UI component.

Backing beans Specialized JavaBeans that collect values from UI components and implement
event listener methods. They can also hold references to UI components.

Converter Converts a component’s value to and from a string for display. A UI compo-
nent can be associated with a single converter.

Events and listeners JSF uses the JavaBeans event/listener model (also used by Swing). UI compo-
nents (and other objects) generate events, and listeners can be registered to
handle those events.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

40 CHAPTER 2
JSF fundamentals

Now, let’s take a step back and look at how all of these terms are related. Take a
look at figure 2.1, which is a Unified Modeling Language (UML) class diagram
representing each of the concepts with simplified relationships (we’ve included
“view” and “model object” as additional concepts for completeness). As the fig-
ure shows, UI components, which are contained by a view, update backing beans
and generate events based on user input. Renderers display components, and can
also generate events and messages. Converters translate and format a compo-
nent’s value for display, and generate error messages as well. Validators verify
the value of a component and generate error messages.

 Backing beans contain event listeners and action methods, which are event lis-
teners that are specialized for navigation. Event listeners consume events and can
manipulate the view or execute model objects, which perform the core application

Messages Information that’s displayed back to the user. Just about any part of the appli-
cation (backing beans, validators, converters, and so on) can generate infor-
mation or error messages that can be displayed back to the user.

Navigation The ability to move from one page to the next. JSF has a powerful navigation
system that’s integrated with specialized event listeners.

Table 2.1 These terms are the key pieces of the JSF pie. (continued)

Term Description

Figure 2.1 A model of how the key JSF concepts relate to one another. They communicate through

events and messages.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The key pieces of the pie 41

logic. Action methods can do everything event listeners can, but they also return
an outcome that is used by the navigation system. Finally, the navigation system
uses this outcome to select the next view to display to the user.

 Most of the concepts in this diagram generate a message or an event. This is
how JSF applications communicate. Events represent user input or application
operations. Messages indicate errors or application notifications.

 You may have noticed that events, messages, and model objects are passive
from the perspective of JSF. In other words, they don’t do anything—some other
class is always operating on them. This is an important point for model objects,
because it means that the model doesn’t know about the user interface. This is
part of how JSF enforces an MVC-style architecture.

 Now that you have an idea about what these terms mean, and how they relate
to one another, let’s examine each one in detail.

2.1.1 User interface components

User interface (UI) components (also called controls, or simply components)
focus on interacting with an end user. Visual Basic has UI components, and so
does Swing, so what’s unique about Faces components? Like Swing controls,
they’re built on top of JavaBeans. This means they have properties, methods,
and events, plus inherent support for IDEs. Unlike Swing, they’re specifically
designed for the unique constraints of web applications, and they live on the
server side, not the client. This is important, because most web interfaces aren’t
built with components—they just output markup, like HTML.

 Packaging UI elements as a component (like a toolbar or a calendar) makes
development easier because the core functions are encapsulated within a reus-
able piece of code. For example, if you use a calendar control you don’t have to
develop a complicated combination of HTML, CSS, and graphics to make it look
just right. You may have to manipulate some properties, such as the colors, or
the default date, but all the hard work has already been completed by the com-
ponent’s developer. There isn’t even a need to write a lot of code to integrate it
with your application—just associate it with a JavaBean property of a backing
bean (described later), and you’re done.

 If you think about it, there are a bunch of different ways a calendar can be
represented. The most common way is to show a month at a time, with a little
box for each day of the month. But a calendar could also be represented as three
drop-down boxes: one each for the day, month, and year. The way a component

looks is how it is rendered.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

42 CHAPTER 2
JSF fundamentals

 Regardless of how it rendered, a calendar has the same basic functionality
and an intrinsic set of properties, like its colors, the default date, and the range
of dates you want to display. A calendar component represents what the calendar
does, not what it looks like. Such behavior is called renderer neutral, because it is
the same regardless of how the component is rendered. This distinction is key
when you’re developing components in Java, but as a front-end or application
developer, you can use components with interfaces that are tailored for a specific
client environment. (For example, an HtmlInputText component has HTML-spe-
cific properties like accessKey and style, even though it doesn’t technically han-
dle rendering itself.)

 One of the key differences between web-based and desktop-based compo-
nents is that the former never directly interact with the user’s machine. If you fill
out a form incorrectly in a desktop application and click OK, the page isn’t redis-
played—the program just tells you what the errors were (at least you hope it
does!). All of the values on the form just stay there. In web applications, the page
is often redisplayed with error messages, but the application has to make it look
as if it wasn’t redisplayed at all. In other words, the components have to remem-
ber their values, or state. JSF components handle this for you automatically.

 Faces components can remember their values between requests because the
framework maintains a tree of the UI components for a given page. This compo-
nent tree, called the view, is JSF’s internal representation of the page, and it
allows parent-child relationships, such as having a form that contains a label, a
text field, and a panel with two nested buttons, as shown in figure 2.2. Using
“view” instead of “page” underscores the fact that the user’s representation
doesn’t always have to be an HTML web page. However, for simplicity, we’ll use
the two interchangeably.

 Each component in the tree is identified with a component identifier. The com-
ponent identifier can be set by a developer; if none is set, it will be generated
automatically. In addition, components can be associated with one another via
named relationships like “header” or “footer”—these are called facets. UI compo-
nents can also support accessibility properties that make them easier to access for
users with disabilities.

 UI components raise the abstraction bar, bringing a whole new level of flexi-
bility to web development. Building UIs with JSF is more about assembling and
configuring components than writing tedious code in different technologies
(HTML, CSS, JavaScript, and so on). And all of these components can be refer-

enced and manipulated both in code, via GUI designers, and declaratively (with
a display technology like JSP). Faces includes several standard components such

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The key pieces of the pie 43

as labels, hyperlinks, text boxes, list boxes, checkboxes, radio buttons, panels,
and data grids. We cover these in chapters 4 and 5; custom component develop-
ment is covered in part 4 and online extension part 5.

2.1.2 Renderers

Faces UI components aren’t always responsible for their own rendering. When
components render themselves, it’s called the direct implementation model, but JSF
also supports the delegated implementation model, which allows separate classes to
handle the process. Those classes are called, surprisingly enough, renderers.

 Renderers are organized into render kits, which usually focus on a specific type
of output. JSF ships with a standard render kit for HTML 4.01, but a render kit
could generate a different HTML look and feel (or “skin”), Wireless Markup Lan-
guage (WML), Scalable Vector Graphics (SVG), or it could communicate with an
applet, Java application, or an entirely different type of client.

 You can think of a renderer as a translator between the client and the server
worlds. On the way from the server, it handles encoding, which is the process of
creating a representation of a component that the client understands. When JSF
receives a response from the user, the renderer handles decoding, which is the

Figure 2.2 UI components are managed on the server in a view, or component tree.
The components can be wired directly to the values of JavaBean properties.
Components are rendered to the client in HTML (or in some other display language).
process of extracting the correct request parameters and setting a component’s
value based on those parameters.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

44 CHAPTER 2
JSF fundamentals

 For example, the following code defines a single HtmlInputText component:

<h:inputText id="inputText" size="20" maxlength="30"/>

When this component is encoded, it is sent to the user as the following
HTML snippet:

<input id="myForm:inputText" type="text" name="myForm:inputText"
 maxlength="30" size="20" />

Let’s say that the user enters the text “foo” into this input field. Decoding is the
process of taking the form parameters sent in the HTTP response and setting the
value of the HtmlTextInput component instance on the server to "foo". Behind
the scenes, the Text renderer in the standard HTML RenderKit handles both of
these processes. Because all encoding and decoding is handled by a single entity
(either the component or its renderer), the visual representation of the compo-
nent and the underlying protocol for translating between request parameters
and objects on the server are nicely self-contained.

 When components use the delegated implementation model (as all of the
standard components do), changing the entire display of a given page is as sim-
ple as changing the render kit. This means that it is quite easy to have the same
Faces-compliant template display HTML, WML, or SVG—the components are the
same, but displaying a different markup language is just a matter of changing
the render kit.

 It’s worthwhile to note that for average HTML application development tasks,
renderers are pretty transparent. All of the standard components are associated
with a renderer behind the scenes, so you don’t have to worry much about them.
However, when you need to dynamically change the appearance of your applica-
tion, or when you’re developing custom components, renderers are an essential
and powerful piece of the JSF pie. We cover developing custom renderers in part 4
and online extension part 5.

2.1.3 Validators

One of the joys of developing UIs is making sure the user entered the right
thing—which could be as complex as “the correct part identifier from the data-
base” or as simple as “not empty.” Often, enforcing the right thing requires a lot
of ugly if statements written in JavaScript, Java, or both. Moreover, the process
of displaying errors is somewhat error-prone if you don’t have a framework to
help you out.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The key pieces of the pie 45

 Faces handles validation in three ways—at the UI component level, via valida-
tor methods in backing beans, or in validator classes. UI components generally
handle simple validation, such as whether a value is required, or validation logic
that’s specific to the component itself (and therefore not usable with other com-
ponents). Validator methods are useful when you need to validate one or more
fields on a form (and you don't need to share that logic with other components).
External validators are useful for generic cases like the length of a field or a
number range; they are pluggable, which means you can attach one or more of
them to any component. Validation is handled on the server, because all clients
do not support scripting. (JSF components can support validation on the client,
but none of the standard components do so.)

 When a validator encounters an error, like a string that’s too long or an
invalid credit card number, it adds an error message to the current message list.
This makes it easy to display validation errors back to the user using standard JSF
components. Here’s an example:

<h:inputText>
 <f:validateLength minimum="2" maximum="10"/>
</h:inputText>

You can see how easy it is to associate a validator with a component. This defines
an HtmlInputText component with a Length validator that checks to make sure
the user’s input is between two and ten characters long.

 Traditionally, validation can be one of the most tedious web development
tasks. Validators provide a powerful framework to help simplify this task. JSF
ships with a set of standard validators for such things as the length or range of
the input, but you can write your own, and so will third parties. The standard val-
idators are covered in chapter 6, and custom validator development is covered in
online extension chapter 20.

2.1.4 Backing beans

In chapter 1, we discussed the Model-View-Controller (MVC) design pattern and
how it separates an application into its corresponding model, view, and control-
ler layers. We said that the model consists of application logic and data, the view
consists of the UI, and the controller defines the interaction between the two.

 In JSF applications, objects that perform the latter role—interaction with the
UI and the model—are called backing beans. Backing beans generally contain
properties you want to retrieve from users and event listener methods (discussed

later) that process those properties and either manipulate the UI or perform some
sort of application processing. Some development tools will generate backing

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

46 CHAPTER 2
JSF fundamentals

bean classes automatically when you create a new page. They may also refer to
them as “web forms” or “code-behind,” which underscores their conceptual sim-
ilarity to code-behind files in the ASP.NET world (behind the scenes, they’re
quite different).

 JSF allows you to declaratively associate backing beans with UI components.
By declaratively, we mean with markup instead of code (you can do this in code as
well). You associate a component with a backing bean via the JSF expression lan-
guage (EL), which is similar to the JSP 2.0 and JSTL expression languages. You
can use a JSF EL expression to point to a specific backing bean property some-
where in your application. For example, look at this snippet from the Hello,
world! example:

<h:outputText id="helloBeanOutput"
 value="#{helloBean.numControls}"/>

This code snippet hooks up an HtmlOutputText component’s value directly to the
numControls property of an object called helloBean. Whenever the value of the
component changes, the helloBean.numControls property changes as well. The
same is true if the helloBean.numControls property changes first; the two are
automatically kept in sync. This a key feature of JSF, and it’s how you will typically
associate the backing bean properties with the UI component values.

 You can also associate, or bind, a backing bean property directly with a server-
side component instance. This is useful when you want to manipulate a compo-
nent with Java code, which is the type of processing sometimes performed by
event listeners. For example, the Hello, world! application has an HtmlPanelGrid
component instance that is bound to the HelloBean backing bean property:

<h:panelGrid id="controlPanel" binding="#{helloBean.controlPanel}"
 columns="20" border="1" cellspacing="0"/>

Here, the component’s binding property uses a JSF EL expression to associate it
with the HelloBean property controlPanel, which is of type HtmlPanelGrid.
Because the backing bean has a reference to the actual component, it can manip-
ulate it in code:

...
List children = controlPanel.getChildren();
children.clear();
...

This code, located in a HelloBean event listener method, retrieves the child com-
ponents from controlPanel and removes them all. These changes will appear

the next time the page is displayed to the user.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The key pieces of the pie 47

If you’re used to thinking that JavaBeans are only useful as Value Ob-
jects (objects with only properties), it’s important to remember that they
can be so much more than that. Backing beans are full-fledged Java-
Beans that contain properties, but also contain event listener methods
that can act on those properties. They can optionally be associated di-
rectly with UI components, so you have the choice of directly manipulat-
ing the view if necessary.

A single view can have one or more backing beans, and tools will sometimes
automatically create bindings from UI components to their corresponding back-
ing bean properties.

 Backing beans will often talk to model objects—helper classes, which access ser-
vices like databases, web services, and EJBs or perform application logic, or rep-
resent things like users, user preferences, reports, and trades. Model objects, like
backing beans, can be associated directly with a component’s value using JSF
expressions as well. For example, you may want to associate an input control with
a User object’s name property. Model objects aren’t bound directly to UI compo-
nents, though, because they don’t know anything about the UI.

 So that application developers don’t spent a lot of time writing boring code
that creates backing beans and model objects, JSF provides a declarative mecha-
nism for creating them, called the Managed Bean Creation facility. It allows you to
specify which objects will be available throughout the lifecycle of the application.
Here’s another snippet from Hello, world!:

<managed-bean>
 <managed-bean-name>helloBean</managed-bean-name>
 <managed-bean-class>com.virtua.jsf.sample.hello.HelloBean
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

This tells JSF to create an instance of the HelloBean class called helloBean, and
store it in the user’s session. This little snippet is all that’s required to make an
object available for integration with UI components. Any objects that use this
facility are called managed beans.

 Understanding how JSF interacts with backing beans and model objects is an
essential part of building Faces applications. One of the framework’s primary
goals is to ease the burden of integrating the UI with the model, and the more
you work with it, the more features you’ll find that make that goal a reality.

 You can find references to backing beans throughout this book; we develop

BY THE
WAY
some in chapter 13.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

48 CHAPTER 2
JSF fundamentals

2.1.5 Converters

When users interact with a JSF application, they interact with the output of ren-
derers, which create specific representations that make sense for a particular cli-
ent (like a web browser). In order to do this, renderers must have specific
knowledge about the components they display. But components can also be asso-
ciated with backing bean properties. Those properties can be anything—a
String representing a name, a Date representing a birth date, or a FooBarBazz rep-
resenting a foo property. Because there are no constraints on the type, a renderer
can’t know beforehand how to display the object.

 This is where converters come in—they translate an object to a string for dis-
play, and from an input string back into an object. A single converter can be
associated with any control. JSF ships with converters for common types like
dates and numbers, but you, or third parties, can develop additional ones as
well. Renderers (or components themselves) usually use converters internally
during encoding or decoding.

 Converters also handle formatting and localization. For example, the
DateTime converter can format a Date object in a short, medium, long, or full style.
For any given style, it will display the date in a way that makes sense in the user’s
locale. Here’s how you register a converter on an HtmlOutputText component:

<h:outputText value="#{user.dateOfBirth}">
 <f:convert_datetime type="both" dateStyle="full"/>
</h:outputText>

Let’s suppose the user’s birth date is May 4, 1942. The HtmlOutputText component
would display the string “05/04/42” if the user is from the United States but display
“04/05/42” if the user is from Canada. This is shown graphically in figure 2.3.
Figure 2.3 A converter translates an object to and from a string for display.
It also handles formatting and supports various languages.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The key pieces of the pie 49

Converters are handy because they perform a necessary function—converting an
object to a string for display—but provide useful features along the way. Not only
do they make it easy to format and localize common data types, but also the
architecture allows application developers to do the same for their own model
objects. The standard converters are covered in chapter 6, and converter devel-
opment is covered in chapter 15.

2.1.6 Events and listeners

My wife and I have a few cats. They all eat different types of food, so I feed them
a couple of times a day instead of leaving out a feeder. What’s funny is that when-
ever I come downstairs in the morning, or come home later in the day, they start
begging for food. This sounds logical, except that no matter when I come down-
stairs or get home, the cats always beg.

 A while ago, I realized the cats are event driven. They aren’t necessarily hun-
gry, but certain happenings, such as me entering the room after a long absence,
make them think it’s time to be fed. Those happenings are significant occur-
rences that, in their minds, are associated with food.

 For UIs, events capture the way the user interacts with UI components. An
event could be something like simply clicking on a component, or it could be
more complicated, such as executing a specific command. JSF leverages JavaBeans
to handle events with event objects and listeners, just like Swing. Any component
may fire zero or more events, and developers (or components themselves) can
register zero or more listeners to handle those events. I like to think of our cats
as food listeners—they listen for events that might produce food.

 Events are a fundamental shift for web development; more often than not,
developing web applications requires that developers think in terms of requests
and responses—the mechanism of communication for the underlying stateless
protocol, HTTP. Thinking this way is fine for some applications, but for business
applications it’s unnecessarily complex and ties the application too closely to the
protocol.

 When you write JSF applications, integrating application logic is a matter of
assigning the appropriate listeners to components that generate events that the
listeners understand. You don’t have to think about requests and responses at all.
JSF supports the familiar interface-oriented way of developing event listeners as
well as the ability to register an arbitrary method as a listener (as long as it has
the proper signature).
 There are four standard events: value-change events, action events, data
model events, and phase events. Value-change events are fired by input controls

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

50 CHAPTER 2
JSF fundamentals

when a user changes the component’s value. Action events are generated when a
user activates a command component, like a button. Data model events are fired
when a data-aware component selects a row for processing. And phase events exe-
cute while JSF processes an HTTP request.

 Even though these are the only standard events defined by the framework,
there are no limitations on the types of events that are supported. Third-party
components, as well as your own, can easily support different types of events.

Value-change events
Value-change events are generated by input controls when the user enters a new
value into an input component. You handle value-change events with value-
change listeners.

 For example, let’s say you had HtmlInputText and HtmlPanelGrid components
on the same page:

<h:inputText valueChangeListener="#{myForm.processValueChanged}"/>
<h:panelGrid binding="#{myForm.changePanel}" rendered="false">
 ...
</h:panelGrid>

Note that for the HtmlInputText component, we specify a valueChangedListener
property with a JSF EL expression. That expression points to a specific value-change
listener method in our backing bean: myForm.processValueChanged. In addition,
the HtmlPanelGrid is bound to the backing bean’s changePanel property so that it
can be manipulated in Java code. The grid’s rendered property is false, so that
initially it won’t be visible to the user.

 When a user changes the text in the control and submits the form, JSF will
generate a value-change event. It’s then up to an event listener method to pro-
cess this event:

public void processValueChanged(ValueChangeEvent event)
{
 HtmlInputText sender = (HtmlInputText)event.getComponent();
 sender.setReadonly(true);
 changePanel.setRendered(true);
}

In this example, the event listener method will change the readOnly property of
the sender (in this case, the HtmlInputText component) to true so that the user
can no longer edit its contents. It will then change the rendered property of the
HtmlPanelGrid component (which is bound to the changePanel property) to true

so that it will be visible when the page is redisplayed. Event listeners can also add
messages and perform other JSF operations, as well as execute application logic.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The key pieces of the pie 51

 In addition to using listener methods for value-change events, you can regis-
ter event listener classes that implement an interface. Most of the time, however,
associating a specific method with a component is sufficient.

Action events
Action events are triggered when a user interacts with a control that represents a
command, or a user gesture. Components that generate action events, also
called action sources, include controls such as buttons or hyperlinks. Action events
are handled by action listeners.

 There are two types of action listeners: those that affect navigation, and those
that don’t. Action listeners that affect navigation typically perform some process-
ing and then return a logical outcome that is used by JSF’s navigation system to
select the next page (which may actually be the same page that’s currently being
viewed). Listeners that don’t affect navigation usually manipulate components in
the current view, or perform some processing that changes model object or back-
ing bean properties, but doesn’t alter the current page the user is accessing.
Consequently, the page is usually redisplayed after the listener finishes executing.

 Technically, all navigation is handled by a single action listener. This listener
automatically handles any action events fired by a component, so it doesn’t need
to be registered manually. By default, this action listener delegates all of its work
to action methods in your backing beans, so you can have different action methods
handle different parts of your application. Typically, most of your application
logic will be located in these methods. (The action listener is pluggable, so it’s
possible to replace it with one that doesn’t use action methods at all.)

 When a component fires an action event, this default action listener deter-
mines its outcome string—"mainmenu", "success", or "failure", for example.
There are two basic types of outcomes: static and dynamic. Static outcomes are
hardcoded strings that are declared with the component or set in code:

<h:commandButton type="submit" value="Login" action="success"
 immediate="true"/>

In this example, the static outcome of "success" will be generated when the user
clicks on this HtmlCommandButton and generates an action event—no action
method will be called.

 Dynamic outcomes are strings returned by action methods themselves—an
action method might return a different outcome depending on whatever
application logic it performs. The action listener looks for an action method

whenever you use a JSF EL expression in the action property. Here’s an
HtmlCommandButton that executes an action method instead:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

52 CHAPTER 2
JSF fundamentals

<h:commandButton type="submit" value="Login"
 action="#{loginForm.login}"/>

When a user clicks on this button, an action event is fired, and the following
method is executed in response to the event:

public class LoginForm
{
...
 public String login()
 {
 if (...) // login is successful
 {
 return "success";
 }
 else
 {
 return "failure";
 }
 }
...
}

Based on some voodoo application logic, this action method returns an outcome
of either "success" or "failure". LoginForm is a backing bean whose properties
are wired up to input control values on the page, and is configured via the Man-
aged Bean Creation facility.

 My example has voodoo logic, but your action methods can manipulate JSF
components, model objects, or add messages. They can also do other fun tasks,
such as performing a redirect, rendering a response (a graphic or some binary
type of data), adding events, and talking to databases, EJB servers, or web ser-
vices. The action listener uses the outcome of an action method to hook into the
navigation system and determine what page to choose next.

 When you need to execute application logic that is not associated with naviga-
tion, you can associate an action listener method with a component. Unlike
action methods, action listener methods have access to the component that fired
the event as well. Take a look at this example:

<h:commandButton id="redisplayCommand" type="submit" value="Redisplay"
 actionListener="#{myForm.doIt}"/>

Like the previous example, when a user clicks on this HtmlCommandButton, an
action event is fired. This time, however, the action listener method is executed
instead of the action method:
public void doIt(ActionEvent event)
{

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The key pieces of the pie 53

 HtmlCommandButton button = (HtmlCommandButton)event.getComponent();
 button.setValue("It's done!");
}

This method changes the value (label) of the button that fired the event—not
terribly useful. What’s important, however, is its method signature. Instead of
accepting zero parameters and returning an outcome string, action listener
methods accept an ActionEvent as a parameter and don’t return an outcome at
all. After this method executes, the page will be redisplayed, incorporating any
changes made by the method.

 Usually, you use action listener methods for changes that affect the current
view. Like value-change listeners, you can also implement an action listener
using a Java interface, although in most cases using a method in an existing
backing bean is sufficient.

Data model events
Data model events are triggered when a data-aware component processes a row.
The most common way to trigger this event is through a component that dis-
plays a selectable list of items, such as HtmlDataTable, which is the quintessential
“data grid” component. Unlike value-change or action event listeners, data
model event listeners must implement a Java interface.

 Data model events are a little different than the other events because they’re
not actually fired by a UI component. Instead, they’re fired by a DataModel
instance, which is a model object used internally by data-aware components.
DataModel objects are wrappers for lists, arrays, result sets, and other data
sources. Since the event is technically fired by a model object instead of a compo-
nent, you can’t register a listener on the component itself in JSP. You have to reg-
ister it in Java code instead:

FacesContext facesContext = FacesContext.getCurrentInstance();
dataTable = (HtmlDataTable)facesContext.getApplication().createComponent(
 HtmlDataTable.COMPONENT_TYPE);
DataModel myDataModel = new ResultSetDataModel(myResultSet);
myDataModel.addDataModelListener(new DataModelListener()
 {
 public void rowSelected(DataModelEvent e)
 {
 FacesContext.getCurrentInstance().getExternalContext().
 log("row selected:" + e.getRowIndex());
 }
 });
dataTable.setValue(myDataModel);
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

54 CHAPTER 2
JSF fundamentals

In this example, we create a new instance of an HtmlDataTable component and
then create a new ResultSetDataModel using a preexisting JDBC ResultSet.
Next, we add a new DataModelListener (implemented as an inner class) to the
ResultSetDataModel, and set the data model as the value of the HtmlDataTable
component. The result is that every time an HtmlDataTable iterates through a
new row in the data model, our listener will be executed. Usually this happens
when the component is being displayed. Since data model events are fired so
many times, they’re normally used when developing a data-driven component,
rather than during application development.

Phase events
Whenever a JSF application receives a request, it goes through a six-step process
called the Request Processing Lifecycle. During this process, JSF restores the
requested view, translates the request parameters into component values, vali-
dates input, updates your backing beans or model objects, invokes action listen-
ers, and returns a response to the user. Phase events are generated before and
after each step, or phase, of this lifecycle. (We cover the Request Processing Life-
cycle in detail in section 2.2.)

 Phase events are generated by JSF itself rather than by UI components, and
require that you implement a Java interface to register event listeners. They’re
normally used internally by the JSF implementation, but sometimes they can be
useful for application development as well. For example, you can use them to
initialize a backing bean before it is displayed. (Sun’s Java Studio Creator auto-
matically allows backing beans to handle phase events directly.)

 Here’s an example of registering a phase listener that executes before a view
is displayed:

lifecycle.addPhaseListener(
 new PhaseListener()
 {
 public void beforePhase(PhaseEvent event)
 {
 priceQuote = QuoteService.getLatestQuote(currentQuoteId);
 }
 public void afterPhase(PhaseEvent event)
 {
 }
 public PhaseId getPhaseId()
 {
 return PhaseId.RENDER_RESPONSE;

 }
 });

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The key pieces of the pie 55

In this example, we add a new PhaseListener instance to a preexisting Lifecycle
instance (a Lifecycle represents the Request Processing Lifecycle). The phaseId
property of the listener tells the lifecycle when it should process events. In this
case, the listener will be executed when the view is rendered (the Render
Response phase). The beforePhase method will be executed before the view is
displayed, and the afterPhase method will be executed after it has been dis-
played. In beforePhase, we update the priceQuote property based on the latest
values from the QuoteService class. This updates the priceQuote property so that
it can be displayed by components in the corresponding view.

 As you can see, in JSF applications, there’s no need to worry about the details
of the protocol—you only need to be concerned with events and listeners. This
doesn’t mean you don’t have to understand how HTTP works, but it makes day-
to-day development simpler. (If you like total control, don’t worry—you can still
access the Servlet API if you want.) Because events and listeners are a fundamen-
tal part of developing JSF applications, you’ll find examples scattered through-
out parts 3 and 4 of this book, but there is specific coverage for application
developers in chapter 11.

2.1.7 Messages

All this talk of different JSF concepts is great, but what happens if something
goes wrong? One of the biggest issues when developing a UI is properly display-
ing error messages. They can be split into two major categories: application errors
(business logic, database, or connection errors, for example) and user input errors
(such as invalid text or empty fields).

 Application errors usually generate a completely different page with the error
message on it; input errors usually redisplay the calling page with text describing
the errors. Often you’ll have the same error message on different pages, and
consequently you must make sure that what the user sees is consistent. You don’t
want to say “Please enter your telephone number” on one page and “Telephone
number required” on another page.

 JSF provides messages to help deal with these issues. A message consists of
summary text, detailed text, and a severity level. Messages can also be automati-
cally tailored for the user’s current language (assuming your application sup-
ports that language). Just about any piece of your application—including UI
components, validators, converters, or event listeners—can add messages when
processing a request; JSF maintains a list of all the current messages. You can

always programmatically get a handle to the current stack of messages through
components and application code.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

56 CHAPTER 2
JSF fundamentals

 Messages don’t necessarily have to indicate errors; they can be informational
as well. For example, an action listener method could add a message indicating
that a new record was successfully added. The message itself can either be associ-
ated with a specific component (for input errors) or no component at all (for
application messages).

 You can display errors associated with a specific component by using the
HtmlMessage component. You may remember HtmlMessage from the Hello,
world! application:

<h:message id="errors" for="helloInput" style="color: red"/>

This tag displays all errors that were generated for the helloInput input
component (which must be declared on the same page). You can also display
all messages, or those not associated with a specific component, using the
HtmlMessages component.

 Messages provide a convenient way to communicate errors and other hap-
penings to the user. They’re an integral part of JSF’s validation and type conver-
sion features—any time a validator encounters an incorrect value or a converter
processes an incorrect type, it generates an error message. They’re also an excel-
lent way for you to communicate information to a user without worrying about
how it is being displayed; simply create a new message in your action listener
method, and the view will display it for you. You can find out how to customize
the standard application messages in chapter 6, and how to create them in Java
code in chapter 11.

2.1.8 Navigation

All of the concepts we’ve discussed so far have been related to interaction on a
single page. Writing web applications would be a piece of cake if they were con-
fined to a single page, but in reality that’s not the case. Web applications have
multiple pages, and we must have some way to move between them. The act of
moving from one page to another is called navigation.

 Faces has a pretty elegant navigation system. The navigation handler is respon-
sible for deciding what page to load based on the logical outcome of an action
method. For any given page, a navigation rule defines what outcomes are under-
stood, and what pages to load based on those outcomes.1 Each specific mapping
between an outcome and a page is called a navigation case. The rules are defined

1
 This is the way the default navigation handler works. JSF allows you, or other developers, to plug in
new ones that behave differently.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Request Processing Lifecycle 57

in a JSF configuration file. Here is a navigation rule with the two cases for the
page login.jsp—the "success" and "failure" outcomes:

<navigation-rule>
 <from-view-id>/login.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/mainmenu.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>failure</from-outcome>
 <to-view-id>/login.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

As you can see, each case maps the outcome to a specific page—no code
required. This is a handy feature of JSF that should look familiar if you’ve used
frameworks like Struts. All navigation cases are usually kept in a single place,
which means any changes can be made in a central location instead of across sev-
eral pages. Navigation is covered in detail in chapter 3, and you can find many
examples in parts 2 and 3.

 Now that we’ve looked at the key pieces of the JSF pie, let’s see how these con-
cepts come into play when the framework processes an incoming request.

2.2 The Request Processing Lifecycle

We’ve been talking about how JSF simplifies web programming with compo-
nents, events, listeners, and several other nifty concepts. So why is this section
about processing requests? In order for you to understand how the framework
masks the underlying request processing nature of the Servlet API, it helps to
analyze how Faces processes each request. This will allow you to build better
applications because you’ll know exactly what operations take place, and when. If
you’re a front-end developer who tends to avoid such details, you can skip this
section. You can always refer back to it if necessary.

 In this chapter we describe how JSF responds to requests that Faces generates
itself. In other words, the request was generated by a page with JSF components,
and the response will have JSF components on it as well. (It’s entirely possible to
return a page with JSF components on it, even if the initial request wasn’t generated
by JSF; see chapter 14 for more about different request processing scenarios.)

 Figure 2.4 is a state diagram showing what happens when JSF processes an
incoming request from a client—the JSF Request Processing Lifecycle. This process

begins as soon as a request is received by the JSF servlet (remember, JSF is built

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

58 CHAPTER 2
JSF fundamentals

Figure 2.4 The Request Processing Lifecycle. Flows with dotted lines are
optional. JSF cycles through several phases as it processes each request.
After each phase, event listeners are called. Listeners can either continue

as normal, report errors and skip to the Render Response phase, or generate
the response themselves.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Request Processing Lifecycle 59

on top of the Servlet API.) Table 2.2 summarizes each of these phases. There are
six primary phases, and events are processed after most of them.

 After most phases, JSF will broadcast events to any interested listeners (events
can be associated with a particular phase). Event listeners perform application
logic or manipulate components; they can also jump to the final phase, Render
Response. A listener can even skip the final phase and render a response itself. It
might do this if it were returning binary content, performing a redirect, or return-
ing other content that isn’t related to JSF, like XML documents or ordinary HTML.

 Four of these phases can generate messages: Apply Request Values, Process
Validations, Update Model Values, and Invoke Application. With or without mes-
sages, it is the Render Response phase that sends output back to the user, unless
a listener, renderer, or component has sent the response itself.

 The main idea behind this whole process is that by the time the Invoke
Application stage has been reached, there is a fully populated component tree,
all validations have been completed, and any backing beans or model objects

Table 2.2 JavaServer Faces goes through several phases when it processes a single incoming request.

Phase Description Events fired

Restore View Finds or creates a tree of components for the selected
view. Some components, like HtmlCommandButton, will
generate action events (or other types of events) in this
phase.

Phase events

Apply Request Values Updates the value of the components to equal ones sent
in the request, optionally using converters. Adds conver-
sion errors if there is an error. Also generates events from
request parameters.

Phase events, data
model events,
action events

Process Validations Asks each component to validate itself (which may
include using external validators). Validation error mes-
sages may be reported.

Phase events, data
model events,
value-change
events

Update Model Values Updates all the values of backing beans or model objects
associated with components. Conversion error messages
may be reported.

Phase events, data
model events,

Invoke Application Calls any registered action listeners. The default action
listener will also execute action methods referenced by
command components (like HtmlCommandButton) and
choose the next view to be displayed.

Phase events,
action events

Render Response Displays the selected view using the current display tech-
nology (like JSP).

Phase events
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

60 CHAPTER 2
JSF fundamentals

have been completely updated. In short, JSF does a lot of work for you: It takes
the details about a request and translates them into a higher-level view of the
world that consists of components and events. It even updates the properties of
associated objects for you.

 To help make things clearer, we’ll use the Hello, world! example to help explain
the lifecycle. Specifically, we’ll examine the request that generated the output
shown in figure 1.8 from chapter 1. The actual HTTP request is shown in listing 2.1.

POST /jia-hello-world/faces/hello.jsp HTTP/2.1
Host: deadlock:8080
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:2.2.1)
 Gecko/20021130
Accept: text/xml,application/xml,application/xhtml+xml,text/html;
 q=0.9,text/plain;q=0.8,video/x-mng,image/png,
 image/jpeg,image/gif;q=0.2,text/css,*/*;q=0.1
Accept-Language: en-us, en;q=0.50
Accept-Encoding: gzip, deflate, compress;q=0.9
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Keep-Alive: 300
Connection: keep-alive
Referer: http://deadlock:8080/jia-hello-world/faces/hello.jsp
Cookie: JSESSIONID=58324750039276F39E61932ABDE319DF
Content-Type: application/x-www-form-urlencoded
Content-Length: 92

welcomeForm%3AhelloInput=64&
welcomeForm%3AredisplayCommand=Redisplay&
welcomeForm=welcomeForm

We won’t get into the details of HTTP requests here, but a few lines in the listing
are relevant for our discussion:
This request is posting form data to the relative URI “/jia-hello-world/faces/
hello.jsp”.
The referrer is the page from which this request was generated. Note that it’s the
same page that’s receiving the request: “/jia-hello-world/faces/hello.jsp”.
This cookie is used by the servlet container to map this request to a specific ses-
sion. In this example, JSF uses the servlet session to store the current view. (The
view’s state can also be stored in a value maintained by the client, like a hid-
den field.)

Listing 2.1 The HTTP request sent from the browser before the Hello, world! application
displays figure 1.8

URI receiving
request

 b

 c
Same as URI
receiving
request

 d
Session
identifier

 e Component
values

 b

 c

 d
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Request Processing Lifecycle 61

This is the important part—these are the actual parameters JSF processes (the
ampersand is used to separate parameters, and “%3A” translates to a colon [“:”]).
The first parameter has a name of “welcomeForm:helloInput” and a value of
"64", which is the number entered into the browser. The second parameter has a
name of “welcomeForm:redisplayCommand” and value of “Redisplay”. The final
parameter is simply called “welcomeForm” and has a value of “welcomeForm”.
We’ll see how these parameters are handled in the following sections.

 Once JSF receives this HTTP request, it creates and populates an instance of
javax.faces.context.FacesContext. This class represents the current state of
the request, and has hooks to all aspects of the underlying servlet request object.
It’s where your event listeners can get a handle to the current view, add mes-
sages, log events, and so on. JSF uses this object as the basis for the Request Pro-
cessing Lifecycle. We describe each phase in the following sections.

2.2.1 Phase 1: Restore View

A view represents all of the components that make up a particular page. It can be
stored on the client (usually in a hidden field on a browser) or on the server (usu-
ally in the session). In this example, it’s stored on the server, which is the default.
Each view is composed of a tree of components, and has a unique identifier. This
view identifier is the same as the extra path info for the request.2 So, for the path
referenced by B in listing 2.1, “/jia-hello-world/faces/hello.jsp”, the view identi-
fier is “/hello.jsp”—everything after the servlet name.

 Because this request was sent when a user clicked on a button in hello.jsp, the
page that’s sending the request is the same as the page that’s receiving it. The pro-
cess of a page posting back to itself is called postback. If you’re accustomed to web
frameworks like Struts that segregate application code into separate Action classes
that are mapped to URLs, this may seem a bit strange. In these types of frameworks,
the URL is sort of like a course-grained event that says “perform this action.”

 JSF events represent more fine-grained events such as “user executed this
command” or “user changed the value of this control.” The important thing
about these events is that they’re related to the last page that was requested.
When a JSF application receives a request from an existing page, it has to figure
out what page sent the request so that it can identify which events the user gen-
erated, and then associate them with the components on the sending page.

 e

2 This is how the default JSF implementation works. Some other implementations may use view identi-

fiers differently; for example, the Smile [Smile] open source implementation allows you to map a view
identifier to a particular Java class that creates a component tree, rather than a JSP page.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

62 CHAPTER 2
JSF fundamentals

 This is the main job of the Restore View phase—to find the current view and
apply the user’s input to it. In this case, it will look for the view in the user’s ses-
sion. If the view isn’t available (the user has never been to this page before), the
framework discards the current view (if there is one), and creates a new one
based on the requested view identifier. Once the view has been created or
retrieved, it is then stored in the current FacesContext.

 Listing 1.1 in chapter 1 shows the code for hello.jsp in our Hello, world!
application. Let’s take a look at the component tree that represents this page
(see figure 2.5).
Figure 2.5 The tree of components generated by hello.jsp.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Request Processing Lifecycle 63

As you can see, the page is represented by a simple component tree. The view
starts with a UIViewRoot component, which is the container for all of the other
controls on the page. It has one child, an HtmlForm component with the identifier
welcomeForm. This form has several children, including an HtmlInputText compo-
nent called helloInput and two HtmlCommandButton components with the iden-
tifiers redisplayCommand and goodbyeCommand. One of its children is an
HtmlOutputLabel that has a child HtmlOutputText component as well.

 Restoring the view also ensures that the component’s values, as well as any
event listeners, validators, or converters associated with components in the tree,
are restored. In this case, the HtmlInputText component has a LongRange valida-
tor associated with it, which is restored with the components in the view. In
addition, redisplayCommand has an action property, and goodbyeCommand has an
actionListener property, both of which are restored.

 If any of the components in the tree are bound to a backing bean property,
this is where the bean’s property and the component instance are synchronized
with each other. In this example, the controlPanel property of HelloBean would
be synchronized with the HtmlPanelGrid component called controlPanel in the
view. This allows the backing bean listener methods to manipulate the compo-
nent in code when they’re handling events.

 This is also the phase where the language for the view is set, based on the val-
ues of the HTTP request sent to the browser. If this request was a postback, JSF
will now proceed to the next phase. However, if it is an initial request (the first
time the user has requested this page), JSF will skip to the Render Response
phase, because there is no user input to process.

2.2.2 Phase 2: Apply Request Values

Each UI component that accepts input has a submitted value that represents the
user’s original data from the user. During the Apply Request Values phase, the
framework sets that submitted value based on the parameters sent in the request.
This process is called decoding.

 In hello.jsp, each component was assigned a component identifier like this:

<h:inputText id="helloInput" value="#{helloBean.numControls}"
 required="true">
...
</h:inputText>

This declares an HelloInputText component with the component identifier

helloInput. When JSF encodes this component as HTML, the identifier sent to
the browser is composed of the component’s identifier prefixed by the identifier

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

64 CHAPTER 2
JSF fundamentals

of its parent component. The identifier sent to the browser, which is usually the
id attribute of an input element, is called the client identifier. For example, this
HtmlInputText component would have the client identifier welcomeForm:
helloInput, because it’s a child of an HtmlForm component with the identifier
welcomeForm (as shown in figure 2.5).

 As we saw in the HTTP request in listing 2.1, one of the two parameters had
the name helloInput and the value "64". In this phase, JSF asks each component
to decode itself. The component (or its renderer) does this by first looking for a
parameter whose name is the same as its client identifier. Once the parameter
has been found, the component’s value is set to the value of the parameter. So, in
this case, the HtmlInputText component will set its submitted value to "64".

 Every input control that has an editable value also has an immediate property.
If this property is set to true, validation takes place in this phase instead of the
Process Validations phase. The process is the same either way; see the next sec-
tion for details. (In our example, no control has the immediate property set to
true.) Action sources, like a button or a hyperlink, also have an immediate prop-
erty, and if that property is true, they will fire action events during this phase as
well. Processing these events early can be pretty handy: for example, you could
have a Cancel button that ignores all values on a form, or a hyperlink that only
accepts values from a specific control (the immediate property for all of these
components would be true).

 Another parameter sent by the request is "welcomeForm", with a value of
"welcomeForm". Whenever this parameter exists, the HtmlForm component sets its
submitted property to true. This allows you to perform different logic depending on
whether the user has submitted the form. (A single view can have multiple forms.)

 During this phase, the decoding code can also add events or perform other
operations based on the request. In our sample application, this phase is where
the other parameter, "welcomeForm:redisplayCommand", is converted into an
action event by the HtmlCommandButton control with the matching client identi-
fier. Once the action event has been created, it is added to the FacesContext for
later processing in the Invoke Application phase.

 After this phase is completed, any existing events are broadcast to interested
listeners. Any renderers, components, or listeners can short-circuit the lifecycle
and force control to skip to the Render Response phase, or end processing alto-
gether (if they rendered the entire response themselves). Otherwise, each input
component will have properly decoded itself and consequently will have a value

that is up-to-date based on the current request. This is the case for our example.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Request Processing Lifecycle 65

2.2.3 Phase 3: Process Validations

In the Process Validations phase, JSF traverses the component tree and asks each
component to make sure its submitted value is acceptable. Because the submitted
value of every input component was updated in the Apply Request Values phase,
the component now has the most current data from the user. Before validation
can occur, the submitted value is converted, by using either the converter regis-
tered for the component or a default converter. Validation is then handled either
directly by the component or delegated to one or more validators.

 If both conversion and validation are successful for all components whose
values were submitted, the lifecycle continues onto the next phase. Otherwise,
control will skip to the Render Response phase, complete with validation and
conversion error messages.

 Hello, world! has a single LongRange validator that’s associated with the
HtmlInputText component, and the component’s required property is set to true:

<h:inputText id="helloInput" value="#{helloBean.numControls}"
 required="true">
<f:validateLongRange minimum="1" maximum="500"/>
</h:inputText>

When the view was created, the validator instance was created and associated
with the HtmlInputText component.

 Because the UI component’s required property is true, it will first verify that the
submitted value isn’t empty. The value is "64", so it’s definitely not empty. Next,
the submitted value is converted to the type of the helloBean.numControls prop-
erty, which is an Integer. The LongRange validator is then asked to check the value
of its parent component to see if it’s valid. In this case, valid means that the value
is between 1 and 500 (inclusive). Because 64 is indeed in between 1 and 500, this
component will be considered valid.

 Once the component’s submitted value has been validated, its local value is
set based on the converted submitted value, which in this case is an Integer of 64.
If the local value has changed, the component also generates a value-change event.

 At this point, value-change events (and any other events associated with this
phase) are fired and consumed by the appropriate listeners. These listeners have
the option of outputting a response directly or jumping directly to the Render
Response phase.

 If all submitted values are considered valid, JSF continues on to the next
phase of the lifecycle.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

66 CHAPTER 2
JSF fundamentals

2.2.4 Phase 4: Update Model Values

Now that we are sure all of the local values of the components are updated and
valid, and of the correct type, it’s okay to deal with any associated backing beans
or model objects. Because objects are associated with components through JSF EL
expressions, this is where those expressions are evaluated, and properties are
updated based on the component’s local value. Let’s look at the HtmlInputText
declaration once again:

<h:inputText id="helloInput" value="#{helloBean.numControls}"
 required="true">
...
</h:inputText>

You can see that the value property is the expression "#{helloBean.numControls}".
JSF will use this to find an instance of a bean stored under the key helloBean,
searching each of the servlet scopes—request, session, or application (see
section 2.4.1 for more about the different scoped variables).3 In this case, the
bean was stored in the session. Once it has been found, the component sets the
specified property (numControls in this example) to be equal to its local value,
which is currently an Integer of 64.

 Once this phase has completed, the framework will broadcast any events to all
interested listeners. As always, a listener could jump to the Render Response
phase or return a response itself.

 It’s important to note that by this point in the lifecycle, we’ve updated com-
ponent values based on user input, validated those values, and updated any asso-
ciated beans without any application code. This is the true power of JSF—it
handles a lot of the UI processing tasks for you automatically, because there’s
more to life than writing tedious, repetitive code.

2.2.5 Phase 5: Invoke Application

Now that the necessary backing beans and model objects are up-to-date, we can
get down to business. In the Invoke Application phase, JSF broadcasts events for
this phase to any registered listeners. Back in the Apply Request Values phase, an
action event was generated for the redisplayCommand HtmlCommandButton. So in
this phase, JSF will send the action event to any registered action listeners for
that component. In this case, there are two: the action listener method restored
3 The ability to reference a bean regardless of the scope should be familiar to users of frameworks like Struts.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Request Processing Lifecycle 67

in the Restore View phase, and the default action listener (which is automatically
registered for all command components).

 Here’s the declaration for redisplayCommand:

<h:commandButton id="redisplayCommand" type="submit" value="Redisplay"
 actionListener="#{helloBean.addControls}"/>

The actionListener property is the JSF EL expression "#{helloBean.addControls}".
In this phase, JSF evaluates the expression and executes the addControls method
of a helloBean instance stored in the application’s session. Here’s the method:

 public void addControls(ActionEvent actionEvent)
 {
 Application application =
 FacesContext.getCurrentInstance().getApplication();
 List children = controlPanel.getChildren();
 children.clear();
 for (int count = 0; count < numControls; count++)
 {
 HtmlOutputText output = (HtmlOutputText)application.
 createComponent(HtmlOutputText.COMPONENT_TYPE);
 output.setValue(" " + count + " ");
 output.setStyle("color: blue");
 children.add(output);
 }
 }

This code creates numControls instances of HtmlOutputText and adds them to
controlPanel, which is the HtmlPanelGrid instance on the page. (The children
must be cleared first, or else the list of children would continue to grow each time
this method was executed.) Recall that in the Restore View phase, the binding
between the view and HelloBean’s controlPanel property was established. Also,
the numControls property was updated during the Update Model Values phase.

 After this action listener method has executed, JSF will call the default action
listener. This listener delegates control to any action methods registered for the
component that fired the event, and then chooses the next page based on the
action method’s logical outcome. In this case, there was an action method regis-
tered for goodbyeCommand but not redisplayCommand, which is the component that
fired the event. So the default action listener will simply redisplay the current view.

 As we discussed in section 2.1.6, action listeners or action methods can per-
form a lot of operations, such as rendering the response themselves, adding
application messages, generating events, and executing application logic. They
can also jump to the Render Response phase in order to avoid any additional

application event processing. Action methods are integrated with the navigation
system, so they can determine the next page to load.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

68 CHAPTER 2
JSF fundamentals

 It’s important to point out that even though all of this processing is taking
place, this is where your application code lives—you generally don’t have to
worry about the request at all. Once all the listeners have executed,4 JSF is ready
to display the response to the user.

2.2.6 Phase 6: Render Response

At this point all processing by the framework and the application has taken
place. All that’s left is to send a response back to the user, and that is the primary
goal of the Render Response phase. The secondary goal of this phase is to save
the state of the view so that it can be restored in the Restore View phase if the
user requests it again. The view’s state is saved in this phase because often the
view is stored on the client, so it’s part of the response that’s sent back to the
user. In this case, JSF is saving state on the server, so the view would most likely
be stored in the user’s session.

 Remember, JSF isn’t tied to a particular display technology. As a result, we
have several possible approaches to rendering a response:

■ Use only the output from the encoding methods of controls in the view.
■ Integrate the output of encoding methods with application code that gen-

erates markup.
■ Integrate the output of encoding methods with a markup stored in a static

template resource.
■ Integrate the output of decoding methods with a dynamic resource, like a JSP.

All JSF implementations are required to implement the last approach, which
boils down to forwarding the request to the resource represented by the view
identifier. In our example, that identifier was "/hello.jsp", so the calling page is
just redisplayed. JSF implementations are free to implement the other
approaches as well so that they can integrate with other display technologies. See
appendix A for examples of using JSF without JSP.

 During the encoding process for each component, converters are also
invoked to translate the component values into strings for display. So, in our
example, the HtmlInputText component’s Integer value of 64 would be con-
verted into a String.

4 If you’re good at reading in between the lines, you may have noticed that the Invoke Application phase

doesn’t do anything but broadcast events. In other words, unlike the other phases, there’s no real pro-
cessing before the events are fired.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Understanding component and client identifiers 69

 That’s it. The Render Response phase is the final step in the JSF Request Pro-
cessing Lifecycle. Once it’s complete, the web container physically transmits the
resulting bytes back to the user, where it is rendered by the browser. The output
of this particular example, displayed in a browser, is shown in figure 1.8, page 23.

 Now that you have a thorough understanding of how JSF works, let’s look at
some other fundamental aspects of developing JSF applications.

2.3 Understanding component and client identifiers

In the previous sections, we’ve touched on the concept of a client identifier, and
we’ve seen how it’s different than the identifier assigned to a component in a JSP.
Let’s examine this issue a little further.

 As we’ve demonstrated, UI components live in two separate worlds: on the
server, where they are represented as an object in a component tree, and on the
client, where they can have many representations. The server world is the Java
Virtual Machine (JVM), complete with the servlet, JSF, application code, and
other supporting libraries. The clients are usually browsers that display markup
such as HTML. Browsers live in a world of client-side scripts in languages like
JavaScript or VBScript, styling mechanisms like Cascading Style Sheets (CSS),
and navigation schemes like anchors and hyperlinks.

 Each world needs to way to find a given component. On the server, each com-
ponent can be found via its component identifier. If you assign an identifier to a
component, you can use that identifier to access that component in Java code.
On the client, each component can be found via its client identifier, which is
derived from the component identifier. The client identifier allows you to
manipulate the component’s client-side representation using technologies such
as JavaScript, CSS, and the like.

 Client identifiers also bridge the gap between the server and the client
worlds. When a user submits a form, the client identifier is sent to the server
along with data representing the action the user performed on that component.
It is then used to map the user’s data to the component instance on the server so
that its value can be modified, events can be generated, and so on.

 This may seem a bit vague, so let’s look at an example. Figure 2.6 shows
the relationship between components running on the server, their represen-
tations on the client, and the types of technologies that use the identifiers. The
following JSP code snippet defines the components shown in the figure—an

HtmlOutputText component and an HtmlForm component with two child Html-
InputText components:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

70 CHAPTER 2
JSF fundamentals

<p>
 <h:outputText id="outputText" value="What are you looking at?"/>
</p>
<h:form id="myForm">
 <p>
 <h:inputText/>
 </p>
 <p>
 <h:inputText id="inputText"/>
 </p>

Figure 2.6 Components instances on the server are referenced via component identifiers. On the
client, they are referenced by client identifiers. Sometimes the two are the same.
...
</h:form>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Understanding component and client identifiers 71

The first thing to point out is that the id attributes shown here are component
identifiers. Also, you’ll notice that the first <h:inputText> element has no identi-
fier specified. This is because identifiers are optional—if you don’t specify one,
JSF will generate one for you.

NOTE Component identifiers must start with a letter or an underscore (_)
and be composed of letters, numbers, dashes (-) and underscores.
They should also be short in order to minimize the size of responses
from the client.

Now, let’s look at the corresponding HTML output:

<p>
 What are you looking at?
</p>
<form id="myForm" method="post"
 action="/jia-standard-components/client_ids.jsf"
 enctype="application/x-www-form-urlencoded">

 <p>
 <input type="text" name="myForm:_id1" />
 </p>
 <p>
 <input id="myForm:inputText" type="text" name="myForm:inputText" />
 </p>
...
</form>

The HTML element is displayed by the HtmlOutputText component. Its
client identifier, outputText, is the same as the component identifier we defined
in JSP. The <form> element is the output of the HtmlForm component; its client
identifier is also the same as its component identifier. The client identifiers for
all of its children, however, begin with the HtmlForm component’s client identifier,
myForm. Because the second HtmlInputText component didn’t have a component
identifier specified, _id0 was assigned to it automatically. (Input controls gener-
ally output the client identifier for both the id and name attributes.)

 The client identifiers for the HtmlForm component’s children begin with
HtmlForm’s client identifier because the HtmlForm component is a naming con-
tainer. Conveniently, naming containers are the subject of the next section.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

72 CHAPTER 2
JSF fundamentals

NOTE Component identifiers are usually optional, but they are necessary any-
time one component refers to another, or you need to reference a com-
ponent on the client or the server via a known identifier. If you don’t
specify one, JSF will generate one for you on the server, but depending
on the component, you may not see a client identifier in the rendered
markup. If you do specify one, keep component identifiers as short as
possible in order to minimize the size of JSF responses.

2.3.1 Naming containers

A naming container is a component whose children all have unique component
identifiers. So you can’t have two components with the component identifier foo
if they’re in the same naming container. The view’s root node (UIViewRoot),
which is the parent of all of the other components on a given page, is not a nam-
ing container, but it does require that top-level components in the same view
must have different identifiers.

 HtmlForm is a naming container, so no two components in the same HtmlForm
can have the same component identifier. This makes sense, because if you had
two components named foo that were of the same type, it would be impossible
to differentiate them from each other. The only other standard component that
is a naming container is HtmlDataTable. Some third-party components (or ones
you write), may also be naming containers.

 The client identifier can differ from the component identifier when there is
more than one naming container in the control hierarchy. This is because a cli-
ent identifier must be unique for the whole page, regardless of how many nam-
ing containers there are. It must be unique because the client doesn’t know about
naming containers—it just posts form data back to a JSF application. The appli-
cation must be able to map that data to specific components, and it needs to dif-
ferentiate between data for one component and data for another.

 To illustrate, let’s examine two HtmlForm components in the same view. Each
one has a child HtmlInputText component with the same component identifier.

<f:view>
 <h:form id="firstForm">
 <h:inputText id="inputText"/>
 ...
 </h:form>

 <h:form id="secondForm">
 <h:inputText id="inputText"/>
 ...

 </h:form>
<f:view>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Understanding component and client identifiers 73

These two declarations are identical except that each HtmlForm component has a
different component identifier.

 Here is the HTML output:

<form id="firstForm" method="post" action="/myapp/client_ids.jsf"
 enctype="application/x-www-form-urlencoded">
 <input id="firstForm:inputText" type="text" name="firstForm:inputText"/>
 ...
</form>

<form id="secondForm" method="post" action="/myapp/client_ids.jsf">
 <input id="secondForm:inputText" type="text" name="secondForm:inputText"/>
 ...
</form>

UIViewRoot doesn’t generate any output; it just marks the beginning of the com-
ponent tree. What’s important, however, is that even though both HtmlTextInput
components have the component identifier inputText, their client identifiers are
different. Since the first form’s client identifier is firstForm, its child input con-
trol’s client identifier is the firstForm:inputText. And since the last form’s client
identifier is secondForm, its child’s client identifier is secondForm:inputText. As
you can see, the client identifier equals the parent naming container’s client
identifier plus a colon followed by the component identifier.

NOTE Because the default separator for client identifiers is ":", this can cause
problems for CSS stylesheets that try to apply style to components using
the client identifier. The workaround is to use the CSS classes style to a
component (all of the standard HTML components have a styleClass
property for this purpose).

You may be wondering how naming containers affect your everyday life as a JSF
developer. Knowing which components are naming containers helps you under-
stand what a component’s client identifier is. And, if you know the client identi-
fier, you can reference a component on the client and decode it on the server, as
we will see next.

2.3.2 Referencing identifiers

So, now we’ve established the fact that UI components have identifiers on the cli-
ent and the server, and we know that these identifiers can be different if naming
containers are involved. Let’s take a look at how you can use these identifiers to
reference components on both the client and the server.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

74 CHAPTER 2
JSF fundamentals

On the client
We said earlier that client-side technologies can reference components via their
client identifiers. As an example, consider the following JSP code:

<h:form id="clientForm">
 <h:outputLabel for="myTextBox"
 onmouseover=
 "document.forms.clientForm['clientForm:myTextBox'].value = '84'"
 onmouseout=
 "document.forms.clientForm['clientForm:myTextBox'].value = ''">
 <h:outputText id="myOutput" value="How old is Memaw?"/>
 </h:output_label>
 <h:inputText id="myTextBox"/>
</h:form>

Here we have an HtmlForm component with child HtmlOutputLabel and HtmlInputText
components. The child HtmlOutputLabel component has a child HtmlOutput
component. It produces the following HTML:

<form id="clientForm" method="post" action="/myapp/client_ids.jsf"
 enctype="application/x-www-form-urlencoded">

 <label for="clientForm:myTextBox"
 onmouseout=
 "document.forms.clientForm['clientForm:myTextBox'].value = ''"
 onmouseover=
 "document.forms.clientForm['clientForm:myTextBox'].value = '84'">
 How old is Memaw?
 </label>
<input id="clientForm:myTextBox" type="text" name="clientForm:myTextBox" />
...
</form>

The JavaScript in the onmouseout and onmouseover attributes of the label ele-
ment reference the input field by its name attribute (clientForm:myTextBox),
which is also the HtmlInputText component’s client identifier. When a user
mouses over the label, the value of the text box will change to "84". When the
user moves the mouse away, it will become empty. This isn’t a very useful bit of
functionality, but it should get the point across—you can access the text field in
JavaScript via its client identifier.

 With HTML browsers, the client identifier will usually map to the name or id
attribute of the corresponding HTML element. This means you can also use it
within CSS, as an anchor reference, and so on (for a detailed quick HTML refer-
ence, see the W3School’s site [W3Schools]).

 However, keep in mind that JSF isn’t limited to HTML applications—you

could have a different type of browser, a desktop client, an applet, or something

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Understanding component and client identifiers 75

completely different. Regardless of the technology, the code running on the cli-
ent must think in terms of the client identifier, especially when communicating
with the server.

On the server
When you interact with JSF components on the server, the code you write will
generally be located in a backing bean event listener method or an event listener
class. It could, however, be anywhere you want, as long as you have a reference to
a component instance. This is because the base component class, UIComponent,
has a handy method called findComponent. This method searches for compo-
nents using a special search expression that is similar to a client identifier.

 For example, say you had the following form defined in JSP:

<h:form id="messageForm">
 <h:outputText id="outputMessage"/>
 <h:commandButton value="Get Message"
 actionListener="#{testForm.sendMessage}"/>
</h:form>

This defines an HtmlForm component named messageForm, with a child HtmlOutput-
Text named outputMessage and a child HtmlCommandButton with no assigned identi-
fier. The HtmlCommandButton references the testForm.sendMessage event listener
method, which looks like this:

public void sendMessage(ActionEvent e)
{
 FacesContext context = FacesContext.getCurrentInstance();
 UIViewRoot view = context.getViewRoot();
 HtmlOutput output =
 (HtmlOutput)view.findComponent("messageForm:outputMessage");
 output.setStyle("color:blue");
 output.setValue("Who's the Mann?");
}

Here, we retrieve the view’s root component, and then call findComponent using
the HtmlOutputText component’s client identifier. Then, we change its color (using
a CSS style) and its value. When a user clicks the button, this method is called,
and when the page is redisplayed, the HtmlOutputText control displays “Who’s
the Mann?” in blue. (Backing beans can have direct references to components,
especially when generated by an IDE, so this type of lookup may not be necessary.)
For more information about the findComponent method, see chapter 11. You also
need to use client identifiers when you’re writing components and renderers in
order to map request parameters to component values; see chapter 15 for details.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

76 CHAPTER 2
JSF fundamentals

 Now that you know everything there is to know about component and client
identifiers, we’ll take a look at a fundamental piece of JSF you’ll encounter on a
daily basis: the JSF expression language.

2.4 Exploring the JSF expression language

So far, you’ve seen a few examples of the JSF expression language (EL)—you
know, all those strings surrounded by a number sign and curly braces (“#{...}”).
The main point of the EL is to allow you to reference or update bean properties,
or evaluate simple statements, without writing full-fledged Java code. In JSF,
expressions are generally used to associate UI component properties with backing
beans or model objects in your application. They are evaluated at runtime (usually
when a view is being displayed) instead of when your application is compiled.

 The JSF EL is based on the EL included in JSP 2.0 (and originally created as
part of the Java Standard Tag Library [JSTL] 1.0). It borrows concepts from both
ECMAScript (JavaScript) and XPath (a language used to reference parts of an
XML document). This means a few things. First, if you’re familiar with JSP 2.0,
JSTL, JavaScript, XPath, or Struts tags, then the JSF EL should be pretty straight-
forward. Second, in addition to the ability to reference simple properties such as
in the Hello, world! example, there’s a syntax for accessing items in maps, collec-
tions, and arrays. Third, the EL provides a set of implicit objects that allow you to
access request parameters, HTTP headers, and the like. And finally, you can use
the EL for logical and mathematical statements as well, and mix literal values
with expressions.

 Even though the JSF EL is based on JSP 2.0’s EL, a few key differences exist:

■ JSF uses the number sign (#) to mark the beginning of an expression, as
opposed to a dollar sign ($).

■ JSF expressions can also be two-way. In other words, they can either retrieve
a property’s value or update it.

■ The JSF EL also allows you to reference object methods.
■ Some JSP-specific features aren’t available, like the page scope.
■ JSF EL expressions can be evaluated using ordinary Java code (and conse-

quently don’t require JSP).
■ JSP EL functions are not officially supported.

Table 2.3 lists several examples of JSF EL expressions.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Exploring the JSF expression language 77

As the table shows, the EL is quite flexible. It can reference properties and meth-
ods, and it can also be used for arbitrary boolean and mathematical expressions.
You can even mix and match text with EL expressions. It’s important to realize,

Table 2.3 You can use the JSF EL to wire components to objects that expose JavaBean properties,
collections, and simple data types. The EL can also be used to reference methods and create logical
or numeric statements. In addition, nested properties are supported.

Example Description

#{myBean.value} Returns the value property of the object stored under the key
myBean, or the element stored under the key value if myBean is a
Map.

#{myBean['value']} Same as "{#myBean.value}".

#{myArrayList[5]} Returns the fifth element of a List stored under the key
myArrayList.

#{myMap['foo']} Returns the object stored under the key foo from the Map stored
under the key myMap.

#{myMap[foo.bar]} Returns the object stored under the key that equals the value of the
expression foo.bar from the Map stored under the key myMap.

#{myMap['foo'].value} Returns the value property of the object stored under the key foo
from the Map stored under the key myMap.

#{myMap['foo'].value[5]} Returns the fifth element of the List or array stored under the key
foo from the Map stored under the key myMap.

#{myString} Returns the String object stored under the key myString.

#{myInteger} Returns the Integer object stored under the key myInteger.

#{user.role == 'normal'} Returns true if the role property of the object stored under the key
user equals normal. Returns false otherwise.

#{(user.balance - 200)
== 0}

If the value of the balance property of the object stored under the
key user minus 200 equals zero, returns true. Returns false oth-
erwise.

Hello #{user.name}! Returns the string "Hello" followed by the name property of the object
stored under the key user. So if the user’s name is Sean, this would
return "Hello Sean!"

You are #{(user.balance
> 100) ? 'loaded' : 'not
loaded'}

Returns the string "You are loaded" if the balance property of the
object stored under the key user is greater than 100; returns "You
are not loaded" otherwise.

#{myBean.methodName} Returns the method called method of the object stored under the
key myBean.

#{20 + 3} Returns 23.
however, that all of the “properties” referenced by the EL must be JavaBean
properties. (In other words, a property of foo would be implemented by the Java

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

78 CHAPTER 2
JSF fundamentals

methods getFoo and setFoo.) To underscore this fact, we’ll sometimes refer to
objects referenced in EL expressions—backing beans and model objects alike—as
simply beans.

 We can discuss a few examples in the table a bit further. First, when you’re
using the bracket syntax ("[]"), you can embed another expression instead of
using a boring old string. So, if you had a Map stored under the key myMap and you
wanted to retrieve an object with the key foo from it, the expression would be
"#{myMap['foo']}". However, if you don’t use the quotes, the text is evaluated
as subexpression. So, "#{myMap[foo]}" is sort of like "#{myMap[#{foo}]}"—foo

is evaluated first, and that result is then used as a key for myMap. So, if foo were
simply a string with the value "bar", the expression would have the same result
as "#{myMap['bar']}".

 In addition, you can nest separators. Suppose "#{myMap['foo']}" returned a
RandomValue object. RandomValue objects have a value property, which you can ref-
erence like so: "#{myMap['foo'].value}". If the value property were another col-
lection, you could access an element in the collection with "#{myMap['foo'].
value[5]}". You can also nest separators for subexpressions, so the expression
"#{myMap[foo.bar.baz]" is valid as well.

 As with JavaScript, you can use either single quotes (') or double quotes (").
In XML-based documents like JSPs,5 the EL expression and the tag attribute need
to use different quote types. So, inside of a tag, these two statements are both
valid: "#{myBean['value']}” and '#{myBean ["value"]}'. However, these two
statements are invalid, because the quote types are the same: "#{myBean
["value"]}" and '#{myBean ['value']}'.

 In these examples, we’ve only touched on some of the operators, like “.” and
“[]” that the EL supports. As it turns out, it supports a full range of logical and
mathematical operators, as shown in table 2.4.

5

Table 2.4 The JSF EL supports a number of common operators.

Syntax Alternative Operation

. Access a bean property, method, or Map entry

[] Access an array or List element, or Map entry

() Creates a subexpressions and controls evaluation order

continued on next page
I say XML-like because JSP has both a true XML syntax (called a JSP document) and a more fluid syn-
tax that is not truly well formed. This statement holds true for either syntax.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Exploring the JSF expression language 79

So far, we’ve been talking about expressions that evaluate to a specific property
value. These types of expressions, as well as logical ones like "#{user.demands ==
'too much'}" and mathematical ones like "#{weather.temp / 32}", are consid-
ered value-binding expressions. Value-binding expressions can be used to associate
a UI component’s value with a bean property, to bind a UI component to a bean
property, or to initialize a UI component’s properties.

 When you use the EL to reference a bean method, it’s called a method-binding
expression. Method-binding expressions, like "#{myBean.methodName}" are used to
associate event handler or validation methods with components. Even though no
arguments are required in the actual syntax, the component will assume a spe-
cific signature depending on the intended use of the method.

 From now on, we’ll use the specific terms value-binding expression or
method-binding expression when necessary. This distinction is important if you’re

? : Conditional expression: ifCondition ? trueValue : falseValue

+ Addition

- Subtraction and negative numbers

* Multiplication

/ div Division

% mod Modulo (remainder)

== eq Equals (for objects, uses the equals() method)

!= ne Not equal

< lt Less than

> gt Greater than

<= le Less than or equal

>= ge Greater than or equal

&& and Logical AND

|| or Logical OR

! not Logical NOT

empty Tests for an empty value (null, an empty String, or an array, Map or
Collection with no values)

Table 2.4 The JSF EL supports a number of common operators. (continued)

Syntax Alternative Operation
intending to develop JSF application code, since the EL APIs use these terms.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

80 CHAPTER 2
JSF fundamentals

 By now, you should have some idea about what the JSF EL looks like, how it is
structured, and the kinds of things you can do with it. However, it also has some
specific features that make it a harmonious citizen of the web application world.
Scoped variable are an essential part of that world, and we discuss them next.

2.4.1 Understanding scoped variables

We’ve been talking about storing beans under a key. But just where are these
magical beans located, and what is this key for? Remember that Java web appli-
cations have four different scopes of reference: application, session, request, and
page.6 Each one of these scopes can store arbitrary objects under a key. The dif-
ferent scopes are summarized in table 2.5.

Application variables persist during the entire life of the web application; session
variables persist during a user’s visit; request variables persist while a single
request is being processed; and page variables live only while a page is being
rendered. Variables stored in these scopes are called scoped variables. In our
Hello, world! application, we stored HelloBean in the session scope.

 Because JSF components aren’t necessarily tied to the JSP notion of a page, the page
scope isn’t supported by the EL. It will, however, search all of the other scopes for an
object that matches the specified key. So the expression "#{helloBean.numControls}"
will work properly as long as there is an object stored in the request, session,
or application scopes with the key helloBean and the property numControls.

 Because JSF EL expressions search ordinary Java web application scopes,
they can reference the same beans as JSP or JSTL expressions, or normal Java
code (through the Servlet API). This allows you to mix and match JSTL or JSP

Table 2.5 JSF applications support the application, session, and request scopes for referencing
variables.

Web
application

scope
Description

Supported
by JSF?

application Variables stored in this scope are available for the entire life of the application. Yes

session Variables stored in this scope are available only during a user’s session. Yes

request Variables stored in this scope are available only during the current request. Yes

page Variables stored in this scope are only available in the current page. No
6 The page scope is actually specific to JSP applications.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Exploring the JSF expression language 81

expressions on the same JSP page with JSF tags, and generally makes it easier to
integrate JSF with existing Java web applications.

 In traditional Java web applications, beans are placed in one of these scopes
using the raw Servlet API or custom tags (such as the JSTL tags). However, in the
world of JSF, they are normally created with the managed bean creation facility
or in Java code. The facility is configured in a JSF configuration file; we touched
on it in chapter 1. With this facility (which we discuss in the next chapter), you
can also use EL expressions to associate different objects with one another.

 Now that it’s clear what scoped variables are, let’s see how you can reference
them in the EL.

2.4.2 Using implicit variables

Implicit variables are special EL identifiers that map to specific, commonly used
objects. So far, we’ve been accessing HelloBean with expressions like "#{helloBean.
numControls}". We know that HelloBean is stored in the session scope, so we could use
the sessionScope implicit variable to reference it like this: "#{sessionScope.helloBean.
numControls}". With this expression, JSF will search the session scope only.

 There are implicit variables for each of the scopes, but there are some other
handy ones as well. They provide convenient access to the typical elements web
developers need: request parameters, HTTP header values, cookies, and so on.
Table 2.6 lists all of the implicit variables supported by the JSF EL.

Table 2.6 The JSF EL supports implicit variables for accessing commonly used objects. Most of the
same variables are supported by the JSP 2.0 EL.

Implicit variable Description Example
Supported
in JSP 2.0

EL?

applicationScope A Map of application-scoped vari-
ables, keyed by name.

#{application-
Scope.myVariable}

Yes

cookie A Map of cookie values for the
current requested, keyed by
cookie name.

#{cookie.myCookie} Yes

facesContext The FacesContext instance for
the current request.

#{facesContext} No

header A Map of the HTTP header values
for the current request, keyed by
header name. If there are multi-
ple values for the given header
name, only the first is returned.

#{header['User-Agent']} Yes
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

82 CHAPTER 2
JSF fundamentals

We’re not going to cover all of these variables here; if you’ve developed Java web
applications before, most of them should be familiar to you. (As a matter of fact,
the majority of them are part of the JSP 2.0 EL.) Moreover, there’s generally no
need to directly reference the current request or HTTP headers (other than for
debugging purposes).

 A couple of these variables are specific to JSF: facesContext and view. We
introduced the FacesContext class in section 2.2. A FacesContext instance repre-
sents the current request that’s being processed. It holds references to the cur-

headerValues A Map of the HTTP header values
for the current request, keyed by
header name. For each key, an
array of Strings is returned (so
that all values can be accessed).

#{headerValues['Accept-
Encoding'][3]}

Yes

initParam A Map of the application initializa-
tion parameters, keyed by
parameter name. (These are also
known as servlet context initial-
ization parameters, and are set in
the deployment descriptor).

#{initParam.adminEmail} Yes

param A Map of the request parameters,
keyed by header name. If there
are multiple values for the given
parameter name, only the first is
returned.

#{param.address} Yes

paramValues A Map of the request parameters,
keyed by header name. For each
key, an array of Strings is
returned (so that all values can
be accessed).

#{param.address[2]} Yes

requestScope A Map of request scoped vari-
ables, keyed by name.

#{requestScope.user-
Preferences}

Yes

sessionScope A Map of session scoped vari-
ables, keyed by name.

#{sessionScope['user']} Yes

view The current view. #{view.locale} No

Table 2.6 The JSF EL supports implicit variables for accessing commonly used objects. Most of the
same variables are supported by the JSP 2.0 EL. (continued)

Implicit variable Description Example
Supported
in JSP 2.0

EL?
rent stack of application messages, the current render kit, and several other

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Exploring the JSF expression language 83

useful goodies. It’s not useful in generic EL expressions, though—most of its
properties weren’t designed to be accessed using expressions. A more common
use case for this variable is for initializing a bean property with the managed
bean creation facility; see chapter 3 for details.

 For front-end development, view has a few useful properties: viewId,
renderKitId, and locale. These values aren’t useful for display (unless you’re
debugging). However, theoretically you could use them in conditional expres-
sions. For example, the expression "#{view.renderKitId == 'HTML_BASIC'}"
returns true if the render kit for the current page is “HTML_BASIC” (the default).

 You can also use the locale property, perhaps to hide or show certain compo-
nents depending on the locale. For example, the expression "#{view.locale !=
'en_US'}" returns true if the user speaks U.S. English. Like facesContext, the
view implicit variable is a good candidate for initializing bean properties.

 An important point to remember for scoped implicit variables (requestScope,
sessionScope, and applicationScope) is that they’re normally not necessary
unless you’re storing a variable. You can store variables using JSF EL expressions
in Java code (see chapter 13 for examples).

 Now that we’ve covered the EL syntax, application scopes, and implicit
variables, we can take a closer look at how expressions are used in the world of
JSF development.

2.4.3 Using the EL with components

The main reason JSF has its own expression language is so that you can dynami-
cally associate UI components with backing beans or model objects. As a matter
of fact, you can expect IDEs to help you out with this process (see figure 2.7).

 By far, the most powerful use of value binding expressions is associating a bean’s
property with a component’s value. This is how we associated the HelloBean.
numControls property to the HtmlInputText component on hello.jsp in the Hello,
world! example. Here’s another example: Assume that we have a backing bean
stored in the request scope under the key loginForm. We could synchronize an
HtmlInputTextArea control’s value with the bean’s comments property like so:

<h:inputTextArea value="#{registrationForm.comments}"/>

Whenever the HtmlInputText component is displayed to the user, its value will be
equal to the registrationForm’s comments property. Whenever a user types something
into the control and submits the form back to the web server, registrationForm’s
comments property will be updated accordingly (assuming it passes validation).
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

84 CHAPTER 2
JSF fundamentals

You can use the same technique for any type of EL expression that references a
bean’s property, whether the property is a simple type, a complex object, a Map,
array, or List:

<h:graphicImage value="#{user.icons[5]}">

In this case, this HtmlGraphicImage control will display an image whose URL
equals the fifth element of the array or List returned by the user bean’s icons
property (the actual element is a String in this example). The bean could be
stored in any of the valid scopes, as long as it’s stored under the key user.

 The last example underscores an important point—user represents a busi-
ness concept, so it is a model object instead of a backing bean like loginForm. You
can update either one with a value-binding expression, as long as the properties
are implemented using JavaBean patterns.

NOTE JSF uses value-binding expressions for internationalization. A special
JSP custom tag loads a resource bundle as a Map, so localized strings can
be referenced like this: "#{myBundle.welcomeString}". See chapter 6 for
more about internationalization.

We’ve been referencing JavaBeans, but it’s actually possible to associate a compo-
nent’s value directly with a List, Map, or a simple type like a String or an Integer, as

Figure 2.7
Sun’s Java Studio Creator
provides a dialog box to help you
create value-binding
expressions for objects
accessible via the current
backing bean.
long as it’s still stored in a scope with a key. Suppose you had a single String stored
under the key clientName in the application scope. You could reference it like this:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Exploring the JSF expression language 85

<h:inputText value="#{clientName}"/>

This would associate the control directly to the String with the key user-
name; it would display and update the String directly. If JSF couldn’t find an
object stored under that key, it would create one and then store it in the
request scope.

 As we saw in the last chapter, you can also bind a component directly to a
backing bean property so that the component can be manipulated in Java code.
Some tools will automatically do this when they generate a backing bean class.
Here’s an example:

<h:inputText value="#{registrationForm.comments}"
 binding="#{registrationForm.nameInput}"/>

This example will ensure that registrationForm’s commentsInput property ref-
erences this HtmlInputText component, which allows the backing bean to manip-
ulate its properties. Using the binding attribute requires that the referenced
property be the same type as the component that references the property. So, in
this case, the commentsInput property must be of type HtmlInputText (or one of
its superclasses). The backing bean can also choose to initialize the component in
its accessor method. Binding components to backing beans property is only nec-
essary when your Java event listeners need to manipulate component properties.

 We’ve also seen the method-binding expressions used to associate UI compo-
nents with event listener methods:

<h:inputText value="#{registrationForm.comments}"
 binding="#{registrationForm.commentsInput}"
 valueChangeListener="#{registrationForm.commentsChanged}"/>

This valueChangeListener property accepts a method-binding expression that
points to the commentsChanged method of registrationForm. This method must
match the signature expected for value-change listener methods. If the value of
the control changes, this method will be executed.

 You can also use method-binding expressions to associate a UI component
with a validator method in a backing bean:

<h:inputTextArea value="#{registrationForm.comments}"
 binding="#{registrationForm.commentsInput}"
 valueChangeListener="#{registrationForm.commentsChanged}"
 validator="#{registrationForm.checkSpelling}"/>

This associates the validator property of this HtmlInputText with the
checkSpelling method of our backing bean. checkSpelling must also have a spe-

cific signature.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

86 CHAPTER 2
JSF fundamentals

 By now, it should be obvious that you can use the EL quite a bit when you’re
working with UI components on a page. It’s an essential part of how you associ-
ate components with the rest of the application. But, like Transformers, there’s
more than meets the eye. You can use value-binding expressions for any stan-
dard component property. And unlike the use cases we’ve covered so far, there
are no real restrictions, as long as the object you reference is the right type (and is
a JavaBean, if necessary). So, let’s expand our example to use expressions for
other properties:

<h:inputTextarea value="#{registrationForm.comments}"
 binding="#{registrationForm.commentsInput}"
 valueChangeListener="#{registrationForm.commentsChanged}"
 validator="#{registrationForm.checkSpelling}"
 styleClass="#{initParam[commentStyle]}"
 rows="10"
 cols="80"
 title="#{appBundle.commentsTitle}"/>

There are a few points here. First, you don’t always have to use expressions for
component properties—you can freely mix and match them with static values,
like the size and width properties in this example. Second, the expressions used
with a specific component don’t have to be associated with a single backing bean.
For example, the styleClass property references a commentStyle initialization
parameter, which was set in the web application’s deployment descriptor. And
the title property references an appBundle object, which is a Java resource bundle
that provides localized strings. So the commentsTitle property will return a string
that’s tailored for the user’s language. (Resource bundles and internationaliza-
tion are covered in chapter 6.)

 If you’re wondering how all this ties to the non-JSP world, don’t worry—the
APIs for value-binding and method-binding expressions are fully exposed at the
Java level. As a matter of fact, it’s quite likely you’ll need to work with them at
the Java level—see parts 3 and 4 for examples.

 The JSF EL is a fundamental part of JSF application development. You’ll see
many more examples throughout the rest of this book.

2.5 Summary

Like every technology, JSF has its own lingo—terms and concepts that are make
sense when you’re developing JSF applications. In this chapter, we examined
these fundamental concepts—UI components, renderers, validators, backing

beans, converters, events and listeners, messages, and navigation.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 87

 UI components, like buttons, text boxes, and panels, are central to JSF—they
are full-fledged Java objects that live on the server, but can be displayed to cli-
ents in different ways. All UI components have a component identifier, but when
they are displayed to a client, a client identifier is used instead. UI components
are often displayed by renderers, which also collect input from the user. Render-
ers are organized into render kits that are usually focused on specific markup like
HTML or WML, or a variation of a markup, like a “skin.”

 User input is collected with backing beans, which can be associated with UI
component values, and also handle events. You can also associate component
instances with backing beans, which allows you to manipulate them in Java code.
These associations are performed by the JSF expression language, which is based
on the JSP 2.0 and JSTL expression languages. In addition, the outcome of back-
ing bean action methods is used to control JSF’s declarative navigation, which
associates those outcomes to specific pages.

 The magic of translating an HTTP request into events and updating server-
side component values occurs when JSF handles a request—a process called the
Request Processing Lifecycle. This lifecycle has six phases: Restore View, Apply
Request Values, Process Validations, Update Model Values, Invoke Application,
and Render Response.

 That’s it for the fundamentals of JavaServer Faces. Next, we’ll examine config-
uration, navigation, and the Managed Bean Creation facility, among other things.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Warming up:
getting around JSF
This chapter covers
■ Requirements for building JSF applications
■ Application configuration
■ Using JSF with JSTL and other JSP custom tags
■ Using the Managed Beans Creation facility
■ Setting up navigation
88

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Setting up your JSF environment 89

When you begin learning how to drive a car, you know the general concept of
driving, and you know that every car has things like brakes, headlights, and of
course a stereo. But before you speed out of the cul-de-sac, someone normally
points out exactly where these things are and how to use them (well, maybe not
the stereo). Otherwise, you could easily forget about the parking brake, turn on
your brights instead of your normal headlights, brake incorrectly, and generally
cause a lot of mayhem.

 This chapter covers those little details about JavaServer Faces that would be
good to know before you dive into developing a full-fledged JSF application.
Covering them now will ensure that you don’t waste time later.

3.1 Setting up your JSF environment

So far, we’ve said a lot about what Faces is and what it does. If you’re into details,
you may have some additional questions about exactly who provides JSF implemen-
tations, what libraries are required, and how configuration works. In the follow-
ing sections, we’ll look into what it takes to get a JSF application up and running.

3.1.1 Basic requirements

As we mentioned in chapter 1, all JSF applications are standard Java web applica-
tions, as defined by the Servlet API. This means that they require an installed ver-
sion of a standard web container like Apache Tomcat [ASF, Tomcat] or New Atlanta’s
ServletExec [New Atlanta, Servlet-Exec], or a J2EE server like IBM WebSphere
Application Server [IBM, WAS], Oracle Application Server [Oracle, AS], or BEA
WebLogic [BEA, WebLogic]. For simplicity, we’ll refer to them all as web containers.

 JSF applications also require that you have installed an implementation of the
framework. A JSF implementation is simply compiled Java code that adheres to
the JSP specification [Sun, JSF Spec]. All implementations require a web con-
tainer that supports version 2.3 of the Java Servlet specification [Sun, Servlet] or
higher, and version 1.2 of the JSP specification [Sun, JSP] or higher. The exam-
ples in this book were developed using Tomcat 5.0.

3.1.2 Choosing a JSF implementation

In order to develop JSF applications, you need a JSF implementation. The refer-
ence implementation (RI) is the standard that all other implementations
should be measured against (at least in terms of compliance to the specifica-

tion)—it was developed in conjunction with the specification itself. The RI is

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

90 CHAPTER 3
Warming up: getting around JSF

freely available with the source code,1 and will always support the latest version
of the specification. All of the examples in this book were developed with ver-
sion 1.0 of the RI [Sun, JSF RI].

 Some J2EE vendors ship their own implementations of JSF, which will most
likely have extra features and performance enhancements. Vendors who support
JSF (such as IBM, Oracle, Sun, and Borland) will also bundle JSF implementations
with their IDEs, and usually give you an option to deploy that implementation
into whichever web container you’re using. Both Oracle and IBM will be provid-
ing JSF implementations in some versions of their IDEs as well as their applica-
tion servers. If you’re currently using a newer version of a J2EE server or IDE that
has a complete, stable JSF implementation, you may as well use it. In other
words, no additional work is required to begin developing JSF applications.

 If, on the other hand, you’re using a web container or IDE that doesn’t have a JSF
implementation (or you’re not interested in upgrading to one that does), then the
RI is the simplest choice. There are other stand-alone implementations, though,
and these can offer advantages such as speed, access to source code, and richer sets
of components. These include open-source implementations like MyFaces [MyFaces]
and Smile [Smile], and older user interface (UI) frameworks that have announced
JSF support, like Kobrix Software’s Tag Interface Component Library [Kobrix].

3.1.3 Directory structure

Because JSF applications are standard Java web applications, all of the necessary
files must be packaged in a directory structure that is deployed in your web con-
tainer. Usually, you’ll create the physical directory structure (often with a tool) for
development and testing, and then deploy it with a web archive (WAR) or enter-
prise archive (EAR).

 The basic directory structure for a JSF application is shown in figure 3.1. As
you can see, there are only two special additions: the JAR files for your JSF
implementation, and the faces-config.xml file (which is where you typically place
all JSF configuration, much like struts-config.xml in Struts applications). Let’s
take a closer look at what JAR files are used in a typical JSF implementation.

1 The RI has recently been released for “open development” using the Sun Java Research License [Sun,
JRL]. Essentially, this means that the source and binaries will be available for free, and you can modify
and distribute the source as long as you don’t do so commercially, or use it productively internally. If
you modify the binaries or the source code for commercial or productive internal use, you must use a

commercial license and pass the JSF technology compatibility kit (TCK). You can also submit patches
to the JSF RI source code base, and the RI development team plans to accept committers in late 2004.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Setting up your JSF environment 91

JSF libraries
One of the main reasons the Java community has different implementations is so
that they can compete with added features. Consequently, the actual libraries
that a given JSF implementation requires can vary depending on what features
have been added. There are, however, a few specific Java archives (JARs) that are
required for all JSF applications; these are listed in table 3.1. If you’re using an
IDE or web container that ships with a JSF implementation, you shouldn’t have to
worry about them.

Table 3.1 Required JAR files for all JSF applications

Filename in RI
Required?

(Name may be
different)

Description

jsf-api.jar Yes The JSF API classes that are defined in the JSF specification

jsf-impl.jar Yes Implementation-specific JSF classes

commons-beanutils.jar No Apache Commons bean utilities, for manipulating JavaBeans

Figure 3.1
Standard directory structure
for JSF applications
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

92 CHAPTER 3
Warming up: getting around JSF

The most important thing to note is that JSF depends on the JSTL libraries. This
doesn’t mean that you have to use JSTL in your application, however. If you’re
using the RI, the JSTL [Sun, JSTL] libraries aren’t included, so you may need to
download them if your development tool or web container doesn’t already have
them installed.

 Also, note that these names are not required—for example, the MyFaces
open-source implementation [MyFaces] currently uses the name myfaces.jar
instead of jsf-impl.jar. These files are usually packaged with your web application
(in the WEB-INF/lib directory).

 Currently, the RI doesn’t officially support installation of the JSF libraries as
shared classes in your web container. (Shared classes are stored in a single place
and made available to all of the web applications in a container; in Tomcat, they
are placed is the common/lib directory.) Other JSF implementations may not
have this limitation; check the documentation for details.

 Once you have a JSF implementation and a web application setup, it’s time to
move on to configuration.

3.1.4 Configuration

As with all Java web applications, configuration begins with the web application
deployment descriptor. In addition, Faces has its own extensive configuration
system that supports a range of additional features.

Servlet configuration
JSF applications require a servlet, called FacesServlet, which acts as a front con-
troller for the entire application (see chapter 1 for more information on the

commons-collections.jar No Apache Commons collections

commons-digester.jar No Apache Commons digester, for parsing XML files

commons-logging.jar No Apache Commons logging

jstl.jar Yes JSTL API classes

standard.jar Yes JSTL implementation classes

Table 3.1 Required JAR files for all JSF applications (continued)

Filename in RI
Required?

(Name may be
different)

Description
Model-View-Controller design pattern and controllers). Because servlets are config-
ured in a web application’s deployment descriptor file (web.xml), it’s no surprise

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Setting up your JSF environment 93

that this is where the JSF servlet must be defined (tools will usually handle this
for you when you create a new JSF application). You might remember from our
Hello, world! example that we only need to do two things: define the servlet and
add a mapping for it. Often you can do this with your IDE’s web application con-
figuration editor, but here’s an example of the XML:

<web-app>
 ...
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 ...
</web-app>

This example defines a servlet called Faces Servlet with the class javax.faces.
webapp.FacesServlet. You can name the servlet anything you want, but this class
name is required. It also maps all requests that start with “/faces/” to this servlet. So,
any request to a URL like http://www.sumatra.com/faces/mypage.jsp will be handled
by JSF. Mapping the JSF servlet to a URL pattern like this is called prefix mapping.
You can also specify suffix mapping:

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.faces<url-pattern>
</servlet-mapping>

With suffix mapping (also called extension mapping), any page requested with the
extension .faces will be handled by the JSF servlet. Your actual pages can use a
configurable default suffix (like .jsp). JSF will always look for the filename with
the default suffix. So, for example, if you request a resource with the URL http://
www.mrcat.org/mypage.faces, the servlet will handle the request with mypage.jsp
(assuming that .jsp is your default suffix). For both prefix and suffix mapping,
use of the word “faces” is recommended, but you can certainly use something
else if you don’t want the world to know what technology you’re using.

 There are also a few JSF-specific parameters that can be configured in
web.xml. We cover them next.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

94 CHAPTER 3
Warming up: getting around JSF

Web application parameters
Web applications support application-level parameters via the <context-param>
element in web.xml. You can use these parameters internally in your own appli-
cation (a database connection string is a common example), but other libraries
that your application uses, like JSF, can use them as well.

 Different JSF implementations are likely to have all sorts of parameters to try
and differentiate themselves in the marketplace. However, the specification only
requires a few parameters, as shown in table 3.2. All of them are optional.

The javax.faces.CONFIG_FILES parameter contains a comma-delimited list of
JSF application configuration files to load. This is useful for cases when your
application has several configuration files (perhaps maintained by different
teams, or segemented in some other way). See the next section for more infor-
mation about configuration files.

 In the previous section, we talked about suffix mapping, and how JSF uses a
default suffix to load the actual page. You configure this suffix with the javax.
faces.DEFAULT_SUFFIX parameter. The default is .jsp, so if that’s what you’re
using, there’s no need to use this parameter. However, if you’re using another
display technology with a different extension, you would use this parameter.

 The javax.faces.LIFECYCLE_ID parameter is pretty advanced. It specifies the
Lifecycle identifier, which affects the way JSF performs the Request Processing
Lifecycle. You won’t need to change it in most cases. (See online extension

Table 3.2 JSF application configuration parameters

Context Parameter Description Default

javax.faces.CONFIG_FILES Comma-delimited list of context-relative
JSF configuration resource paths that JSF
will load before it loads WEB-INF/faces-
config.xml

None

javax.faces.DEFAULT_SUFFIX Default suffix for resources to load when
extension mapping is in use

.jsp

javax.faces.LIFECYCLE_ID Identifier for the Lifecycle instance to be
used when processing JSF requests
within this application

The default
Lifecycle
instance

javax.faces.STATE_SAVING_METHOD Indicates whether to save the state of UI
components on the client side (client)
or server side (server)

server
appendix C for more information about how to modify JSF’s core functionality.)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Setting up your JSF environment 95

 JSF has the ability to store the state of the components on a page so that if the
page is redisplayed, it remembers the values that the user entered. Component
state can either be stored on the client or the server, and this is controlled with
the javax.faces.STATE_SAVING_METHOD parameter. The possible values are client
and server (the default). Saving state on the client results in less of a load on the
server at the expense of additional network traffic (by default, client state is
stored as a large hidden <input> field in web browsers, much like ASP.NET’s view
state). Saving state on the client also works better in failover situations because
even if the server is down, the state won’t be lost. In general, you should make
sure your application works with both settings because the person responsible for
production configuration may change the parameter at some point.

NOTE If your JSF application saves its state on the server, there is no way for it to
know that a view has expired. So if a JSP page changes between requests
(possibly because you edited it), there may be inconsistencies between
the restored view and the JSP page. In order to avoid this problem, you
can either restart the browser or restart your application (so that the ses-
sion is lost, and JSF will automatically reconstruct the view). The upshot
is that it’s better to develop with your application configured to save
state on the client so that you can avoid this problem.

Here’s an example of a configuration file that uses a couple of these parameters:

<web-app>
 ...
 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>server</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/navigation.xml,/WEB-INF/RegistrationWizard.xml</

param-value>
 </context-param>
 ...
<web-app>

This tells JSF to save the state on the server, and to look for two additional configu-
ration files: /WEB-INF/navigation.xml and /WEB-INF/RegistrationWizard.xml.

 Just so you can get an idea of what additional parameters JSF implementa-
tions might provide, tables 3.3 and 3.4 list the parameters for the RI [Sun, JSF RI]
and MyFaces [MyFaces].
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

96 CHAPTER 3
Warming up: getting around JSF

Now that we’ve conquered the standard web deployment descriptor, let’s take a
look at the vast world of JSF-specific configuration.

JSF application configuration
Like many web application frameworks, JSF’s configuration information pro-
vides a map for your entire application. It handles things like navigation rules,
managed beans, and internationalization details. But JSF configuration does a
lot more, too. It defines all aspects of the framework—components, renderers,
validators, converters, and just about everything else you can think of.

 Don’t worry, though—you don’t need to personally configure all of these
things. You only need to worry about the configuration aspects that pertain to
the type of work you’re doing. Configuration can be broadly partioned into three
areas: everyday application development, UI extension development (writing
components, renderers, converters, or validators), and advanced development.

Table 3.3 RI-specific configuration parameters

Context Parameter Description Default

com.sun.faces.NUMBER_OF_VIEWS_IN_SESSION Controls the number of views that are
saved in the session when the state
saving method is set to server

N/A

com.sun.faces.validateXml Tells JSF to validate configuration files
against the DTD

false

com.sun.faces.verifyObjects Tells JSF to verify that it can create
application objects (components, ren-
derers, converters, and so on)

false

Table 3.4 MyFaces-specific configuration parametersa

a Because open source moves at the speed of lightning (or the speed of molasses, depending on the project),

these parameters could change by the time this book is printed.

Context Parameter Description Default

myfaces_allow_javascript True if components should allow JavaScript true

myfaces_pretty_html Specifies whether or not displayed HTML will be
formatted so that it’s "human readable"
(additional line separators and whitespace will be
written that don’t influence the HTML code).

true

myfaces_allow_designmode Implements design mode using CGLib binary
class changes

false
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Setting up your JSF environment 97

So, if you’re building an application, you’ll be interested in application-oriented
details like navigation. If you’re developing components, you’ll want to know
how to register components and renderers. And if you’re performing advanced
work, like integrating JSF with an existing application or framework, you’ll want
to learn about configuring pluggable services or factories.

 Like most web application frameworks, JSF requires an XML file, called an appli-
cation configuration file. We saw a simple version of this file in the Hello, world!
application in chapter 1. If you’re not fond of editing XML files, tools are available
to help you out. There’s a freely available configuration file editor, called the
Faces Console [Holmes], that plugs into many popular IDEs and also runs as a
stand-alone application (see figure 3.2). Some products, like Sun’s Java Studio
Creator [Sun, Creator], provide powerful visual editors for some aspects of con-
figuration, such as navigation. You can also expect some IDE vendors to provide
direct support for basic JSF configuration elements, as they have for Struts.
Figure 3.2 James Holmes’ Faces Console [Holmes] allows you to visually edit JSF application
configuration files.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

98 CHAPTER 3
Warming up: getting around JSF

All of the elements in an application configuration file are nested under the
<faces-config> element. Table 3.5 lists the top-level child elements, broken down
by the three major categories. The structure is graphically depicted in figure 3.3.

Table 3.5 The three main configuration categories with corresponding XML elements

Category Feature XML Element

Everyday application
configuration and
registration of
advanced extensions

Application configuration. Used for specifying sup-
ported languages, the location of customized appli-
cation messages, the default render kit, and
advanced pluggable components.

<application>

Managed bean creation facility. Controls automatic
creation of objects in a particular scope.

<managed-bean>

Referenced beans. Used to tell an IDE about other
objects that may become available.

<referenced-bean>

Navigation rules. Controls flow of application from
one page to the next.

<navigation-rule>

Figure 3.3
JSF application files are XML files
that begin with a top-level
<faces-config> element. All of
the subelements are optional, and
can be grouped into three major
categories. For day-to-day
development, you only have to
worry about the first category.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Setting up your JSF environment 99

Even though you can define several elements in the configuration file, you’ll
generally only worry about navigation, managed beans, internationalization,
and sometimes UI extensions. As an example, listing 3.1 shows parts of the con-
figuration file included with the RI’s CarDemo application. This file also config-
ures a custom validator and a custom converter.

<?xml version="1.0"?>
<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_0.dtd">

<faces-config>
 <application>
 <message-bundle>carstore.bundles.Messages</message-bundle>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>de</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
 </application>

 <validator>

User interface exten-
sion registration

Component registration. Used to register compo-
nents with system.

<component>

Render kit and renderer registration. Used to either
add renderers to the default render kit or define
entirely new render kits.

<render-kit>

Validator registration. Used to register validators with
the system.

<validator>

Converter registration. Used to register converters with
the system.

<converter>

Configuration of
advanced features

Phase listener registration. Registers phase listeners
for use with the system.

<phase-listener>

Factory configuration. Defines classes for the facto-
ries that instantiate the core JSF classes.

<factory>

Listing 3.1 Selected portions of the reference implementation CarDemo sample
application

Table 3.5 The three main configuration categories with corresponding XML elements (continued)

Category Feature XML Element

Configuration
DTD

Locales and
message
bundle

Custom

 <description> validator

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

100 CHAPTER 3
Warming up: getting around JSF

 Registers the concrete Validator implementation,
 carstore.FormatValidator with the validator
 identifier, FormatValidator.
 </description>
 <validator-id>FormatValidator</validator-id>
 <validator-class>carstore.FormatValidator</validator-class>
 <attribute>
 <description>
 List of format patterns separated by '|'. The validator
 compares these patterns against the data entered in a
 component that has this validator registered on it.
 </description>
 <attribute-name>formatPatterns</attribute-name>
 <attribute-class>java.lang.String</attribute-class>
 </attribute>
 </validator>

 <converter>
 <description>
 Registers the concrete Converter implementation,
 carstore.CreditCardConverter using the ID,
 creditcard.
 </description>
 <converter-id>creditCardConverter</converter-id>
 <converter-class>carstore.CreditCardConverter</converter-class>
 </converter>

...

 <managed-bean>
 <description>
 Causes the default VariableResolver implementation to instantiate
 the managed bean, CustomerBean of the class, carstore.CustomerBean
 in session scope if the bean does not already exist in any scope.
 </description>
 <managed-bean-name> customer </managed-bean-name>
 <managed-bean-class> carstore.CustomerBean </managed-bean-class>
 <managed-bean-scope> session </managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <description>
 The main backing file bean
 </description>
 <managed-bean-name> carstore </managed-bean-name>
 <managed-bean-class> carstore.CarStore </managed-bean-class>
 <managed-bean-scope> session </managed-bean-scope>
 </managed-bean>

 <navigation-rule>

Custom
validator

Custom
converter

Managed
beans

Navigation

 <from-view-id>/chooseLocale.jsp</from-view-id>
 <navigation-case>

rules

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Setting up your JSF environment 101

 <description>
 Any action on chooseLocale should cause navigation to storeFront.jsp
 </description>
 <from-outcome>storeFront</from-outcome>
 <to-view-id>/storeFront.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <from-view-id>/storeFront.jsp</from-view-id>
 <navigation-case>
 <description>
 Any action that returns "carDetail" on storeFront.jsp should
 cause navigation to carDetail.jsp
 </description>
 <from-outcome>carDetail</from-outcome>
 <to-view-id>/carDetail.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
 ...
</faces-config>

We won’t delve into the specifics of each element here. Because configuration is
an integral part of developing with JSF, you’ll see more examples and descrip-
tions throughout this book. And, for reference purposes, the entire document
type definition (DTD) is explained in online extension appendix D.

NOTE Depending on your JSF implementation, you may have to reload your
application (or redeploy your WAR file) for configuration changes to
take effect. (This is true for the reference implementation, for instance.)

It’s important to point out that JSF can support several configuration files. By
default, it will look for a file named WEB-INF/faces-config.xml, and indeed this is
where you’ll put most of your application configuration. You can also specify
additional files with the javax.faces.CONFIG_FILES context parameter (described
in the previous section). This can be useful in cases where you want to segment
your configuration for easier maintenance. For example, two different teams
might be working on different modules that have different configuration files.
JSF will also search for configuration files named META-INF/faces-config.xml in
JAR files (or any other resource path); this allows you to create libraries of com-
ponents, renderers, validators, and/or converters that are automatically regis-
tered by your application.

Navigation
rules
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

102 CHAPTER 3
Warming up: getting around JSF

WARNING Configuration file errors will cause an application to fail during startup.
In other words, your application will not run unless all of its configura-
tion files are error-free.

Now that we’ve taken a look at how configuration works in JSF applications, let’s
do the same for JavaServer Pages (JSP).

3.2 The role of JSP

As we’ve said before, JSF applications require some sort of display technology,
such as JSP. One of the cool things about JSP is the ability to extend it with cus-
tom tags. A custom tag is a special XML element, backed by Java code, that can be
used in addition to standard JSP elements or HTML elements. A custom tag can
do almost anything: display the value of variables, parse XML, conditionally dis-
play parts of a page, access a database, and so on.2 Their main purpose is to keep
Java code out of the pages and allow front-end developers to use simple, familiar
tags instead. A group of related custom tags forms a tag library.

 JSF is integrated with JSP using custom tags. All of the JSF tags we’ve shown so
far—<h:inputText>, <h:outputText>, <h:form>, <f:view>, and so on—are custom
tags. JSF implementations must support JSP with custom tag libraries that pro-
vide access to all of the standard components, renderers, validators, and convert-
ers. These libraries (included in the JSF JARs) are listed in table 3.6.

 All of the tags in these libraries must be named and implemented in a specific
manner. This way, your JSP-based applications are guaranteed to be portable
across different JSF implementations. Most IDEs, including all of the ones fea-
tured in this book, can be used with JSP.

Table 3.6 JSF custom tag libraries

URI Name
Common

Prefix
Description

http://java.sun.com/jsf/core Core f Contains tags that are independent of a particular
render kit (like <f:view>, <validator>, and so on)

http://java.sun.com/jsf/html HTML h Contains tags for all of the standard components and
the HTML render kit
2 Whether or not anyone should be doing all of these things with JSP tags is a question for another day…

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The role of JSP 103

Because JSP is the only display technology required for all implementations, we
use it for examples throughout this book. If you’re not using JSP, don’t fret—
most of the concepts we present aren’t wedded to a specific display technology,
and you can read about alternatives in appendix A.

 For the most part, using JSF with JSP is just a matter of using the JSF custom
tag libraries. There are, however, some nuances you should be aware of, like
using JSP includes.

3.2.1 Using JSP includes

One of JSP’s key features is the ability to integrate content from multiple JSPs
into a single page. This is often used for fun tasks like including a header or a
footer. JSP supports two types of includes: dynamic and static. Dynamic includes
(performed with the <jsp:include> tag or the JSTL <c:import> tag) access a
resource at runtime. In this case, control is forwarded to the included JSP. The
response from the included JSP is merged with the response sent back from the
calling page. When changes are made to a dynamically included page, they auto-
matically show up in all calling pages.

 Static includes integrate the resource at translation time—when the page is
morphed into Java code and compiled. The contents of the source page are
essentially copied into the calling page. Changes made to the included content
generally aren’t automatically noticed by calling pages because they already have
their own copy of the content. They have to be “touched” so that they can be
recompiled with the new content. (JSP 2.0’s implicit includes, which can be con-
figured in web.xml, are processed like static includes.)

 JSF works with both types of JSP includes. For dynamic includes, there are
two requirements:

■ Included pages must be enclosed in a JSF <f:subview> core tag. This tag
can either be in the included page or around the include statement.

■ All template text and non-JSF tags inside included pages should be
enclosed with the JSF <f:verbatim> core tag.

So, let’s say we had the following snippet in a JSP page:

<f:view>
...
 <jsp:include page="foo.jsp"/>
...
</f:view>
Foo.jsp might look like this:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

104 CHAPTER 3
Warming up: getting around JSF

<f:subview>
 <h:outputText value="heyah!"/>
 ...
 <f:verbatim>
 Template text.
 <customtag:dothis/>
 </f:verbatim>
</f:subview>

As you can see, the entire included page is enclosed in a <f:subview> tag, and all
non-JSF tags and template text are enclosed in a <f:verbatim> tag. Alternatively, we
could move the <f:subview> tag into the first page, around the <jsp:include> tag.

 Using a static include is much simpler. There are no restrictions—you don’t
even have to use the <f:subview> tag.

 In the last example, we showed a fictitious custom tag, <customtag:dothis>,
that performs some random task. This underscores an important point: you can
use JSF with other JSP custom tags.

3.2.2 Using JSF with JSTL and other JSP custom tags

All of this talk about JSF’s custom tag libraries is nice, but what if you have your
own custom tags, or third-party ones? Or what if you’re using the JSP Standard
Template Library (JSTL), which is a set of standard tags that do all of those neat
things we just mentioned? For the most part, you can mix and match them with
JSF tags. Faces tags can be nested within other tags, and vice versa. Some prod-
ucts, like IBM's WebSphere Application Developer [IBM, WSAD], encourage this
approach, while others, like Sun's Java Creator Studio [Sun, Creator], opt for a
pure JSF approach. Oracle's JDeveloper [Oracle, JDeveloper], on the other
hand, lets you mix and match, but also encourages the pure JSF approach.

NOTE Whenever you nest a JSF tag inside a non-JSF custom tag, you must as-
sign the JSF tag a component identifier (see the previous chapter for
more information on component identifiers).

Because JSTL is standard and familiar to many, we’ll use it to demonstrate the
use of JSF with custom tags. (If you’re thirsty for general information on JSTL,
check out Shawn Bayern’s excellent book, JSTL in Action [Bayern].) Let’s start
with the simple example (shown in listing 3.2) that mixes and matches some
JSTL tags with JSF tags. This code imports both JSF tag libraries and the core
JSTL tag libraries.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The role of JSP 105

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>
<head>
 <title>JSF in Action: JSTL Example 1 - Mixing JSF with other custom tags</

title>
</head>
<body bgcolor="#FFFFFF">

 <f:view>
 <h1>
 <h:outputText value="Example of using JSF tags with other custom
tags"/>
 </h1>
 <p>

 <c:out value="Here's the value of your web.xml (don't do this at
home):"/>

 <blockquote>
 <f:verbatim>
 <c:import url="WEB-INF/web.xml"/>
 </f:verbatim>
 </blockquote>
 </p>
 </f:view>

</body>
</html>

In this example, both JSTL and JSF tags are nested within the JSF <f:view> tag,
which defines the start of the JSF component tree. The example uses the JSF
HtmlOutputText component (<h:outputText>) and the JSTL <c:out> tag to display
text. A JSTL <c:import> tag includes the system’s web.xml file in the page (this isn’t
exactly something you want to share with others, so don’t do this on a real server).
Because web.xml is an XML file, the <c:import> tag is nested in a <f:verbatim>
tag, which is a JSF UIOutput component whose renderer escapes the XML so it
can be displayed normally in an HTML page. This example doesn’t do much, but
it does demonstrate the ability to use different tags on the same page together.

 Note that we nested a JSTL tag inside the JSF <f:verbatim> tag. In general,

Listing 3.2 Mixing JSTL tags with JSF tags

Import of JSF
tag libraries

Import of JSTL
core library

JSF view

JSTL
tag

JSTL tag
it’s easier to nest JSF tags inside other tags than vice versa. As a matter of fact, any

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

106 CHAPTER 3
Warming up: getting around JSF

component that displays its own children, like HtmlDataTable and HtmlPanelGrid,
require that any template text or nested tags be within a <f:verbatim> tag. (The
<f:verbatim> tag is covered in chapter 4.)

 What’s great about using JSTL tags with JSF tags is that they both use similar
expression languages to reference objects (this is true for JSP 2.0’s expression
language as well). This allows you to easily share data between JSTL and JSF tags
in an intuitive manner. To illustrate this point, let’s look at another example that
allows the user to input a number into an HtmlInputText control and then uses that
value to display a string repeatedly with a JSTL <c:forEach> tag. This code is
shown in listing 3.3.

...
<f:view>
 <jsp:useBean class="org.jia.examples.TestForm" id="exampleBean
 scope="session"/>

 <h1>
 <h:outputText value="Example of using JSF and JSTL expression languages"/>
 </h1>

 <h:form>
 <h:outputLabel for="inputInt">
 <h:outputText value="How many times do you want to repeat
 the Oracle's prophecy?"/>
 </h:outputLabel>

 <h:inputText id="inputInt"
 value="#{sessionScope.exampleBean.number}"/>
 <h:commandButton value="Go!"/>
 <p>
 <c:if test="${sessionScope.exampleBean.number > 0}">
 <c:forEach begin="0" end="${sessionScope.exampleBean.number - 1}"
 var="count">
 Queen Tracey will achieve world domination.

 </c:forEach>
 </c:if>
 </p>
 </h:form>
...
</f:view>
...

Listing 3.3 Using JSF and JSTL tags together with the same backing bean

Ordinary
JSP tag

HtmlInputText linked
to backing bean

JSTL tags that
control number

of iterations
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The role of JSP 107

WARNING If you’re using JSP or JSTL expressions with managed beans, you need
to ensure that the beans have been created first, either by a JSF expression,
Java code, or your own custom tag. This is because these older expres-
sion languages don’t know about JSF’s Managed Bean Creation facility.
(See section 3.3 for more about creating managed beans.)

This listing references a JavaBean, called exampleBean, that has a number prop-
erty of type int. An HtmlInputText component is used to update the value of the
bean’s property based on user input. When the user clicks the Go! button (an
HtmlCommandButton component), the number property is updated and the page is
redisplayed. When this happens, the JSTL <c:forEach> tag repeats the text dis-
played by a JSTL <c:out> tag exampleBean.number times. The <c:forEach> tag
only executes if exampleBean.number is greater than 0; this is controlled by a JSTL
<c:if> tag.

 You cannot use JSF component tags inside tags that iterate over their body, like
the JSTL <c:forEach> tag. The recommended workaround is to use the HtmlData-
Table component or another component iterates over a data set or collection.

 In this example, there are no JSF components nested inside the JSTL <c:if>
tag. But what happens if a component is displayed once and then hidden by a
conditional tag like <c:if> when the page is redisplayed? The first time the com-
ponent is displayed, it will be added to the view. The second time, if the <c:if>
tag doesn’t display the component, JSF will delete it from the view. This means
that any input controls will lose their local values, and that you won’t be able to
reference these components (via client identifiers or in code). As an example,
take a look at listing 3.4, which is from the same page as listing 3.3.

 The JSTL <c:if> tag will execute its body if the value of exampleBean.number
is greater than 10. If the body is executed, then all of the nested components
will be added to the view and displayed. If not, the components will be removed
(if they have been added previously). This is shown graphically in figure 3.4.
Figure 3.5 shows the output of the JSP page used for listings 3.3 and 3.4.

...
<h:form>
 <h:outputText value="If you entered a number greater than 10,
 two input controls will display below."/>
 <p>
 <c:if test="${sessionScope.exampleBean.number > 10}">

Listing 3.4 Conditionally displaying JSF components with JSTL tags
 <h:outputLabel id="inputStringLabel"for="inputString">
 <h:outputText id="outputStringLabel"

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

108 CHAPTER 3
Warming up: getting around JSF

 value="Enter in your string. JSF will remember the
value unless this control is hidden."/>

 </h:outputLabel>
 <h:inputText id="inputString"/>
 <h:commandButton value="Go!"/>
 </c:if>
 </p>
</h:form>
...

You can achieve the same effect as the code in listing 3.4 by placing these com-
ponents in an HtmlPanelGroup and setting its rendered property to equal the
same expression. An HtmlPanelGroup is used as a container for multiple compo-
nents. Here’s an example:

<h:panelGroup rendered="#{sessionScope.exampleBean.number > 10}">
 <h:outputLabel id="inputStringLabel2"for="inputString">
 <h:outputText id="outputStringLabel2" value="Enter in your string. JSF

will remember the value."/>
 </h:outputLabel>
 <h:inputText id="inputString2"/>
 <h:commandButton value="Go!"/>
</h:panelGroup>

Figure 3.4 If you control visibility of components with JSTL conditional tags (or other custom tags),

the components will be removed from the view if they’re not displayed. This means that the
components will forget their local values as well.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The role of JSP 109

If exampleBean.number is greater than 10, this panel becomes visible. In this case,
the components won’t be deleted if they’re not displayed. This is a good example
of the types of things you can do with pure JSF tags without JSTL.

TIP Even though custom tags like the ones provided by the JSTL provide a lot
of functionality, if you’re developing from scratch (or refactoring), you
should first look to see if you can implement the desired behavior with
standard JSF components. Using good components and well-designed
backing beans, you can usually avoid the need for many JSTL tags in your
pages. You can hide or display entire panels and do all sorts of powerful
things with standard JSF.

Figure 3.5 The output of the JSP page shown in listings 3.3 and 3.4. The value of the input field at
the top (an HtmlInputText component) is wired to the exampleBean.number backing bean
property, which is used by the JSTL <c:forEach> tag to display a string exampleBean.number
times. In the bottom portion of the page, a JSTL <c:if> tag shows a form with JSF components if
exampleBean.number is greater than 10. Otherwise, the components will not be displayed, and
they are removed from the view (and the input control will lose its value).
Here are a few other interoperability constraints for using JSF tags with JSTL
internationalization and formatting tags:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

110 CHAPTER 3
Warming up: getting around JSF

■ Use of <fmt:parseDate> and <fmt:parseNumber> is not recommended. You
should use the HtmlInputText component (covered in chapter 5) with a
DateTime or Number converter (both are covered in chapter 6).

■ The <fmt:requestEncoding> tag, which is use to determine or specify the
character encoding for the page, should not be used. Usually, JSF handles
this automatically, and if you need to force a particular encoding, you
should use the JSP page directive: <%page contentType="[content-
type];[charset]"%>.

■ The <fmt:setLocale> tag shouldn’t be used either. Because it doesn’t know
about JSF, it may cause your JSTL tags to use one locale and your JSF com-
ponents may use another, which is a recipe for disaster. Instead, you should
use JSF’s internationalization features (covered in chapter 6). To control
the locale for a particular page, use the locale property of the UIViewRoot
component, which is covered in chapter 4. JSF’s internationalization fea-
tures work for both JSF and JSTL.

Combining JSF with the JSTL can be quite powerful. Custom tags that you have
developed or obtained from third parties should work with JSF as well as the
JSTL tags we’ve shown here. In general, though, you should stick with JSF tags
when possible.

 In the next section, we examine how to create and initialize beans, like the
exampleBean backing bean used in the last example.

3.3 Creating and initializing beans

In the last section, we talked about JSF EL expressions and how you can use them
to reference objects in any application scope. In traditional Java web applica-
tions, those objects might be created with the <jsp:usebean> tag or in Java code.
In JSF applications, you can configure and initialize beans in an application con-
figuration file instead. The idea behind this feature, called the Managed Bean
Creation facility, is simple: any time you reference a bean, the facility will create
the bean, initialize it, and store it in the proper application scope if it doesn’t
already exist. (If the bean already exists, it will be returned.)

 Beans that are configured to use the Managed Bean Creation facility are called
managed beans. When tools create backing beans for pages that you design, they
will typically register the beans in a configuration file for you. But you can also use
this feature for any other beans your application uses, including domain objects

like a User, or model objects like a RegistrationWizard or ShoppingCartBean.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating and initializing beans 111

 Using the Managed Bean Creation facility allows you to:

■ Declare all of your beans and initialize all of their properties in one central
place (an application configuration file).

■ Control the scope (application, session, or request) where a bean is stored.
■ Change a bean’s class or initial property values without changing any code

(only a change in the configuration file is necessary).
■ Initialize a bean property with value-binding expressions. This has a num-

ber of exciting benefits, such as associating a backing bean with business
and state-management objects or initializing child objects.

■ Access a managed bean using ordinary JSF EL expressions.

Often a back-end developer will be responsible for the initial managed bean con-
figuration. However, a front-end developer or system administrator might be
responsible for making changes later.

NOTE You cannot reference a managed bean with the JSTL or JSP 2.0 expres-
sion languages unless the bean has already been created, initialized, and
stored in an application scope by the Managed Bean Creation facility or
some other means (like Java code or the JSP <jsp:usebean> tag). Because
of this, it’s generally safer to use JSF EL expressions whenever possible.

Managed beans can be configured with the <managed-bean> XML element in a
JSF configuration file. Because they’re configured with a JSF configuration file, you
can either edit them by hand or with a tool. See section 3.1.4 for more on appli-
cation configuration and a screenshot of a tool. Even if you have a tool that
shields you from editing XML, you should peruse this section so that you under-
stand how managed beans work.

 So, if we had a class called org.jia.examples.UserBean, we could configure it
with the following snippet inside a configuration file:

<managed-bean>
 <managed-bean-name>user</managed-bean-name>
 <managed-bean-class>org.jia.examples.UserBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>firstName</property-name>
 <value>Mark</value>
 </managed-property>
 <managed-property>

 <property-name>lastName</property-name>
 <value>Pippins</value>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

112 CHAPTER 3
Warming up: getting around JSF

 </managed-property>
</managed-bean>

This configures an instance of the org.jia.examples.UserBean class with the key
"user" in session scope. It also initializes the firstName property to "Mark" and
the lastName property to “Pippins”.

 Now we can access the bean from a UI component using an ordinary JSF
EL expression:

<h:outputText value="Hello #{user.firstName} #{user.lastName}!"/>

This declares an HtmlOutputText component whose value includes an EL expres-
sion for the user.firstName and user.lastName properties. The first time this
component is initialized, the Managed Bean Creation facility will instantiate a
new instance of our UserBean class, set the firstName property to “Mark” and the
lastName property to “Pippins”, and then store the object in the application’s ses-
sion. If a component references the object after it’s already been created, it won’t
be re-created (assuming it hasn’t been removed).

 The HtmlOutputText component declaration above displays the string “Hello
Mark Pippins!” This isn’t terribly exciting—normally you wouldn’t initialize the
firstName and lastName properties of a user object—but you get the idea.

If you’re pattern-conscious, you may have noticed that the ability to ini-
tialize a bean’s properties upon creation is the Inversion of Control
(IoC) type 2 or Setter Injection pattern [Fowler, Dependency Injection].
The idea is that an external process is in control of configuring the
bean—it’s injecting values into the bean via its setter methods.

In general, it’s a good idea to use the Managed Bean Creation facility for any
beans that don’t need to be created and initialized when your application starts
up. Objects that have a potentially long initialization time, such as a data access
object that needs to establish a database connection, should be created at appli-
cation startup (perhaps with a ServletContextListener; see chapter 12 for an
example). This is because the facility creates objects when they’re first refer-
enced, which could cause unexpected delays in the middle of a user’s experience
for objects with long initialization periods.

 At this point we’ve covered the basics of managed beans, so now let’s examine
them in more detail.

BY THE
WAY
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating and initializing beans 113

3.3.1 Declaring managed beans

Any Java class with a no-argument constructor can be declared as a managed
bean. All you need to know is the name you want to use as an identifier, the class
name, and the scope you’d like to use. The identifier is the name that’s actually
used in JSF EL expressions, like “user” or “ShoppingCartBean.” The class name
is the fully qualified Java class name, like com.foo.bar.ShoppingCart. The scope
can be any valid JSF web application scope: application, session, or request.
There’s also a fourth scope option, none, which tells the Managed Bean Creation
facility to avoid putting the bean in any scope. This is useful when you’re associ-
ating multiple beans with each other, as we’ll see later.

 These three pieces of information translate into the <managed-bean-name>,
<managed-bean-class>, and <managed-bean-scope> elements in a JSF configura-
tion file. One of each of these elements must be nested within a <managed-bean>
element. This is depicted in figure 3.6.

 Figure 3.6 also shows three optional elements: <description>, <display-
name>, and <icon>. Usually you’ll just use the <description> element to help other
developers understand the purpose of a particular managed bean; the others are
primarily for use with tools.

 Of course, as the example in the previous section shows, you can also configure
the bean’s properties (and do a lot more). But let’s examine a simple declaration:

Figure 3.6
To configure a managed bean, you use the
<managed-bean> element. This element has
three optional subelements: <description>,
<display-name>, and <icon>. It also requires a
<managed-bean-name> element, a <managed-
bean-class> element, and a <managed-bean-
scope> element.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

114 CHAPTER 3
Warming up: getting around JSF

<managed-bean>
 <description>Used for logging and logging out.
 </description>
 <managed-bean-name>authenticationBean</managed-bean-name>
 <managed-bean-class>org.jia.ptrack.web.AuthenticationBean
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
</managed-bean>

This tells the Managed Bean Creation facility to create a new instance of org.jia.
ptrack.web.AuthenticationBean and store it in the session under the name
authenticationBean the first time the bean is accessed. As long as the same ses-
sion is in use, the same instance of AuthenticationBean will be used. This
instance can be referenced with the expression "#{authenticationBean}", or,
more explicitly, "#{sessionScope.authenticationBean}".

If you have application code that creates beans itself and stores them in
an application scope, you can declare referenced beans to tell your JSF IDE
when certain objects will be available. This can help the tool generate dia-
log boxes based on the beans that should be available at different times
during the application’s life span. Referenced beans are purely for use
by IDEs and don’t affect the JSF runtime. Configuring referenced beans
is similar to configuring managed beans; see appendix D for details.

In some cases, all you need to do is configure the object itself, and there’s no
need to initialize any properties. However, if you do have properties that you
would like to initialize, you can do that as well.

Initializing simple properties
You can initialize any managed bean variable that has been exposed as a Java-
Bean property (see appendix C for more information on JavaBeans). Only read/
write properties (ones with both a getter and a setter) will work with the Managed
Bean Creation facility. Any properties that aren’t explicitly initialized will retain
their default values.

 At a minimum, you need to specify the property’s name and its value. The
value can either be null, a literal string, or a value-binding expression. Each
property is initialized with a <managed-property> element (which is nested inside of
the <managed-bean> element). You specify the property’s name with the <property-
name> element. The value is specified with either the <value> element or the
<null-value> element. These elements are depicted in figure 3.7.

BY THE
WAY
 The figure also shows the optional tooling elements—<description>, <display-
name>, and <icon>. As usual, most of the time you only need to use the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating and initializing beans 115

<description> element. There’s another optional element—<property-class>—
which specifies the property’s Java class or primitive type. The Managed Bean
Creation facility usually doesn’t need this element because it can figure out the

Figure 3.7 You can initialize managed bean properties with the <managed-
property> element (each <managed-bean> element can have zero or more
<managed-property> elements). Its optional elements are <description>,
<display-name>, <icon>, and <property-class>. The required elements
are <property-name> and either <value> or <null-value>.
property’s type on its own. However, some advanced JSF implementations may

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

116 CHAPTER 3
Warming up: getting around JSF

require them in some situations (such as automatic generation of the managed
bean). If you do use the <property-class> element, remember that you can’t use
the <null-value> element unless <property-class> is an object, rather than a
primitive type (like int, boolean, and so on).

 Here’s an example of configuring a UserBean object and setting some of its
properties as well:

<managed-bean>
 <managed-bean-name>brokeUser</managed-bean-name>
 <managed-bean-class>org.jia.examples.UserBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>firstName</property-name>
 <value>Joe</value>
 </managed-property>
 <managed-property>
 <property-name>lastName</property-name>
 <value>Broke</value>
 </managed-property>
 <managed-property>
 <property-name>balance</property-name>
 <value>0</value>
 </managed-property>
 <managed-property>
 <property-name>favoriteAnimal</property-name>
 <null-value/>
 </managed-property>
</managed-bean>

This snippet creates a new instance of org.jia.examples.UserBean called
brokeUser, and stores it in the request scope. The example is similar to the first
in that we initialize both the firstName and lastName properties to the literal val-
ues “Joe” and “Broke”, respectively. We also initialize the balance property, which
is an int, to 0. Finally, we set the favoriteAnimal property, which is a String, to
null with the <null-value> element. Note that we could not have initialized the
balance property to null because it is a primitive type. To access Joe Broke’s bal-
ance, we can use the expression "#{brokeUser.balance}".

 Instead of using static values, we could have associated these properties with
other objects using value-binding expressions. We’ll get to that soon, but first
let’s look at initializing properties that are of type List, array, and Map.

Initializing List and array properties

If you have a property that is an array or a List, you can initialize it with default
values. If the property is set to null, the facility will create a new List or array

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating and initializing beans 117

and initialize it for you. If it’s non-null, the facility will simply add any values you
define to the existing collection. Instead of specifying a single value for the prop-
erty, you specify multiple values. You can configure a List or array property by
nesting <value> or <null-value> elements inside a <list-entries> element,
which is a child of the <managed-property> element. This is shown in figure 3.8.

WARNING Even if you specify a <property-class> element, if your property is
null, JSF will always initialize it with a newly created ArrayList. If,
however, the object has already created an object of a different type, JSF
won’t replace it with an ArrayList.

Let’s say our UserBean class also has a favoriteSites property, which is a List of
Strings representing the user’s favorite sites. If we wanted to provide a default
list of values for the favoriteSites property, we could define it like so:

Figure 3.8 To initailize a managed bean property that is a List or array, you use
the <list-entries> element and nest zero or more <value> or <null-value>

elements in it. Optionally, you can specify the Java class for all of the values with
the <value-class> element.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

118 CHAPTER 3
Warming up: getting around JSF

<managed-bean>
 <managed-bean-name>user</managed-bean-name>
 <managed-bean-class>org.jia.examples.UserBean</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 ...
 <managed-property>
 <property-name>favoriteSites</property-name>
 <list-entries>
 <value>http://www.jsfcentral.com</value>
 <value>http://www.theserverside.com</value>
 <value>http://www.ibm.com/developerworks/</value>
 <value>http://otn.oracle.com</value>
 <value>http://www.java.net</value>
 <value>http://www.manning.com</value>
 </list-entries>
 </managed-property>
 ...
</managed-bean>

You can see that we have several <value> elements nested inside a <list-entries>
element. Each <value> corresponds to a single element that will be added to the
list before setting the property. If the favoriteSites property hasn’t already been
initialized, the first item in the list will be “http:/www.jsfcentral.com”. This item
can be accessed with the JSF EL expression "#{user.favoriteSites[0]}". We could
also display the entire list in a table with the HtmlDataTable component, which
displays tabular data:

<h:dataTable value="#{user.favoriteSites}" var="site">
 <h:column>
 <h:outputText value="#{site}"/>
 </h:column>
</h:dataTable>

This displays a table with a single column and a row for each item in the list,
which looks like this in a browser:

http://www.jsfcentral.com
http://www.theserverside.com
http://www.ibm.com/developerworks/
http://otn.oracle.com
http://www.java.net
http://www.manning.com

If, however, the favoriteSites property were initialized (in the constructor) with
a single value, like “http://www.yahoo.com”, the list would be:

http://www.yahoo.com
http://www.jsfcentral.com

http://www.theserverside.com
http://www.ibm.com/developerworks/

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating and initializing beans 119

http://otn.oracle.com
http://www.java.net
http://www.manning.com

and the expression "#{user.favoriteSites[0]}" would yield “http://www.yahoo.
com” instead.

 In the previous example, all values were stored as String objects, which is the
default. If you want all of the values to be converted to a specific type, you can use
the <value-class> attribute. Here’s a List property whose values are all Integers:

<managed-bean>
...
 <managed-property>
 <property-name>favoriteNumbers</property-name>
 <list-entries>
 <value-class>java.lang.Integer</value-class>
 <value>31415</value>
 <value>278</value>
 <value>304</value>
 <value>18</value>
 <value>811</value>
 <value>914</value>
 </list-entries>
 </managed-property>
...
</managed-bean>

All of these values will be converted to a java.lang.Integer object before being
stored in the list. Other than that, the initialization process will be handled in the
same manner as the previous example.

 In these examples, we’ve assumed that the properties were List objects. They
could also be arrays—the configuration and behavior is identical, except that the
facility will create an array instead of an ArrayList. As a matter of fact, you could
change the actual type of the property in Java code, and as long as it was either a
List or an array, the Managed Bean Creation facility wouldn’t even care. (The
facility won’t resize an array for you, however, so you must be mindful of how
such changes will affect your application.)

 That’s all there is to configuring List or array properties. Fortunately, config-
uring Map properties is similar.

Initializing Map properties
You can initialize Map properties with the Managed Bean Creation facility as well.
If the property is null when the object is created, JSF will create a new HashMap

and populate it for you. Otherwise, it will add entries to the existing Map. Initializ-
ing a Map property requires specifying one or more map entries. Each map entry

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

120 CHAPTER 3
Warming up: getting around JSF

has a key and a value. In a JSF configuration file, you specify a <map-entries> ele-
ment (as opposed to a <list-entries> element) with child <map-entry> elements.
Each <map-entry> element has child <key> and <value> (or <null-value>) ele-
ments. This structure is depicted in figure 3.9.

 Suppose the list of favorite sites from the previous section is really a Map prop-
erty called favoriteSitesMap where each entry’s key is the site’s name and the
value is the actual URL. We could define it like this:

Figure 3.9 To initailize a managed bean property that is a Map, you use the <map-entries>
element and nest one or more <map-entry> elements. Each <map-entry> can have either
a <value> or a <null-value> element. Optionally, you can specify the Java class for all of

the values with the <value-class> element.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating and initializing beans 121

<managed-bean>
 <managed-bean-name>user</managed-bean-name>
 <managed-bean-class>org.jia.examples.UserBean</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 ...
 <managed-property>
 <property-name>favoriteSitesMap</property-name>
 <map-entries>
 <map-entry>
 <key>JSF Central</key>
 <value>http://www.jsfcentral.com</value>
 </map-entry>
 <map-entry>
 <key>TheServerSide.com</key>
 <value>http://www.theserverside.com</value>
 </map-entry>
 <map-entry>
 <key>IBM DeveloperWorks</key>
 <value>http://www.ibm.com/developerworks/</value>
 </map-entry>
 <map-entry>
 <key>Oracle Technology Network</key>
 <value>http://otn.oracle.com</value>
 </map-entry>
 <map-entry>
 <key>java.net</key>
 <value>http://www.java.net</value>
 </map-entry>
 <map-entry>
 <key>Manning Publications</key>
 <value>http://www.manning.com</value>
 </map-entry>
 </map-entries>
 ...
</managed-property>

Instead of using a <list-entries> or <value> element directly under the <managed-
property> element, we use the <map-entries> element and child <map-entry> ele-
ments to define all of the entries in a Map property. Each <map-entry> element
represents a key/value pair that will be added to the Map. If UserBean doesn’t ini-
tialize this property in its constructor, the facility will create a new HashMap, add
each map entry, and then set the property.

 With this managed bean configuration, we can access the URL for java.net
with the expression "#{user.favoriteSitesMap['java.net']}". We can also dis-
play the entire Map with an HtmlOutputText component:

<h:outputText value="user.favoriteSitesMap: #{user.favoriteSitesMap}"/>
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

122 CHAPTER 3
Warming up: getting around JSF

This displays the result of the underlying Map’s toString method, which looks
like this:

user.favoriteSitesMap: {IBM DeveloperWorks=http://www.ibm.com/
developerworks/,

JSF Central=http://www.jsfcentral.com,
Manning Publications=http://www.manning.com,
Oracle Technology Network=http://otn.oracle.com, TheServerSide.com=http://

www.theserverside.com,
java.net=http://www.java.net}

This isn’t quite production-ready output, but at least we can see that contents of
the favoriteSitesMap property match the ones specified in the configuration file.
If UserBean had already initialized this property, these values would have been
added to the Map’s existing set of entries.

 In the previous example, both the keys and values were Strings. This is fine
for many cases, but sometimes you need specific types, like a key that’s an Integer,
or a value that’s a Date. In order to support these situations, you can optionally
tell the facility to convert all keys and values to a specific type with the <key-
class> and <value-class> elements, respectively. Here’s an example of the
favoriteNumbers property from the previous section implemented as a Map:

<managed-bean>
...
 <managed-property>
 <property-name>favoriteNumbersMap</property-name>
 <map-entries>
 <key-class>java.lang.Integer</key-class>
 <map-entry>
 <key>31415</key>
 <value>A pi-like integer.</value>
 </map-entry>
 <map-entry>
 <key>278</key>
 <value>An e-like integer.</value>
 </map-entry>
 <map-entry>
 <key>304</key>
 <value>Tracey's birthday.</value>
 </map-entry>
 <map-entry>
 <key>18</key>
 <null-value/>
 </map-entry>
 <map-entry>
 <key>811</key>

 <null-value/>
 </map-entry>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating and initializing beans 123

 <map-entry>
 <key>914</key>
 <value>Mom's birthday.</value>
 </map-entry>
 </map-entries>
 </managed-property>
 ...
</managed-bean>

Here, we specify the <key-class> element to ensure that all keys are converted
into java.lang.Integer objects. Any value that can’t properly be converted will
cause an error. The value, in this case, describes the significance of the number.
If you repeat a key, the facility will overwrite the previous value. Note that we use
the <null-value> element to indicate a null value (null keys are not allowed).

3.3.2 Declaring Lists and Maps as managed beans

So far, we’ve talked about declaring JavaBeans as managed beans. You can also
declare any List or Map as a managed bean. (Arrays aren’t supported as individual
managed beans.) All you have to do is specify a concrete type (like an ArrayList
or HashMap) and specify the list or map entries instead of individual properties.
The elements for a List are shown in figure 3.10.

 Here’s the infamous favoriteSites list declared as an individual managed
bean instead of a property of a UserBean object:

<managed-bean>
 <description>List of favorite sites.</description>
 <managed-bean-name>favoriteSites</managed-bean-name>
 <managed-bean-class>java.util.ArrayList</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <list-entries>
 <value>http://www.jsfcentral.com</value>
 <value>http://www.theserverside.com</value>
 <value>http://www.ibm.com/developerworks/</value>
 <value>http://otn.oracle.com</value>
 <value>http://www.java.net</value>
 <value>http://www.manning.com</value>
 </list-entries>
</managed-bean>

Note that we’ve specified a concrete List implementation, java.util.ArrayList,
with the <managed-bean-class> element. Also, the <list-entries> element and its
children are nested within the <managed-bean> element instead of the <managed-
property> element. (For more information about initializing lists in general, see
the earlier section on initializing List properties.)
 The configuration elements for a Map are shown in figure 3.11.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

124 CHAPTER 3
Warming up: getting around JSF

Here’s the favoriteSitesMap property of UserBean configured directly as a man-
aged bean:

<managed-bean>
 <description>List of favorite sites, keyed by name.</description>
 <managed-bean-name>favoriteSitesMap</managed-bean-name>
 <managed-bean-class>java.util.HashMap</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 <map-entries>
 <map-entry>
 <key>JSF Central</key>
 <value>http://www.jsfcentral.com</value>
 </map-entry>

Figure 3.10 To declare a List as a managed bean, you must specify a
<managed-bean-class> that is a concrete List implementation, and use the
<list-entries> element as a child of the <managed-bean> element. Each
<list-entries> element can have one or more <value> (or <null-value>)
elements and a single <value-class> element.
 <map-entry>
 <key>TheServerSide.com</key>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating and initializing beans 125

 <value>http://www.theserverside.com</value>
 </map-entry>
 <map-entry>
 <key>IBM DeveloperWorks</key>
 <value>http://www.ibm.com/developerworks/</value>
 </map-entry>
 <map-entry>
 <key>Oracle Technology Network</key>
 <value>http://otn.oracle.com</value>
 </map-entry>
 <map-entry>
 <key>java.net</key>
 <value>http://www.java.net</value>
 </map-entry>
 <map-entry>
 <key>Manning Publications</key>
 <value>http://www.manning.com</value>
 </map-entry>
 </map-entries>
</managed-bean>

You can see that we’ve specified a concrete Map implementation, HashMap, with
the <managed-bean-class> attribute. The <map-entries> element is specified as a
child of the <managed-bean> element, and there are no <managed-property> ele-
ments. (For more information about initializing Maps in general, see the previ-
ous section.)

TIP Don’t forget to specify a concrete List or Map implementation (like
ArrayList, Vector, HashMap, and TreeMap). JSF can’t instantiate a List
or Map directly because they are interfaces.

All of our managed bean examples have included static values—strings and inte-
gers. However, the real power of the Managed Bean Creation facility is its ability
to initialize properties with value-binding expressions.

3.3.3 Setting values with value-binding expressions
Anytime you specify a managed bean value—whether it’s a property, a List value,
or a Map value—you can use a value-binding expression. Because value-binding
expressions are JSF EL expressions that reference a JavaBean property or a col-
lection element, they’re well suited for initializing managed bean properties—
they allow you to wire up objects to each other.

 You can, of course, associate objects with each other in Java code, but if you
use the facility, you can change these associations without recompiling your

application. Also, you may find using the facility simpler than writing Java code,
depending on your disposition.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

126 CHAPTER 3
Warming up: getting around JSF

Listing 3.5 shows the configuration for three managed beans: an ArrayList
called defaultFavoriteSites, a UserBean called newUser, and a TestForm called
exampleForm. newUser’s favoriteSites property is stored in the session, and it’s

Figure 3.11 To declare a Map as a managed bean, you specify the <managed-bean-
class> element with a value that is a concrete Map class and use the <map-entries>
element as a child of the <managed-bean> element. Each <map-entries> element
can have one or more <map-entry> elements, which each have a <key> and a <value>
(or <null-value>) element. The <map-entries> element can optionally have <key-
class> and <value-class> elements as well.
associated with defaultFavoriteSites through a value-binding expression. Because

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating and initializing beans 127

defaultFavoriteSites is declared in the scope none, it isn’t stored anywhere—it’s
created solely for the purposes of setting newUser’s favoriteSites property.

 exampleForm is stored in the request scope and has a user property that refer-
ences newUser via an expression. So, this declaration creates the simple group of
related objects shown in figure 3.12: exampleForm references newUser, which ref-
erences defaultFavoriteSites.

<managed-bean>
 <managed-bean-name>defaultFavoriteSites</managed-bean-name>
 <managed-bean-class>java.util.ArrayList</managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
 <list-entries>
 <value>http://www.jsfcentral.com</value>
 <value>http://www.theserverside.com</value>
 <value>http://www.ibm.com/developerworks/</value>
 <value>http://otn.oracle.com</value>
 <value>http://www.java.net</value>
 <value>http://www.manning.com</value>
 </list-entries>
</managed-bean>

<managed-bean>
 <description>Default user object.</description>
 <managed-bean-name>newUser</managed-bean-name>
 <managed-bean-class>org.jia.examples.UserBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>favoriteSites</property-name>
 <value>#{defaultFavoriteSites}</value>
 </managed-property>
 <managed-property>
 <property-name>favoriteAnimal</property-name>
 <value>donkey</value>
 </managed-property>
</managed-bean>

<managed-bean>
 <managed-bean-name>exampleForm</managed-bean-name>
 <managed-bean-class>org.jia.examples.TestForm</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>user</property-name>
 <value>#{newUser}</value>
 </managed-property>
</managed-bean>

Listing 3.5 Three managed beans that reference each other via JSF EL expressions

Not stored

Stored in
session scope

References previous
managed bean

Stored in
request scope

References previous
managed bean
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

128 CHAPTER 3
Warming up: getting around JSF

In this simple example, the expressions all reference other managed beans. This
is certainly not a requirement—you can use any valid value-binding expression,
which means you can wire up properties to values derived from implicit objects
(like initialization parameters, request parameters, session values, and so on)
and mixed-text or expressions that perform arithmetic. (See chapter 2 for more
information about value-binding expressions and the JSF expression language.)

 We mentioned the scopes for each of these objects in this example because a
managed bean can’t reference an object with a shorter life span than the man-
aged bean itself. In our example, exampleForm references newUser. This is okay,
because newUser is stored in the session and exampleForm is stored in the request.
In other words, exampleForm references an object with a longer life span than it has.
When the request is completed and exampleForm is removed, newUser will con-
tinue to live happily. However, newUser cannot have a reference to exampleForm
because exampleForm has a much shorter life span; it will be removed long before
newUser is removed. Table 3.7 explains when it’s okay to reference an object in
each of the scopes.

Table 3.7 Allowable relationships between managed beans

An object stored in this scope… Can reference an object stored in this scope…

none none

application none, application

session none, application, session

request none, application, session, request

Figure 3.12
The managed beans declared in
listing 3.5 form a graph of related
objects in different scopes.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Navigating the sea of pages 129

NOTE The Managed Bean Creation facility does not support cycles. In other
words, you can’t have object A reference object B, and also have object B
reference object A.

Managed beans are an extremely powerful feature of JSF. Often, tools will hook
up backing beans using this facility automatically. However, if you take things a
step further, you can configure most of your application objects in a central loca-
tion. You can even eliminate most of the need to look up objects in particular
scopes in your Java code. For more examples of using the Managed Bean Cre-
ation facility, see chapter 13.

 Managed beans are key feature of JSF that simplify development by eliminat-
ing the need for creating and configuring objects in Java code. JSF’s navigation
system also reduces the amount of code you need to write.

3.4 Navigating the sea of pages

In the first two chapters of this book, we touched on JSF’s support for navigating
from one page to another. Conceptually, it’s similar to Struts’ ActionForwards. It
doesn’t, however, have a catchy name like “ActionForwards,” so we’ll just call it
the JSF navigation system.

 The heart of the navigation system is the navigation handler, which is the
actual code that decides which page to load next. Throughout this book, we
describe the behavior of the default navigation handler. (It’s possible to replace
or decorate the navigation handler; see appendix C for details.) The navigation
handler operates in response to action events,3 which are usually executed by
action sources (components that capture user gestures, like buttons or hyperlinks).
An action source is either associated with an action method that performs some
application logic and returns a logical outcome, or a hardcoded outcome value.

 The navigation handler operates on a set of navigation rules, which define all
of the application’s possible navigation paths. A navigation rule specifies which
pages can be selected from a specific page or set of pages. Each path to a page is
represented by a single navigation case. The navigation case is selected based on
logical outcome (retrieved from the component itself or its associated action
method) and/or the expression for the executed action method itself.

3
 Technically, the navigation handler is executed by the default action listener, which handles action
events.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

130 CHAPTER 3
Warming up: getting around JSF

Navigation rules are defined in an application configuration file with XML. Some
IDEs allow you to visually edit your navigation rules as well. Figure 3.13 shows
Sun Java Studio Creator’s [Sun, Creator] visual navigation editor. The figure
shows three pages: PlaceOrder.jsp, ConfirmOrder.jsp, and OrderEntry.jsp.

 There’s one rule for navigating from PlaceOrder.jsp with two cases: one that
navigates to ConfirmOrder.jsp if the outcome is "success", and one that navi-
gates to OrderEntry.jsp if the outcome is "failure". There are no navigation
rules for ConfirmOrder.jsp—it’s a dead end. OrderError.jsp has a navigation
rule with a single case: return to PlaceOrder.jsp if the outcome is "retry".

 Behind the pretty pictures that tools generate, there’s an ordinary Faces
configuration file with <navigation-rule> and <navigation-case> elements.
Figure 3.14 shows the structure of those elements. Listing 3.6 shows the XML
that defines the rules shown in figure 3.13, and figure 3.14 shows the structure of
those elements.

<navigation-rule>
 <from-view-id>/OrderError.jsp</from-view-id>
 <navigation-case>

Listing 3.6 The XML source for the navigation rules shown in figure 3.13

Figure 3.13 Editing page navigation in Sun Java Studio Creator [Sun, Creator]. The XML source is
shown in listing 3.6.
 <from-outcome>retry</from-outcome>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Navigating the sea of pages 131

 <to-view-id>/PlaceOrder.jsp</to-view-id>
 </navigation-case>
</navigation-rule>
<navigation-rule>
 <from-view-id>/PlaceOrder.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/ConfirmOrder.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>failure</from-outcome>
 <to-view-id>/OrderError.jsp</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

Figure 3.14
Navigation consists of navigation rules, which
are defined with the <navigation-rule>
element in a JSF configuration file. Optionally,
a <navigation-rule> can specify the page
to which it applies with the <from-view-id>
element. Each <navigation-rule> has one
or more <navigation-case> elements,
which must have a <to-view-id> element
that specifies the next page to load. A
<navigation-case> can optionally specify
an outcome with a <from-outcome> element
and an action with the <from-action>
element. If the <redirect> element is
specified, JSF will send an HTTP redirect
instead of forwarding to the view internally.
Both the <navigation-rule> and
<navigation-case> elements can optionally
have <description>, <display-name>,

and <icon> elements which are generally used
for tools.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

132 CHAPTER 3
Warming up: getting around JSF

In the listing, JSPs are referenced by the <from-view-id> and <to-view-id> ele-
ments. Every view has an identifier, which is simply the filename.4 The filename
can be either a JSP or any other resource, but it must be relative to the web appli-
cation’s root directory and prefixed with a slash (/). You can have more than one
navigation rule with the same <from-view-id> value; JSF will treat them all as one
big combined navigation rule. This is useful if your application has different
configuration files with navigation rules, which could happen if you have differ-
ent people working on different parts of your application.

 The last navigation case specifies the <redirect> element, which tells JSF to
send an HTTP redirect to send the user to the new view, as opposed to forward-
ing the user to the view internally. In the world of JSP, this means that the user sees
the URL of the page he or she is currently viewing, as opposed to the URL of the
previous page (remember, JSF pages post back to themselves). The <redirect>
element also forces the request for the new view to be handled externally by the
web container, which means it will be processed by any additional application
logic you may have (like a servlet filter).

 Also note that the outcome strings don’t map to the specific resources; they’re
logical results. This is key—there’s no need for outcomes to be related to a spe-
cific resource. If you use outcomes this way, it will be easy to change the actual
resource an outcome maps to without changing the meaning of the outcome
itself (which means no Java code changes). Table 3.8 shows some common out-
come strings.

4 The view identifier is a JSP filename by default, but other implementations may provide alternate

Table 3.8 Common outcome strings

Outcome Meaning

success The operation completed successfully. Move to the next logical page.

failure The operation did not complete successfully. Show a page that tells users why and what they
can do about it.

error There was a system error of some sort. Show a system error page.

no results No records matched the user’s query. Show the search page again.

login The user needs to log in first. Show the login page.

logout Log out of the application. Show the logout page.
mappings. For example, a view identifier could map to a Java class that initializes the components
in code.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Navigating the sea of pages 133

Our order placement example works on the outcomes "success", "failure", and
"retry". The first two are dynamic, and they’re returned from an action method.
OrderEntry.jsp has an HtmlCommandButton component:

<h:commandButton value="Place Order"
 action="#{orderManager.placeOrder}"/>

When a user clicks this button, the placeOrder method is executed, and it returns
the string "success" or "failure". Action methods can also return null; if they
do, the current page is just redisplayed. (To learn how to write action methods,
see chapter 13.)

 Unlike "success" and "failure", the "retry" outcome is static, so it isn’t gen-
erated by an action method at all. It’s hardcoded as on the OrderError.jsp page:

<h:commandButton value="Retry order submission" action="retry"/>

The outcome of a user clicking on this button is constant—it will always be "retry".
 Even though two of these outcomes are dynamic and one is static, the naviga-

tion rules don’t make this distinction. This means that you can change the
dynamic outcomes to static ones and vice versa without updating the rules.

 If you want to make sure that an outcome was generated by a specific action
method, you can do that by nesting a <from-action> element inside a <navigation-
case> element:

<navigation-case>
 <from-action>#{orderManager.placeOrder}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/ConfirmOrder.jsp</to-view-id>
</navigation-case>

This case won’t be executed unless the "success" outcome was generated by the
orderManager.placeOrder action method. This is useful in cases where two differ-
ent action methods produce the same outcome string. You can even omit the
<from-outcome> element altogether if you want your navigation case to depend
solely on the name of the executed action method:

<navigation-case>
 <from-action>#{orderManager.placeOrder}</from-action>
 <to-view-id>/ConfirmOrder.jsp</to-view-id>
</navigation-case>

This case states that as long as the action method orderManager.placeOrder has
been executed, the view ConfirmOrder.jsp will be loaded.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

134 CHAPTER 3
Warming up: getting around JSF

 The navigation rules we’ve discussed so far have been for a specific page. You
can also set up rules for all pages (like Struts’ global ActionForwards), or groups of
pages. A navigation rule is global if its <from-view-id> element is an asterisk (*):

<navigation-rule>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>login</from-outcome>
 <to-view-id>/login.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>logout</from-outcome>
 <to-view-id>/logout.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

Because in this example the <from-view-id> element’s value is an asterisk, this rule
applies to all pages. Anytime the outcome is "login", the page login.jsp will be
loaded; anytime it’s "logout", the page logout.jsp will be loaded. We could have
achieved the same effect by omitting the <from-view-id> element altogether.

 Specific groups of pages can be matched by adding a trailing asterisk in the
<from-view-id> element. (Asterisks aren’t supported anywhere else in the string.)
So, if you wanted to match all pages that start with “FrogLegs,” the element’s
value would be “FrogLegs*”. If there are several rules that start with “FrogLegs”,
JSF will choose the longest one.

 A more common use is associating a rule with an entire directory:

<navigation-rule>
 <from-view-id>/corporate/*</from-view-id>
 <navigation-case>
 <from-outcome>about</from-outcome>
 <to-view-id>/corporate/about.html</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>contact info</from-outcome>
 <to-view-id>/corporate/contact.html</to-view-id>
 </navigation-case>
</navigation-rule>

This specifies a rule that applies to all pages within the context-relative directory
“corporate”. These navigation cases reference pages that are in the same direc-
tory, but that’s not a requirement.

TIP If your application has a lot of navigation rules, it may make sense to

place them in a separate application configuration file instead of plac-
ing them inside your main configuration file.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Navigating the sea of pages 135

All of the examples we’ve shown so far leave out a few optional elements that can
be applied both at the navigation case and navigation rule level. Namely, these
are the <description>, <display-name>, and <icon> elements. Here’s the global
navigation rule with these elements added:

<navigation-rule>
 <description>Global navigation rule. </description>
 <display-name>Global</display-name>
 <icon>
 <small-icon>/images/global_rule.gif</small-icon>
 <large-icon>/images/global_rule_large.gif</large-icon>
 </icon>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <description>
 If the outcome is "login", jump to login.jsp.
 </description>
 <display-name>Login</display-name>
 <from-outcome>login</from-outcome>
 <to-view-id>/login.jsp</to-view-id>
</navigation-case>
<navigation-case>
 <description>
 If the outcome is "logout", jump to logout.jsp.
 </description>
 <display-name>Logout</display-name>
 <from-outcome>logout</from-outcome>
 <to-view-id>/logout.jsp</to-view-id>
</navigation-case>
</navigation-rule>

Here, we’ve added a description, a display name, and an icon to the navigation
rule. We’ve also added a description and a display name to each navigation case
(navigation cases can have icons too, but we didn’t specify any here). The
<description> element can be useful for communicating the purpose of a rule to
other developers on your team (or yourself at a later date). The other elements
are generally used by tools when they visualize the navigation rules.

TIP It’s a good idea to give a navigation rule a description so that other de-
velopers understand its purpose.

This concludes our tour of JSF’s navigation facilities. You can find more exam-
ples as we build the case study in parts 2 and 3.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

136 CHAPTER 3
Warming up: getting around JSF

3.5 Summary

In this chapter, we examined all of the little details that developers like to know
about—the requirements for all JSF applications, how configuration works, the
role of JSP, managed beans, and navigation. The core requirements for building
JSF applications are a JSF implementation and a web container. Configuration is
straightforward—JSF applications require a specific servlet, and configuration is
handled through a rather expressive XML configuration file, like most Java web
frameworks.

 JSF was designed to work with many different display technologies, but all
implementations must support JSP with custom tags. Fortunately, you can use JSF
custom tags inside of JSPs with JSTL or other custom tag libraries. Any beans
your application references can also be referenced with JSTL or other mecha-
nisms, but JSF has a powerful facility for creating and configuring beans through
its configuration file. Navigation in JSF applications is also controlled through
the configuration file.

 By now, it should be clear exactly how JSF fits into the current Java web devel-
opment landscape, what a JSF application is, and how it can be configured. In
the next two chapters, we’ll take a closer look at all of the standard UI compo-
nents in detail.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Getting started with
the standard components

This chapter covers
■ UI component basics
■ Component development with IDEs
■ The standard output components
137

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

138 CHAPTER 4
Getting started with the standard components

Now that you understand what JavaServer Faces is and you’re familiar with the
fundamental concepts, it’s time to learn how to use the standard amenities. In
this chapter and the next, we cover the standard components that are included
with all JSF implementations. They provide the basic set of functionality neces-
sary for building HTML-based web applications. (You can also expect web con-
tainer vendors, tool vendors, and third-party developers to provide additional
components as well.)

 In this chapter, we start with an overview of all the components, discuss JSP
integration in more detail, and examine components that aren’t involved with
user input. In the next chapter, we’ll focus on the standard input components,
and the HtmlDataTable component, which displays or edits tabular data from a
data source. Our goal with these two chapters is to help you use the components
to develop user interfaces (UIs). If you’re a front-end developer, these chapters
will be indispensable, because you’ll be working with these components most of
the time. If you’re a back-end developer, understanding how these components
work will help you develop your own components, and help to ensure smooth
integration with your code.

4.1 It’s all in the components

The most central feature of JSF is its support for UI components—this is what
sets it apart from many other web development frameworks. JSF ships with a
standard set of components that are intended to provide support for typical
HTML UIs. These include widgets for text display, text entry fields, drop-down
lists, forms, panels, and so on. These are listed in table 4.1.

 Next to each component name you’ll notice a display name column. These
are user-friendly names you may see inside IDEs. As you can see, the names may
vary by IDE. We haven’t listed display names for components that aren’t usually
shown in a component palette, or for which no examples were available when
writing this book. Regardless of what display name an IDE uses, the code it gen-
erates will be standard (in other words, any generated JSP or Java code will look
like the code in this book).

 You may have noticed that many of these components closely resemble stan-
dard HTML controls. This is no accident—the intent was to provide enough wid-
gets to build basic HTML UIs. All of the standard components that have a visual
representation generate standard HTML 4.01 and integrate well with CSS and
JavaScript. (If you were hoping the standard components would support older

browsers, you’re out of luck—look for third-party alternatives.)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s all in the components 139

Table 4.1 JSF includes several standard UI components for building HTML views. Related compo-
nents with similar functionality are organized into families.

Familya Component
Possible IDE Display

Names
Description

Column UIColumn N/A A table column. Used to
configure template
columns for parent
HtmlDataTable
component.

Command HtmlCommandButton Command – Button,
Button

A form button that is an
action source and can
execute an action
method.

HtmlCommandLink Command – Link,
Link Action

A hyperlink that is an
action source and can
execute an action
method.

Data HtmlDataTable Data Grid, Data Table A data-aware table with
customizable headers,
footers, and other proper-
ties. Can connect to multi-
ple types of data sources.

Form HtmlForm N/A An input form; must
enclose all input compo-
nents.

Graphic HtmlGraphicImage Image Displays an image based
on its URL.

Input HtmlInputHidden Hidden Field An input field of type
“hidden”.

HtmlInputSecret Secret Field An input field of type
“password”.

HtmlInputText Text Field An input field of type
“text”.

HtmlInputTextarea Multi Line Text Area A text area (multi-line
input field).

Message HtmlMessage Display Error,
Inline Message

Displays messages for a
specific component.

Messages HtmlMessages Message List Displays all messages
(component-related and/or
application-related).
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

140 CHAPTER 4
Getting started with the standard components

Output HtmlOutputFormat Formatted Output Outputs parameterized
text.

HtmlOutputLabel Component Label A text label for an input
field.

HtmlOutputLink Hyperlink A hyperlink that’s not
associated with a user
command.

HtmlOutputText Output Text Plain text, with optional
CSS formatting.

UIOutput N/A Plain text (no formatting).
Useful for enclosing HTML
markup or other custom
tags.

Parameter UIParameter N/A An invisible component
used to configure other
components.

Panel HtmlPanelGrid Grid Panel A table with customizable
headers, footers, and
other properties.

HtmlPanelGroup Panel – Group Box,
Group Box

Groups components
together for use inside of
other components, and to
apply common styles or
hide/display a group of
components.

Select-
Boolean

HtmlSelectBooleanCheckbox Check Box, Checkbox A single checkbox.

Select-
Item

UISelectItem N/A Represents a single item
or item group for use in
SelectMany and Select-
One components.

Select-
Items

UISelectItems N/A Represents a collection of
items or item groups for
use in SelectMany and
SelectOne components.

continued on next page

Table 4.1 JSF includes several standard UI components for building HTML views. Related compo-
nents with similar functionality are organized into families. (continued)

Familya Component
Possible IDE Display

Names
Description
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s all in the components 141

Table 4.1 also reveals another aspect of UI components: they’re organized into
families. A family is a group of related UI components that have similar behavior.
Families are primarily used behind the scenes to assist with rendering. However,
because components in the same family have similar functionality, it’s useful to
talk about components in the same family together, and that’s the approach we’ll
use in this chapter and the next.

 Most of these components have properties specific to HTML—for example,
the HtmlPanelGrid component has a cellpadding property, because it maps to an
HTML table. You can manipulate these properties if you’re working visually
within an IDE, directly with JSP, or in Java code. However, these UI components
are subclasses of more generic components that don’t have specific properties for
the target client. If you’re writing Java code or developing custom components,

Select-
Many

HtmlSelectManyCheckbox Check Box Group A table with a list of
checkboxes, grouped
together.

HtmlSelectManyListbox Multi Select Listbox A listbox that allows you to
select multiple items.

HtmlSelectManyMenu N/A A multi-select listbox that
shows one available
option at a time.

SelectOne HtmlSelectOneRadio Radio Button Group A table of radio buttons,
grouped together.

HtmlSelectOneListbox Listbox A listbox that allows you to
select a single item.

HtmlSelectOneMenu Combo Box,
Dropdown List

A drop-down listbox that
allows you to select a sin-
gle item.

ViewRoot UIViewRoot N/A Represents entire view;
contains all components
on the page.

a Technically, each of the component family names have the prefix “javax.faces.” So, the “Form” family is re-

ally called javax.faces.Form. Using the full component family name is useful when you’re working with ren-

derers or components in Java code.

Table 4.1 JSF includes several standard UI components for building HTML views. Related compo-
nents with similar functionality are organized into families. (continued)

Familya Component
Possible IDE Display

Names
Description
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

142 CHAPTER 4
Getting started with the standard components

you may prefer to work with the superclasses so that you’re not dependent on
generating HTML; see parts 3 and 4 for more information.

 All of this is fine and dandy, but what is it that makes UI components so
important? We touched upon this in chapter 2—they provide stateful, packaged
functionality for interacting with the user. For example, the HtmlTextarea com-
ponent handles displaying an HTML <textarea> element to the user, updating
its value with the user’s response, and remembering that value between requests.
As we’ve seen, that value can also be associated directly with a backing bean or
model object. UI components also generate events that you can wire to server-
side code. HtmlTextarea will generate a value-change event whenever the user
enters a new value.

 UI components also make great use of value-binding expressions—for the
most part, any component property can be associated with a value-binding
expression. This means you can specify all of your component’s properties—
everything from its value to other properties like its size and title—in some
completely different data store. It doesn’t really matter where it’s stored (or if it’s
stored at all), as long as it’s exposed through a bean.

NOTE In this chapter and the next, we cover the standard components from a
front-end development perspective. Consequently, we will only list some
properties that accessed exclusively with Java code, and we will not ex-
amine the component’s methods. See part 3 for more details on writing
Java code that interacts with UI components.

As we discussed in chapter 3, JSF is integrated with JSP through custom tags. Tags
that are associated with UI components are called component tags. The ones that
are specific to HTML are in the HTML tag library (usually with the prefix “h”),
and the rest of them are in the core tag library (usually with the prefix “f ”). The
core tag library also has tags for validators, converters, and so on.

4.1.1 Using HTML attributes

All of the standard HTML components have properties that support basic
HTML 4.01 attributes. These properties are passed directly through to the web
browser, so they’re called pass-through properties. They’re available when you’re
manipulating a component in an event listener (as we demonstrated in chapter 1),
and also in component tags.

 In some cases, component tags map directly to an HTML element, so using

pass-through properties seems quite logical. For example, this component tag:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s all in the components 143

<h:inputText value="hello" size="30" maxlength="40"
 accesskey="T" tabindex="0"/>

maps to this HTML:

<input type="text" name="_id1:_id2" value="hello" accesskey="T"
 maxlength="40" size="30" tabindex="0" />

The properties marked in bold are passed through to the browser. Even though
the value property looks as if it were passed through, it was actually checked for
validity. This brings up an important point: pass-through properties are not
checked for validity at all.

 As you get a handle on how the component tags map to HTML elements,
adding HTML pass-through attributes will become natural. They also make it
easy to replace existing HTML tags with JSF component tags. We provide many
examples of HTML pass-through attributes throughout the rest of parts 1 and 2.

Using Cascading Style Sheets
One subtle exception to the pass-through rule is the class attribute, which is
used to associate Cascading Style Sheets (CSS) class names with an HTML ele-
ment. Due to technical restrictions in JSP, the name “class” can’t be used. As a
workaround, most UI components have a property called styleClass. When you
declare a component, you can specify multiple CSS classes by placing a space in
between them:

<h:myComponent styleClass="style1 style2 style3"/>

This specifies three CSS style classes for the fictional myComponent. Some IDEs will let
you choose an existing class from style sheets that are currently in your project.

 Most components also support the CSS style property, so you can specify
their styles without a class. If you’re a CSS expert, you can integrate each compo-
nent with your style sheets (or styles) manually by simply using the style and
styleClass properties. Some IDEs simplify this process by including basic CSS
editors that allow you to modify a component’s look and feel without knowing
CSS, as shown in figure 4.1. Once you have selected the display properties (font
color, background color, border, alignment, and so on), the IDE will create the
proper CSS style for you.

4.1.2 Understanding facets

So far, we’ve seen many examples of parent-child relationships, like an HtmlInput-
Text component nested within an HtmlForm. JSF also supports named relation-

ships, called facets. Facets aren’t exactly children, but they’re quite similar. They’re

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

144 CHAPTER 4
Getting started with the standard components

used to specify subordinate elements like a header or footer, so they’re common
in more complicated components like an HtmlPanelGrid or an HtmlDataTable.
Here’s an example of the latter:

 <h:dataTable value="#{defaultUser.favoriteSites}" var="site">
 <f:facet name="header">
 <h:outputText value="Table header"/>
 </f:facet>

 <h:column>
 <f:facet name="header">
 <h:outputText value="Column header"/>
 </f:facet>
 <h:outputText value="#{site}"/>
 </h:column>

 <f:facet name="footer">
 <h:panelGroup>
 <h:commandButton value="Next page" action="#{myBean.nextPage}"/>

Figure 4.1 WebSphere Application Developer [IBM, WSAD] provides a convenient
dialog box for creating new CSS styles that are used by some UI component
properties.
 <h:commandButton value="Previous page"
 action="#{myBean.previousPage}"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s all in the components 145

 </h:panelGroup>
 </f:facet>
 </h:dataTable>

This example has three facets: one for the table’s header, one for the column
header, and one for the table footer. As you can see, the <f:facet> tag defines
the relationship, but the facet’s child is the actual component that’s displayed. Each
facet can have only one child component, so if you want to include several com-
ponents, they must be children of another component, like the HtmlPanelGroup
used to enclose the components in the footer facet.

 You’ll see more facet examples when we explore components, like HtmlPanel-
Grid, that use them. In the meantime, let’s take a look at how UI components
integrate with development tools—one of JSF’s primary goals.

4.1.3 The power of tools

In chapter 1, we talked about the days of Rapid Application Development (RAD)
and how the emphasis was on building UIs by dragging and dropping UI compo-
nents from a palette. That type of functionality is one of the primary goals of JSF.
When you use an IDE that has full-fledged support for JSF, there is usually a com-
ponent palette that includes all of the standard JSF components, and often some
nonstandard ones as well. Component palettes are usually small windows that list
all of the components with an icon beside them, as shown in figure 4.2. Most
tools will also offer proprietary components in addition to standard JSF compo-
nents, as shown in figure 4.3.

 You build the UI by creating or opening a page, dropping the components
from the palette into it, and then customizing the component’s properties.
Usually you’ll modify things like the value (which is often associated with a back-
ing bean property), the rendered property (which controls whether or not the
component is visible), and HTML-specific properties like the CSS style. Figure 4.4
should give you an idea what this process looks like.

 Because building a UI is largely dependent on the behavior of the UI compo-
nents, we’ll spend some time describing how each of these components behave
with different property settings. Moreover, you’ll see the raw JSP that these tools
often generate (it’s quite possible to visually design JSF views without JSP, but
tools will initially support only this style of development with JSP).

 Knowing how to use the component tags can be useful for cases where you’re
not using a tool at all, or you prefer to tweak the JSP by hand and immediately see
the results while you’re working inside an IDE. Most IDEs have two-way editors, so any

changes you make in the designer will be propagated to the source, and vice versa.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

146 CHAPTER 4
Getting started with the standard components

IDEs usually allow you to work with Java code as well—in fact, tools like WebSphere
Application Developer [IBM, WSAD] and Oracle JDeveloper [Oracle, JDeveloper]
allow you to build applications using a ton of other Java technologies in conjunc-
tion with, or instead of, JSF. For details about JSF support in some popular IDEs,
see online extension appendix B.

Figure 4.2 Java Studio Creator [Sun, Creator]
has a dockable component palette. Note that
the display names are different than the
actual names of the components, as shown in
table 4.1. The display names may vary
between IDEs.

Figure 4.3 Oracle provides a version of
JDeveloper [Oracle, JDeveloper] that integrates
its extensive palette of UIX components with JSF.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s all in the components 147

TIP If you want your JSF application to be portable across implementations,
stick to these standard components and third-party component suites.
Don’t rely on nonstandard components bundled with integrated develop-
ment environments (IDEs) or JSF implementations unless you’re sure they
can be used in other environments, or vendor lock-in is not a concern.

Now that it’s clear how tools are involved, let’s take a step back and look at where
all the HTML is actually generated.

Figure 4.4 Building a JSF page inside of WebSphere Application Developer [IBM, WSAD].
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

148 CHAPTER 4
Getting started with the standard components

4.1.4 The render kit behind the scenes
As we said in chapter 2, renderers are responsible for displaying JSF components
and setting a component’s value based on the user’s response. Render kits are
logical groupings of renderers, and they usually output a specific type of markup
or variants of the same markup. For example, you could have a render kit that
generates Extensible Markup Language (XML), Wireless Markup Language
(WML), Scalable Vector Graphics (SVG), HTML, or just about any other kind of
output. You could also have another render kit that generates HTML but uses a
lot of client-side script and browser-specific features.

 JSF includes a standard HTML render kit that is responsible for providing
HTML encoding and decoding behavior for all of the standard components. The
render kit is used behind the scenes, so if you’re working exclusively with the stan-
dard JSF tags or inside of a tool, you won’t need to worry about renderers at all.

 Render kits can be important when you’re developing back-end Java code or
writing custom components or renderers. For example, an event listener may need
to change the render kit based on the client type or a user’s preference. And if
you’re writing a new component, you may want to associate it with a specific ren-
derer or write a new renderer altogether. We discuss building custom renderers and
components in part 4. Now, it’s time to learn about the standard UI components.

4.2 Common component properties

All of the components covered in this chapter share a set of common properties
such as id and value. Rather than describing these properties each time we dis-
cuss a specific component, we have listed them all in table 4.2. During our discus-
sion of each component, we’ll tell you which of these properties it supports.

Table 4.2 Common properties for UI components discussed in this chapter.

Property Type
Default
Value

Required? Description

id String None Yes Component identifier.

value Object None Yes The component’s current local value. Can
be literal text or a value-binding expression.

rendered boolean true No Controls whether or not the component is
visible.

converter Converter instance
(value-binding
expression or con-

None No Sets the converter used to convert the value
to and from a string for display.
verter identifier)

continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Controlling the page with UIViewRoot 149

4.3 Controlling the page with UIViewRoot

It should be clear by now that all of the components on a page are represented in
a tree, and that this tree is called a view. UIViewRoot is the component at the root
of this tree. If there’s no UIViewRoot, there is no view.

 This component is unique because it doesn’t display anything, and most tools
will automatically add it to your JSP (you usually can’t actually drag it from the
component palette). Also, you can’t bind it directly to a backing bean with the
binding property.1 Because it has nothing to do with HTML, it’s in the core tag
library. UIViewRoot is summarized in table 4.3.

styleClass String None No Name of CSS style class; rendered as an
HTML class attribute. Multiple classes can
be specified with a space in between them.

binding String None No A value-binding expression that associates
this component with a backing bean
property.a

a Technically, this is a JSP component tag attribute, and not an actual UI component property. In other words,

you can not set this property in Java code.

Table 4.2 Common properties for UI components discussed in this chapter. (continued)

Property Type
Default
Value

Required? Description

Table 4.3 UIViewRoot is the container for the entire view.

Component UIViewRoot

Family javax.faces.ViewRoot

Possible IDE
Display Names

N/A

Display Behavior Holds all of the child components for a view. Does not display anything.

Tag Library Core

JSP Tag <f:view>

Pass-Through
Properties

None

continued on next page
1 You can, however, always access UIViewRoot through FacesContext in Java code.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

150 CHAPTER 4
Getting started with the standard components

So far, we’ve seen plenty examples of UIViewRoot in use—it’s represented by the
<f:view> tag, as shown in listing 4.1.

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<html>
<head>
 <title>UIViewRoot</title>
</head>
<body bgcolor="#ffffff">
<h1>UIViewRoot example</h1>

<f:view>

 This is template text.

 <h:panelGrid columns="2" border="1">
 <h:outputText value="This is an HtmlOutputText component."/>
 <h:graphicImage url="images/hello.gif"/>
 </h:panelGrid>
</f:view>

</body>
</html>

In the listing, UIViewRoot is used inside of template text (pure HTML). It has UI
components nested within it (an HtmlPanelGrid with child HtmlOutputText and
HtmlGraphicImage components). It also has raw HTML text nested within it. This
is an important point: you can mix and match template text with JSF component
tags inside the <f:view> tag. (If you want to use template text inside any other
component, see the <f:verbatim> tag, covered in section 4.5.2.) You can’t, how-
ever, use JSF component tags unless they’re nested inside <f:view>.

 Even though listing 4.1 shows a large amount of HTML in the page, it’s cer-
tainly not required. In part 2, we’ll look at developing views that contain hardly
any HTML at all.

Property Type Default Value Required? Description

locale java.util.Locale The user’s
current locale

No The locale for
the current view

Listing 4.1 UIViewRoot must enclose all other UI components on the same page

Table 4.3 UIViewRoot is the container for the entire view. (continued)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Setting component parameters with UIParameter 151

 The only property exposed in UIViewRoot’s component tag is locale, which
allows you to specify the language the current page supports. Suppose you
wanted to ensure that a particular page always displays in Spanish:

<f:view locale="es">
 ...
</f:view>

The string “es” is the locale code for Spanish, so this view will always display in
Spanish. You can have only one view per page, so the entire page must be in a
single language.

 Hard-coding the locale isn’t terribly useful unless you’re creating different
pages for each locale; often you’ll use a value-binding expression instead. You
certainly don’t have to set the locale manually—JSF usually sets it automatically.
See chapter 6 for more information about internationalization and localization.

4.4 Setting component parameters with UIParameter

Most of the time, when a component displays itself, it knows exactly what to do.
But sometimes it needs a little help—some extra information to complete the
job. This is the purpose of the UIParameter component: to provide dynamic vari-
ables that can be used during the encoding and decoding processes.

 UIParameter has no specific HTML equivalent; how it is displayed in a browser
depends on the associated component. Three standard components use it:
HtmlOutputFormat, HtmlOutputLink, and HtmlCommandLink.

 This component’s key properties are name and value. The name property is optional,
and is only used in cases where the parent component requires a named parameter
(for example, HtmlOutputLink requires name, and HtmlOutputFormat doesn’t).

 Because this component has no direct HTML counterpart, it is part of the
core Faces tag library, not the tag library for the HTML render kit. UIParameter is
summarized in table 4.4.

Table 4.4 UIParameter is used to add parameters to another component.

Component UIParameter

Family javax.faces.Parameter

Possible IDE
Display Names

N/A

Display Behavior None. Adds a parameter to its parent component.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

152 CHAPTER 4
Getting started with the standard components

Unlike most JSF components, when you use UIParameter inside of an IDE, you
usually don’t drag and drop it off the component palette. Instead, you may be
able to edit inside a property inspector. For example, IBM WebSphere Applica-
tion Developer [IBM, WSAD] lets you add parameters through its attribute view,
as shown in figure 4.5. The figure shows two named parameters: one named
operation, with the value "update", and the other named id, with the value
"#{requestScope.id}".

Tag Library Core

JSP Tag <f:param>

Pass-Through
Properties

None

Common
Properties

id, value, binding (see table 4.2)

Property Type
Default
Value

Required? Description

name String None No Name of the parameter. Optional for some
components.

Table 4.4 UIParameter is used to add parameters to another component. (continued)

Figure 4.5
WebSphere Application
Developer [IBM, WSAD] allows
you to edit parameters with its

property inspector.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data with the Output components 153

In JSP, you add a parameter to a component by nesting it within the parent com-
ponent’s tag:

<h:foobar>
 <f:param name="operation" value="update"/>
</h:foobar>

This adds a UIParameter named operation with the value "update" to a fictional
component represented by the component tag <h:foobar>. The exact behavior the
UIParameter affects depends on the mysterious purpose of the Foobar component.

 As shown in the figure, you can also associate a parameter with a value-binding
expression. Using the name property is optional as well, as long as the component
doesn’t need a named parameter.

 You’ll see more examples of using UIParameter when we cover components
that use it.

4.5 Displaying data with the Output components

A large portion of what web applications do is display data. That’s the purpose of
the Output components. You can specify explicitly the data that they display or
have them display backing bean properties. These components will mind their own
business—they are read-only, so they will never modify any associated objects.

 JSF provides four components for simple output, all of which are part of the
Output component family. The HtmlOutputText component is used for display-
ing plain text but also has properties for CSS styles. For displaying pure text with
no formatting, you can use the UIOutput component. The HtmlOutputLabel com-
ponent is used for attaching labels to input controls. And finally, the HtmlOutput-
Message component is used for displaying flexible parameterized strings.

 Now, let’s take a look at each of these components, their behavior, and their
properties. These components are indispensable, so you can find more examples
throughout the rest of the book.

4.5.1 Displaying ordinary text with HtmlOutputText

So far you’ve seen HtmlOutputText plenty of times in previous examples; it just
displays its value, with optional formatting. Table 4.5 describes this component
and its properties.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

154 CHAPTER 4
Getting started with the standard components

By default, HtmlOutputText displays its value directly with no formatting. That’s it.
No additives—just the plain value.

 Special characters are escaped using the appropriate HTML or XML entities
by default, so if you embed any markup characters (HTML or XML), they will be
displayed literally. An example is shown in table 4.6.

As the table shows, by default any markup in HtmlOutputText’s value will be dis-
played literally in a browser. If you want to have the markup passed through

Table 4.5 HtmlOutputText summary

Component HtmlOutputText

Family javax.faces.Output

Possible IDE
Display Names

Output Text

Display
Behavior

Converts the value to a string and displays it with optional support CSS styles. (If the id
or style property is set, encloses the text in a element.)

Tag Library HTML

JSP Tag <h:outputText>

Pass-Through
Properties

style, title

Common
Properties

id, value, rendered, converter, styleClass, binding (see table 4.2)

Property Type
Default
Value

Required? Description

escape boolean true No Controls whether or not HTML or XML
characters are escaped (displayed
literally in a browser).

Table 4.6 HtmlOutputText example: Text is escaped by default.

HTML What are <i>you</i> looking at?

Component Tag <h:outputText value="What are <i>you</i> looking at?"/>

Browser Display
directly, you can set the escape property to false, as shown in table 4.7.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data with the Output components 155

In this case, the component’s value isn’t escaped, so it is interpreted by the browser.
Turning off escaping is useful whenever you want the component’s value to pass
through directly to the client, but if you have larger sets of text and you don’t
need to use style sheets or HTML formatting, you should use the UIOutput com-
ponent, covered in the next section, instead.

If you’re familiar with JSTL, you may wonder why anyone would use an
HtmlOutputText component instead of JSTL’s <c:out> tag. Using
UIOutput allows you to take full control of the JSF component model.
HtmlOutputText components are children of other components in the
tree, and you can manipulate their behavior in server-side code. If you
use a tag like <c:out> that isn’t backed by a component, there’s no server-
side representation of the output—in effect, it’s more like template text.
It’s worthwhile, however, to point out that <c:out> is more lightweight,
because no server-side component is created.

HtmlOutputText is great for displaying simple values (with optional CSS format-
ting), but it doesn’t display its body text (you must use the value property), and
you can't embed custom tags in its body. These are features that the <f:verbatim>
tag offers.

4.5.2 Using UIOutput with the <f:verbatim> tag

When you want to display literal text without any formatting, or embed other JSP cus-
tom tags inside a view, you can use the UIOutput component with the <f:verbatim>
tag. Table 4.8 describes the component and its properties.

Table 4.7 HtmlOutputText example: Turning off escaping of text.

HTML What are <i>you</i> looking at?

Component Tag
<h:outputText value="What are <i>you</i> looking at?"
 escape="false"/>

Browser Display

BY THE
WAY
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

156 CHAPTER 4
Getting started with the standard components

NOTE UIOutput technically has additional properties; this section is limited to
the <f:verbatim> tag’s use of the component.

As you can see from the table, the <f:verbatim> tag doesn’t expose a lot of the
common UI component properties like rendered, converter, or binding. If you
need to use those properties, you’re better off with HtmlOutputText; <f:verbatim>
is solely useful for displaying its body content. Unlike HtmlOutputText, the
escape property defaults to false.

 One of the best uses for <f:verbatim> is escaping and displaying a large block
of static text. Suppose we wanted to display this snippet of a JSF configuration
file in a page, as shown in table 4.9.

 Here, we’ve placed all of the literal text inside the tag’s body, which you can’t do
with HtmlOutputText. The escape property is also set to true to ensure that all of the
XML elements are properly escaped. This example results in properly escaped HTML
output without the need to manually type in all of those exciting HTML entities.

 The <f:verbatim> tag is also useful for encasing markup or other tags inside
components that are containers, like HtmlPanelGrid and HtmlDataTable. This is
because these components require that all of their children be JSF components,

Table 4.8 UIOutput summary

Component UIOutput

Family javax.faces.Output

Display Name N/A

Display Behavior Displays its body without formatting, processing any embedded JSP custom tags

Tag Library Core

JSP Tag <f:verbatim>

Pass-Through
Properties

None

Property Type
Default
Value

Required? Description

escape boolean false No Controls whether or not HTML or XML
characters are escaped (displayed lit-
erally in a browser).
so you can’t nest arbitrary template text or other custom tags inside them. You
can, however, use the <f:verbatim> tag.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data with the Output components 157

Suppose we wanted to output a simple two-column table, with the left column
displaying a list from a backing bean and the right column displaying normal HTML
text. There are only three items in the backing bean list: “www.yahoo.com”,
“www.javalobby.org”, and “www.jsfcentral.com”.

 You can create HTML tables with the HtmlPanelGrid component. We’ll cover
that component in detail later in this chapter, but for now, let’s just use it to generate
the preceding table. For the left column, we’ll use the JSTL <c:forEach> tag. For
the right column, we’ll just embed literal HTML. The example is shown in table 4.10.

 As you can see, the <c:forEach> tag and the literal HTML are both embedded
in <f:verbatim> tags. The <f:verbatim> tag is nested inside the <h:panelGrid>

Table 4.9 UIOutput example: Escaping a large block of body text.

HTML

<pre>
 <application>
 <message-bundle>CustomMessages</message-bundle>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
 </application>
</pre>

Component
Tag

<pre>
 <f:verbatim escape="true">
 <application>
 <message-bundle>CustomMessages</message-bundle>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
 </application>
 </f:verbatim>
</pre>

Browser
Display
tag. Only JSF component tags are allowed inside an <h:panelGrid>, so using

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

158 CHAPTER 4
Getting started with the standard components

<f:verbatim> allows us to treat the JSTL tag and the template text like JSF com-
ponents. Also, note that the escape property is set to false for the HTML text
because we’d like it to be processed by the browser.

 UIOutput and HtmlOutputText are useful components for displaying simple
text, but if you need to associate that text with an input control, you must embed
them inside an HtmlOutputLabel component.

4.5.3 Creating input labels with HtmlOutputLabel
The HtmlOutputLabel component is used for associating labels with form ele-
ments—it maps directly to the HTML <label> element. This allows target devices

Table 4.10 UIOutput example: Embedding custom tags and markup.

HTML

<table border="1">
 <tbody>
 <tr>
 <td>www.yahoo.com,
 www.javalobby.org,
 www.jsfcentral.com
 </td>
 <td>
 <p>
 This is normal <u>HTML</u>
 text.
 </p>
 </td>
 </tr>
 </tbody>
</table>

Component
Tag

<h:panelGrid columns="2" border="1">
 <f:verbatim>
 <c:forEach items="${user.favoriteSites}" var="site">
 <c:out value="${site}, "/>
 </c:forEach>
 </f:verbatim>
 <f:verbatim escape="false">
 <p>This is normal <u>HTML</u>
 text.</p>
 </f:verbatim>
</h:panelGrid>

Browser
Display
to be smarter about how text is related with controls on the screen so that they

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data with the Output components 159

can do such things as highlight a text field when the user clicks on the label. It’s
also a requirement for creating accessible applications. The component is sum-
marized in table 4.11.

An HtmlOutputLabel component’s for property is required, and it must be associ-
ated with an input control’s component identifier. The component doesn’t actually
display any text—it just renders a <label> element (which has no visual representa-
tion). To display anything inside that label, you must nest another UI component.
(The child component is usually HtmlOutputText; some tools will add it automati-
cally when you drag an HtmlOutputLabel component from the palette.)

 An example of using HtmlOutputLabel for an HtmlInputText component is
shown in table 4.12.

 You can see that the <h:outputLabel> tag maps directly to the <label> tag,
and the accesskey property is passed through. The for property references the
HtmlInputText component by its component identifier, but the HTML output
uses its client identifier (HtmlOutputLabel handles this translation for you auto-

Table 4.11 HtmlOutputLabel summary

Component HtmlOutputLabel

Family javax.faces.Output

Display Name Component Label

Display
Behavior

Displays a <label> element. Usually has an HtmlOutputText and/or other
components as its children.

Tag Library Core

JSP Tag <h:outputLabel>

Pass-Through
Properties

HTML attributes for <label> element.

Common
Properties

id, value, rendered, converter, styleClass, binding (see table 4.2)

Property Type
Default
Value

Required? Description

for String None Yes Component identifier of UI component
this label is for.
matically). This brings up an important point: whenever you’re associating

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

160 CHAPTER 4
Getting started with the standard components

HtmlOutputLabel with an input control, you have to specify the input control’s
identifier. Otherwise, you won’t know what value to use as the for attribute.

 In HTML, you can nest an input element within the label tag and leave out
the for attribute. With JSF, you can certainly nest an input control one or more
components inside of an <h:outputLabel> tag, but the for attribute is mandatory.

 Now that we’ve examined components that display simple strings (or the
result of value-binding expressions), let’s look at a component that adds some
formatting capabilities.

4.5.4 Using HtmlOutputFormat for parameterized text

HtmlOutputFormat displays parameterized text. In other words, you can specify a
special string, and the component will insert values (either hardcoded or defined
by value-binding expressions) at specific places in the string. You can also use it
to repeat variables in a single string of text without having to repeat the same
value-binding expression. The component is summarized in table 4.13.

 HtmlOutputFormat behaves quite similarly to HtmlOutputText, except for the
fact that you can insert arbitrary parameters in the string that is displayed.

 For example, suppose you wanted to display a message to current users that
addressed them by their first name, displayed a hardcoded string, and also dis-
played their browser type. If the person’s name was Joe and he was using Mozilla,
the output would look something like this:

Hey Mark. This is a static value: hardcoded. Mark, you're using: Mozilla/
5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.2.1) Gecko/20021130.

Table 4.12 HtmlOutputLabel example: Adding a label to an HtmlInputLabel component.

HTML

<label for="myForm:userNameInput" accesskey="N">
 Enter your name:
</label>
<input id="myForm:userNameInput" type="text"/>

Component Tag

<h:outputLabel for="userNameInput" accesskey="N">
 <h:outputText value="Enter your name: "/>
</h:outputLabel>
<h:inputText id="userNameInput"/>

Browser Display
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data with the Output components 161

Assuming you had a JavaBean stored under the key user, you could generate this
output with HtmlOutputText:

<h:outputText value="Hey #{user.firstName}. This is a static value: hard-
coded. #{user.firstName}, you're using: #{header['User-Agent']}."/>

This is fine, but you have to use the expression "#{user.firstName}" each time
you want to display the user’s name. (By the way, header is an implicit EL vari-
able; see chapter 3 for details.)

 HtmlOutputFormat simplifies displaying strings with dynamic variables by
using message format patterns. A message format pattern is a special string with mark-
ers that map to parameter values. A message format element (not to be confused
with an XML or HTML element) is made up of a parameter number surrounded
by curly braces ({}). The parameters are specified with nested UIParameter com-
ponents. (UIParameter is covered in section 4.4.) Table 4.14 shows how to gener-

Table 4.13 HtmlOutputFormat summary

Component HtmlOutputFormat

Family javax.faces.Output

Possible IDE
Display Names

Formatted Output

Display
Behavior

Converts its value to a string and displays it, replacing any parameter markers with val-
ues retrieved from child UIParameter components. Encloses the value in a
element if the id, style, or styleClass property is specified.

Tag Library HTML

JSP Tag <h:outputFormat>

Pass-Through
Properties

title, style

Common
Properties

id, value, rendered, converter, styleClass, binding (see table 4.2)

Property Type
Default
Value

Required? Description

escape boolean false No Controls whether or not HTML or
XML characters are escaped
(displayed literally in a browser).
ate our output string with an HtmlOutputFormat component instead of an
HtmlOutputText component.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

162 CHAPTER 4
Getting started with the standard components

Take a look at the value property of the <h:outputFormat> tag. This is a message
format pattern. Like Java, the parameters start counting with zero: {0}, {1}, {2},
and so on. The first parameter value is substituted everywhere the message format
element {0} exists. The second parameter substitutes for {1}, the third for {2},
and so on. If you specify extra parameters, the component ignores them. If you
specify too few parameters, it will leave the literal text in the string (like “{1}”).

NOTE HtmlOutputMessage is often used to parameterize localized text. See
chapter 6 for details.

You may have noticed that the string used in the <h:outputFormat> tag requires
two single quotes to produce the text “you’re” and the string in the <h:outputText>
tag requires only a single quote. This is a specific requirement of the HtmlOutput-
Message: you must use two single quotes to produce one. If you want to use curly
braces inside a string you’re displaying, you have to enclose them with single
quotes as well.

If you’ve ever written Java code using the MessageFormat class, you may
have noticed that HtmlOutputFormat uses the same syntax and abides
by similar rules as that class. This is because it uses the MessageFormat
class internally.

Message format elements

Table 4.14 HtmlOutputFormat example: Simple parameter substitution.

HTML
Hey Mark. This is a static value: hardcoded. Mark, you're
using: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.2.1) Gecko/20021130.

Component
Tag

<h:outputFormat value="Hey {0}. This is a static value: {1}.
{0}, you''re using: {2}.">
 <f:param value="#{user.firstName}"/>
 <f:param value="hardcoded"/>
 <f:param value="#{header['User-Agent']}"/>
</h:outputFormat>

Browser
Display

BY THE
WAY
In the last section, we described a message format element as a parameter num-
ber surrounded by curly braces—{1}, for example. Most of the time, this is all

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data with the Output components 163

you need to know. You can, however, format each parameter using a different
syntax. After the parameter number, you specify the format type. After the for-
mat type, you specify a style or pattern. The parameter number, format type,
and format style or pattern are all separated by a comma (,). There are two
classes of format types: data type format types (dates, times, and numbers) and
choice format types.

 Two examples are shown in figure 4.6. The
first specifies parameter number one, the date
format type, and a format style of medium, which
defaults to something like “May 10, 2003”. The
second example is also a date format pattern for
the first parameter, but has a date format pat-
tern, which specifies the specific format for the
date. In this case, it would be something like
“05.10.03”.

 Let’s say you wanted to display a string using
value-binding references for both the name and
the date. You could use a message format pattern
to format the date property, as shown in table 4.15.

 The first parameter uses the normal message
element syntax; the second uses the extended
syntax for formatting. As the table shows, the
medium format element displays an abbreviated
month with the day and year displayed as a num-
ber for U.S. English. For other languages, the
actual result may vary.

Table 4.15 HtmlOutputFormat example: Using the extended syntax for message format elements,
with a specific format type.

HTML Hey Mark, you were born on Apr 20, 2004.

Component
Tag

<h:outputFormat value="Hey {0}, you were born on {1, date, medium}.">
 <f:param value="#{user.firstName}"/>
 <f:param value="#{user.dateOfBirth}"/>
</h:outputFormat>

Browser
Display

Figure 4.6 Message format
elements can specify additional
format types. Each format type can
have either a style or a pattern.
Styles provide some control over
formatting, and patterns provide
complete control.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

164 CHAPTER 4
Getting started with the standard components

If we hadn’t specified the date style, the displayed date would have been “04/20/04
06:04 PM”, which is the locale’s default format for the Date object. For the
United States, this includes both the date and time; it may be different in other
locales. You can leave out the date style in some cases, but usually it’s better to
have more control over the output. We cover the specific message format types
and patterns as well as internationalization in chapter 6.

Dynamically displaying substrings with choice formats
Sometimes you may want to display part of a string based on the value of a bean
property. For example, let’s say that you wanted to tell a user whether an account
balance was positive without displaying the actual value. You can do this with a
choice format. A choice format displays one of several values based on a number
parameter. It’s great when you want to display the plural form of a word instead
of a number. Unlike date type formats, choice formats don’t have styles; they
only have patterns.

 A choice format pattern is made up of a set of comparison value/display string
pairs. Within each pair, the comparison value and display string are separated by
a number sign (#). The comparison value/display string pairs are separated by a
pipe separator (|), which stands for “or”. This syntax is shown in figure 4.7.

 The choice pattern works sort of like a case or switch statement. The display
string whose comparison number is equal to the parameter’s value will be dis-
played. If no comparison number equals the parameter’s value, then the display
value whose comparison number is the closest but less than the parameter value
will be displayed. If the parameter value is less than the first comparison number,
the first display string is chosen. If it’s greater, the last display string is chosen.

 Table 4.16 shows an example. If user.numberOfTimes is less than 1, the display
string “times” is chosen. If it’s equal to 1, the display string “time” is chosen. If it’s
greater than or equal to 2, the display string “times” is chosen.

Figure 4.7
A choice format allows you to select
one display string depending on
how its number compares to the
parameter value. This example will
choose the display string "times" if
the parameter value is less than or
equal to 0, or greater than 1.
Otherwise (if the value equals 1),
the string "time" will be displayed.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data with the Output components 165

Choice formats are a useful tool for displaying complex strings, and don’t forget
the power of value-binding expressions. You can use them in the value string
(with choice or message format patterns), and for the value of any HtmlOutput-
Format parameters.

4.5.5 Displaying hyperlinks with HtmlOutputLink

The HtmlOutputLink component maps to an HTML hyperlink or anchor—an <a>
element. It can be used to link to either an internal or an external URL. The
component’s value property represents the actual URL, and any nested compo-
nents will be displayed within the hyperlink. If your web container is using URL
rewriting to maintain the session, this component will automatically rewrite the
URL for you. Table 4.17 summarizes the component’s properties.

 Most of the time, you’ll want to nest an HtmlOutputText component inside an
Html-OutputLink component to provide the text inside the link. As a matter of
fact, some tools, like Sun’s Java Studio Creator [Sun, Creator], automatically do
this for you. Some tools will also let you select existing pages from within your

Table 4.16 HtmlOutputFormat example: Using a choice format for a plural.

HTML
(parameter = 0)

You have visited us 0 times.

HTML
(parameter = 1)

You have visited us 1 time.

HTML
(parameter = 3)

You have visited us 3 times.

Component Tag

<h:outputFormat
 value="You have visited us {0} {0, choice,
 0#times|1#time|2#times}.">
 <f:param value="#{user.numberOfVisits}"/>
</h:outputFormat>

Browser Display
(parameter = 0)

Browser Display
(parameter = 1)

Browser Display
(parameter = 3)
web application so you don’t have to manually type in a relative URL (see figure 4.8).
 Let’s start with a hyperlink to a relative image, shown in table 4.18.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

166 CHAPTER 4
Getting started with the standard components

You can see that the component’s value maps to
the href value of the hyperlink, and the text
within the hyperlink is from the nested HtmlOut-
putText component.

Although a single HtmlOutputText child com-
ponent is a really common use case, you can also
nest other components, like an HtmlGraphicImage
component, and even HtmlPanelGrids. You can
also nest more than one component.

In the real world, you often need to add

Table 4.17 HtmlOutputLink summary

Component HtmlOutputLink

Family javax.faces.Output

Possible IDE
Display Names

Hyperlink

Display
Behavior

Displays an HTML <a> element. The value property is rendered as the href attribute,
and any child components are rendered within the <a> element.

Tag Library HTML

JSP Tag <h:outputLink>

Pass-Through
Properties

HTML attributes for the <a> element

Common
Properties

id, value, rendered, converter, styleClass, binding (see table 4.2)

Table 4.18 HtmlOutputLink example: Simple link to a relative image.

HTML Hello image

Component
Tag

<h:outputLink value="images/hello.gif">
 <h:outputText value="Hello image"/>
</h:outputLink>

Browser
Display

Figure 4.8 WebSphere Application
Developer [IBM, WSAD] allows you to
select a page in your application and
parameters to the URL, as shown in table 4.19.
set a label with a simple dialog box.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying images with HtmlGraphicImage 167

As you can see, HtmlOutputLink will automatically append nested UIParameter
instances to URL parameters. In this example, two UIParameter instances were
used to output the parameters at the end of the href property. The first parame-
ter tells Google to display all of the newsgroups that start with “comp”. The sec-
ond tells it to use the French language. So, if you click on this link, you’ll see all
of the comp.* newsgroups in French.

 You can use HtmlOutputLink this way for external pages as well as other links
within your application or site. And remember, UIParameters, like most JSF com-
ponents, can also use value-binding expressions, so the parameters can come
from beans in your application.

If you’re wondering why anyone would bother using this HtmlOutput-
Link instead of a normal HTML <a> element, there are two good rea-
sons. First, you can’t lay out normal HTML elements within panels. So
the minute you start using panels for grouping and layout, you must use
JSF components. Second, using UIParameters allows you to dynamically
configure the values being sent to the external URL, which means you
can easily sync them up with backing beans.

HtmlOutputLink is the last of the Output family of components. Earlier, we used
HtmlGraphicImage to display an image inside a hyperlink. Let’s take a closer look
at this component.

4.6 Displaying images with HtmlGraphicImage

Most UIs have images somewhere—little icons that represent menu options,

Table 4.19 HtmlOutputLink example: Passing URL parameters.

HTML

 Google Groups – Computers (in French)

Component
Tag

<h:outputLink value="http://groups.google.com/groups">
 <h:outputText value="Google Groups - Computers (in French)"/>
 <f:param name="group" value="comp"/>
 <f:param name="hl" value="fr"/>
</h:outputLink>

Browser
Display

BY THE
WAY
logos, or just something to spice things up. In JSF, images are handled by the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

168 CHAPTER 4
Getting started with the standard components

HtmlGraphicImage component, a read-only reference to a graphic. The component
displays an element whose src attribute is set to the current value of the com-
ponent (represented by the url property), which should be a static string or value-
binding expression for the image’s URL. Table 4.20 summarizes this component.

If your web container is using URL rewriting to maintain the session, HtmlGraphic-
Image will automatically rewrite the URL for you. Also, if your URL begins with a
slash (/), it will be relative to the web application’s context root. For example, see
table 4.21.

 As you can see, the url property was rendered as a src attribute, prefixed with
the application’s context root name (no session was active, so the URL was not rewrit-
ten). If we had used a relative URL like “images/logo.gif ”, the context root name
would not have been added. All of the other properties were passed through.

 Remember that HtmlGraphicImage, like most JSF components, supports value-
binding expressions. This can be useful for situations where you maintain the

Table 4.20 HtmlGraphicImage summary

Component HtmlGraphicImage

Family javax.faces.Graphic

Possible IDE
Display Names

Image

Display
Behavior

Displays an element with the src attribute equal to the component’s url prop-
erty. Automatically encodes the URL to maintain the session, if necessary.

Tag Library HTML

JSP Tag <h:graphicImage>

Pass-Through
Properties

HTML attributes for the element

Common
Properties

id, value, rendered, styleClass, binding (see table 4.2)

Property Type
Default
Value

Required? Description

url String None No The URL of the image to be displayed.
Can be literal text or a value-binding
expression. (This is an alias for the
value property.)
URLs for graphics in a central location, like a database or an XML file.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying component messages with HtmlMessage 169

We present more examples of using HtmlGraphicImage in part 2. The topic of the
next section, however, is displaying application messages.

4.7 Displaying component messages
with HtmlMessage

In chapter 2, we touched on JSF’s support for messages that report validation and
conversion errors, as well as general-purpose information from the application
itself. Zero or more messages can be generated when JSF processes a request.
Every message has a severity level as well as summary and detailed information,
and the information is usually localized for the user’s current language. The
severity levels are listed in table 4.22.

You can probably see where all this is leading—HtmlMessage displays application
messages. Actually, it displays a single message that’s associated with a specific UI

Table 4.21 HtmlGraphicImage example: URL relative to web application root.

HTML
<img src="/jia-standard-components/images/logo.gif"
 alt="Welcome to ProjectTrack" height="160"
 title="Welcome to ProjectTrack" width="149" />

Component
Tag

<h:graphicImage url="/images/logo.gif"
 alt="Welcome to ProjectTrack"
 title="Welcome to ProjectTrack" width="149"
 height="160"/>

Browser
Display

Table 4.22 Messages have a severity, which is equal to one of these values.

Severity Level Description

Info Represents text you’d like to send back to the user that isn’t an error.

Warn Indicates that an error may have occurred.

Error Indicates a definite error. Recommended for validation messages.

Fatal Indicates a serious error.
component. It’s useful for displaying validation or conversion errors for an input

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

170 CHAPTER 4
Getting started with the standard components

control, and usually the error is displayed next to the component (so the user
knows where to correct the problem). If more than one message is registered for
a component (which can happen if more than one validator is registered, or if a
validator has problems with conversion), HtmlMessage displays only the first one.
The component is summarized in table 4.23.

 As the table shows, HtmlMessage lets you change the style based on the sever-
ity level of the message. This allows you to give the user better visual clues—for
example, red text may mean a real problem, but blue text might just be an infor-
mational message. In addition, you can control whether or not you want the user
to see the summary or detail of the message. Let’s start with the example, shown
in table 4.24.

Table 4.23 HtmlMessage summary

Component HtmlMessage

Family javax.faces.Message

Possible IDE
Display Names

Display Error, Inline Message

Display
Behavior

Displays the first messages registered for the component referenced by the for property.
If the id, a tooltip, or any CSS styles are specified, the text will be wrapped in a
element.

Tag Library HTML

JSP Tag <h:message>

Pass-Through
Properties

style, title

Common
Properties

id, rendered, styleClass, binding (see table 4.2)

Property Type
Default
Value

Required? Description

for String None Yes The component identifier of the
component for which messages
should be displayed.

showDetail boolean false No Indicates whether or not to show
the detail portion of the message.

showSummary boolean true No Indicates whether or not to show
the summary portion of the
message.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying component messages with HtmlMessage 171

In this example, we’ve associated an HtmlMessage component with an HtmlInputText
that has a Length validator and a LongRange validator. As we’ve seen so far, HtmlInput-
Text simply collects input. The Length validator verifies the length of the input, and
the LongRange validator checks to make sure the input is an integer in the proper range.
(HtmlInputText is covered in chapter 5, and validators are covered in chapter 6.)

 In this example, the input fails both validators, so two messages are gener-
ated. However, HtmlMessage displays only the first one.

 We actually see the error message twice—once for the summary, and once for
the detail. This is sort of a quirk with the RI—both the summary and the detail are
the same. Other implementations and custom validators should have a distinctive
detail message. For example, if the error was “Invalid credit card number”, the
detail might be “The expiration date is invalid.”

 This example also shows use of the style properties that format messages dif-

Property Type
Default
Value

Required? Description

errorClass String None No CSS class for messages with Error
severity.

errorStyle String None No CSS style for messages with Error
severity

fatalClass String None No CSS class for messages with Fatal
severity.

fatalStyle String None No CSS style for messages with Fatal
severity.

infoClass String None No CSS class for messages with Info
severity.

infoStyle String None No CSS style for messages with Info
severity.

warnClass String None No CSS class for messages with Warn-
ing severity.

warnStyle String None No CSS style for messages with Warn-
ing severity.

tooltip boolean false No Indicates whether or not the mes-
sage detail should be displayed as a
tooltip. Only valid if showDetail is
true.

Table 4.23 HtmlMessage summary (continued)
ferently based on the severity. The rendered style is “color: red”, which is the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

172 CHAPTER 4
Getting started with the standard components

value of the errorStyle property. This means that the message’s severity level
was Error. (All of the standard validation messages have this severity level.) If the
message’s severity level had been Warn, the warnStyle property would have been
used; if it had been Info, the infoStyle property would have been used.

 HtmlMessage is designed to display messages for a specific component, and is
useful whenever you need to inform the user of a mistake in a particular input
control. It’s typically used with input controls, but that’s not a requirement. If you
need to display multiple messages for a page, you should use HtmlMessages instead.

4.8 Displaying application messages
with HtmlMessages

When JSF processes a request, multiple parts of the application—validators, con-
verters, event listeners, and so on—can generate messages. (See the previous sec-
tion for a quick overview of messages.) Because messages can be generated from
so many sources, it’s no surprise that you often end up with multiple messages
that need to be displayed to the user. This is the job of the HtmlMessages compo-

Table 4.24 HtmlMessage example: Showing summary and detail and applying multiple styles.

HTML (with
two validation

errors)

Enter text:
<input id="_id0:myOtherInput" type="text"
 name="_id0:myOtherInput" value="this is text" />
Validation Error: Value is greater
than allowable maximum of '3'. Validation Error: Value is
greater than allowable maximum of '3'.

Component
Tag

<h:outputLabel for="validatorInput">
 <h:outputText value="Enter text:"/>
</h:outputLabel>
<h:inputText id="myOtherInput">
 <f:validateLength minimum="0" maximum="3"/>
 <f:validateLongRange minimum="1" maximum="100"/>
</h:inputText>
<h:message for="myOtherInput" showDetail="true"
 showSummary="true" warnStyle="color: green"
 infoStyle="color: blue" errorStyle="color: red"/>

Browser
Display (with
two validation

errors)
nent, which is summarized in table 4.25.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying application messages with HtmlMessages 173

 Like HtmlMessage, HtmlMessages lets you change the style based on the sever-
ity level of the message. So, if it’s displaying several messages, each one can be in
a different color. The first message might have the Info severity level and be dis-
played in blue, the second might have the Error severity level and be displayed
in red, and so on.

 Because HtmlMessages displays all messages, it doesn’t have a for property that
limits it to displaying messages for a specific component. You can, however, tell it
to display only messages that aren’t associated with components with the global-
Only property. This is useful if you want to display messages that were created in
application code (like an event listener) as opposed to ones that were created by
validators or converters.

Table 4.25 HtmlMessages summary

Component HtmlMessages

Family javax.faces.Messages

Possible IDE
Display Names

Message List

Display
Behavior

Displays all messages if the globalOnly property is false. If globalOnly is
true, displays only messages that are not associated with a component (these are
usually messages from event listeners). If the layout property is “table”, a <table>
element will be displayed, with each message on a single row. If the id and tooltip
properties, or any CSS styles are specified, the text for each message will be wrapped
in a element.

Tag Library HTML

JSP Tag <h:messages>

Pass-Through
Properties

style, title

Common
Properties

id, rendered, styleClass, binding (see table 4.2)

Property Type
Default
Value

Required? Description

showDetail boolean false No Indicates whether or not to show
the detail portion of the message.

continued on next page
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

174 CHAPTER 4
Getting started with the standard components

Let’s start with the simple example, shown in table 4.26. This table shows two

Property Type
Default
Value

Required? Description

showSummary boolean true No Indicates whether or not to show
the summary portion of the mes-
sage.

layout String “list” No Specifies how to display the mes-
sages. Possible values are “list”,
which displays them one after
another, and “table”, which dis-
plays them in table columns.

errorClass String None No CSS class for messages with Error
severity.

errorStyle String None No CSS style for messages with Error
severity

fatalClass String None No CSS class for messages with Fatal
severity.

fatalStyle String None No CSS style for messages with Fatal
severity.

infoClass String None No CSS class for messages with Info
severity.

infoStyle String None No CSS style for messages with Info
severity.

warnClass String None No CSS class for messages with
Warning severity.

warnStyle String None No CSS style for messages with
Warning severity.

tooltip boolean false No Indicates whether or not the mes-
sage detail should be displayed as
a tooltip. Only valid if
showDetail is true.

globalOnly boolean false No Controls whether or not the
component only displays global
messages (as opposed to both
global messages and messages for
a specific component).

Table 4.25 HtmlMessages summary (continued)
sets of output depending on the type of messages available. First, there is the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying application messages with HtmlMessages 175

output with two validation messages. These errors happen to be the same two
messages generated by the example in table 4.25. The difference is that here,
both of them are displayed.

The second set of output is for application messages rather than validation mes-
sages. The component isn’t displaying both types of messages because validation
errors usually prevent event listeners from being called. So, in this case, the
event listener won’t generate any messages unless all of the input is valid.

 One subtle point with the last example is that even though the two application
messages have different severity levels, they are both displayed with the same CSS
class. Because HtmlMessages can display several different messages (each of
which can have different severity levels), it’s generally a good idea to apply different
styles so that users can differentiate them.

TIP It’s often helpful to place an HtmlMessages component at the top of

Table 4.26 HtmlMessages example: Simple usage with both validation and application messages.

HTML (with
two validation

errors)

Validation Error: Value is greater than
allowable maximum of '3'.

Validation Error: Value is not of the
correct type.

HTML
(with two

application
messages)

Your order has been processed successfully.

Free shipping limit exceeded.

Component
Tag

<h:messages styleClass="errors"/>

Browser
Display (with
two validation

errors)

Browser
Display

(with two
application
messages)
your page during development. This will allow you to see validation and
conversion errors that may pop up while you’re building the application.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

176 CHAPTER 4
Getting started with the standard components

If your views have a lot of forms, you’ll be using HtmlMessage and HtmlMessages
quite often. They’re key for keeping the user informed about input errors, and
they greatly simplify the process of reporting such errors. These components are
also handy for displaying messages generated by your application.

4.9 Grouping and layout with the Panel components

If you’ve worked with Swing, or tools such as Visual Basic or Delphi, then you’re
probably familiar with the concept of a panel. Panels are often used to group
related components. Once you’ve placed some components inside a panel, you
can manipulate them as a single unit simply by interacting with the panel. You
can also format the panel with something like a border and hide or display it
(and all of its child controls) depending on the application’s state.

 Panels in JSF are similar to these panels, but they’re a little different, too.
Their primary goal is to group components together, but sometimes they handle
layout as well. As a matter of fact, panels are the only standard way to handle lay-
out within a single view. Using a combination of different panels, you can achieve
complex organization of controls on a page.

 JSF ships with two panel components: HtmlPanelGroup and HtmlPanelGrid.
HtmlPanelGroup simply groups all child components together, and optionally
applies CSS styles. HtmlPanelGrid can be used for very configurable layouts, sort
of like a GridLayout in Swing; it renders an HTML <table> element.

 In the following sections, we examine these components in more detail.

4.9.1 Grouping components with HtmlPanelGroup

The HtmlPanelGroup component groups a set of components together so that
they can be treated as a single entity. It doesn’t map directly to an HTML ele-
ment. As a matter of fact, the only time it outputs anything is when you specify
an identifier or a style, in which case the child components will be enclosed in a
 element. It does, however, display all of its child components without
modification. The component is summarized in table 4.27.

 Take a look at the simple example shown in table 4.28. In this case, HtmlPanel-
Group doesn’t display anything—the child components are just displayed as is.
You’ll often use it this way to group together components within a facet; this is
quite common, for example, when you’re defining the header and footers within
an HtmlPanelGrid or HtmlDataTable (see those sections for more examples).
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Grouping and layout with the Panel components 177

TIP HtmlPanelGroup can be useful as a placeholder. Use it when you want
to create a blank cell inside a table rendered by HtmlPanelGrid or
HtmlDataTable.

HtmlPanelGroup can also be used to add simple formatting to a group of compo-
nents, as shown in table 4.29.

In this example, the component outputs a element with its client identi-
fier and the specified CSS class, providing a nice background and border for the

Table 4.27 HtmlPanelGroup summary

Component HtmlPanelGroup

Family javax.faces.Panel

Possible IDE
Display Names

Panel – Group Box, Group Box

Display
Behavior

All child components are displayed as is. If the id, style, or styleClass properties
are specified, encloses all child components in a element. Used to group child
components together.

Tag Library HTML

JSP Tag <h:panelGroup>

Pass-Through
Properties

style

Common
Properties

id, rendered, styleClass, binding (see table 4.2)

Table 4.28 HtmlPanelGroup example: Grouping three components with no style.

HTML Column 1Column 2

Component
Tag

<h:panelGroup>
 <h:graphicImage url="images/inbox.gif"/>
 <h:outputText value="Column 1"/>
 <h:outputText value="Column 2"/>
</h:panelGroup>

Browser
Display
child components. This type of formatting is nice for simple cases, but for laying
out components, you should use HtmlPanelGrid instead.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

178 CHAPTER 4
Getting started with the standard components

4.9.2 Creating tables with HtmlPanelGrid

HtmlPanelGrid is useful for creating arbitrary, static component layouts (it maps
to the <table> element). You can also configure header and footer with facets
that map to the <thead> and <tfoot> table subelements, respectively. Table 4.30
summarizes this component.

 You can expect tools to render a table for you in real time, as you drag and
drop controls into an HtmlPanelGrid from a component palette (see figure 4.9). As
you can see, a common use of this component is to lay out forms, like a login form.

 We’ll look at the JSP for more complicated views like a login form in part 2. For
now, let’s start with a simple three-column, two-row table where each cell con-
tains a single HtmlOutputText component. This is shown in table 4.31.

 As you can see, child components are organized according to the specified
number of columns. Because we specified three columns, the first three compo-
nents formed the first row (one per column), the next three formed the second
row, and so on. The width, border, and cellpadding properties were passed
through. Note that unlike with an HTML table, you don’t have to explicitly
denote columns and rows—you just embed the child components inside the
panel, and it will do the rest.

Table 4.29 HtmlPanelGroup example: Grouping three components with a style.

HTML

 Column 1Column 2

Component
Tag

<h:panelGroup id="myGroup" styleClass="table-background">
 <h:graphicImage url="images/inbox.gif"/>
 <h:outputText value="Column 1"/>
 <h:outputText value="Column 2"/>
</h:panelGroup>

Browser
Display

Figure 4.9
Most JSF IDEs, like Java Studio Creator
[Sun, Creator], allow you to drag and drop
components into an HtmlPanelGrid and

change the table’s layout when you modify
the component’s properties.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Grouping and layout with the Panel components 179

Table 4.30 HtmlPanelGrid summary

Component HtmlPanelGrid

Family javax.faces.Panel

Possible IDE
Display Names

Grid Panel

Display
Behavior

Displays an HTML <table> element with the specified number of columns. Lays out
one child component per cell, starting a new row after displaying columns compo-
nents. If the header facet is specified, displays a <thead> element with the con-
tents of the header. If the footer facet is specified, displays a <tfoot> element
with the contents of the footer.

Tag Library HTML

JSP Tag <h:panelGrid>

Pass-Through
Properties

HTML attributes for <table>

Common
Properties

id, rendered, styleClass, binding (see table 4.2)

Property Type
Default
Value

Required? Description

columns int None No Number of columns to
display.

headerClass String None No Name of CSS style class for the
header facet.

footerClass String None No Name of CSS style class for the
footer facet.

rowClasses String None No Comma-delimited list of CSS style
classes for the rows. You can specify
multiple styles for a row by
separating them with a space. After
each style has been applied, they
repeat. For example, if there are two
style classes (style1 and style2),
the first row will be style1, the sec-
ond style2, the third style1, the
fourth style2, so on.

continued on next page
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

180 CHAPTER 4
Getting started with the standard components

Property Type
Default
Value

Required? Description

columnClasses String None No Comma-delimited list of CSS style
classes for the columns. You can
specify multiple styles for a column by
separating them with a space. After
each style has been applied, they
repeat. For example, if there are two
style classes (style1 and style2),
the first column will be style1, the
second style2, the third style1,
the fourth style2, so on.

Facet Description

header Child components displayed as the table’s header.

footer Child components displayed as the table’s footer.

Table 4.31 HtmlPanelGrid example: A simple three-column, two-row table.

HTML

<table border="1" cellpadding="1" width="40%">
 <tbody>
 <tr>
 <td>(1,1)</td>
 <td>(1,2)</td>
 <td>(1,3)</td>
 </tr>
 <tr>
 <td>(2,1)</td>
 <td>(2,2)</td>
 <td>(2,3)</td>
 </tr>
 </tbody>
</table>

Component
Tag

<h:panelGrid columns="3" cellpadding="1" border="1" width="40%">
 <h:outputText value="(1,1)"/>
 <h:outputText value="(1,2)"/>
 <h:outputText value="(1,3)"/>
 <h:outputText value="(2,1)"/>
 <h:outputText value="(2,2)"/>
 <h:outputText value="(2,3)"/>
</h:panelGrid>

Browser

Table 4.30 HtmlPanelGrid summary (continued)
Display

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Grouping and layout with the Panel components 181

TIP Currently, there is no guaranteed default number of columns (the RI
defaults to one). So, if you want to ensure the same behavior across dif-
ferent implementations, always specify the number of columns.

It’s also quite easy to add styles to different columns or rows, and to add a header
and footer. Table 4.32 shows how to do this.

Table 4.32 HtmlPanelGrid example: A table with a header, a footer, and alternating styles for the
columns.

HTML

<table class="table-background" border="1" cellpadding="1"
 width="40%">
 <thead>
 <tr>
 <th class="page-header" colspan="4" scope="colgroup">
 This is a sample
header. </th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td class="table-footer" colspan="4">This is the footer.
 </td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td class="table-odd-column">(1,1)</td>
 <td class="table-even-column">(1,2)</td>
 <td class="table-odd-column">(1,3)</td>
 <td class="table-even-column">(1,4)</td>
 </tr>
 <tr>
 <td class="table-odd-column">(2,1)</td>
 <td class="table-even-column">(2,2)</td>
 <td class="table-odd-column">(2,3)</td>
 <td class="table-even-column">(2,4)</td>
 </tr>
 <tr>
 <td class="table-odd-column">(3,1)</td>
 <td class="table-even-column">(3,2)</td>
 <td class="table-odd-column">(3,3)</td>
 <td class="table-even-column">(3,4)</td>
 </tr>
 </tbody>
</table>

continued on next page
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

182 CHAPTER 4
Getting started with the standard components

NOTE You can also style the rows with the rowClasses attribute—it works just
like columnClasses.

You can see that the styleClass property specifies the CSS class for the entire
table. The class attributes of the table columns alternate between the two values
specified in the columnClasses properties. There is no limit to the number of
classes you can specify. The header is displayed as a single row spanning all col-
umns, and is styled with the CSS class specified by the headerClass attribute. The

Component
Tag

<h:panelGrid columns="4" styleClass="table-background"
 headerClass="page-header"
 columnClasses="table-odd-column, table-even-column"
 footerClass="table-footer"
 cellpadding="1" border="1" width="40%">

 <f:facet name="header">
 <h:panelGroup>
 <h:graphicImage url="images/inbox.gif"/>
 <h:outputText value="This is a sample header."/>
 </h:panelGroup>
 </f:facet>
 <h:outputText value="(1,1)"/>
 <h:outputText value="(1,2)"/>
 <h:outputText value="(1,3)"/>
 <h:outputText value="(1,4)"/>
 <h:outputText value="(2,1)"/>
 <h:outputText value="(2,2)"/>
 <h:outputText value="(2,3)"/>
 <h:outputText value="(2,4)"/>
 <h:outputText value="(3,1)"/>
 <h:outputText value="(3,2)"/>
 <h:outputText value="(3,3)"/>
 <h:outputText value="(3,4)"/>
 <f:facet name="footer">
 <h:outputText value="This is the footer."/>
 </f:facet>
</h:panelGrid>

Browser
Display

Table 4.32 HtmlPanelGrid example: A table with a header, a footer, and alternating styles for the
columns. (continued)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Grouping and layout with the Panel components 183

footer also spans all columns, but it is styled with the CSS class specified by the
footerClass attribute.

 Note that the header facet uses an HtmlPanelGroup component; this is
required if you’d like to include several components inside of a facet (you could
also use another container, like an additional HtmlPanelGrid). The footer facet
has only one child component, so no nested HtmlPanelGroup is necessary.

 In this example, we alternated styles for the columns. It’s worthwhile to note
that you can have more than two different styles. Also, just like styleClass, all of
the other class properties, including the ones for columns and rows, can support
more than one style.

<h:panelGrid columns="4"
 headerClass="page-header extra-border"
 columnClasses="table-odd-column extra-border,

table-even-column,
table-even-column extra-border,
table-even-column"

 footerClass="table-footer"
 cellpadding="1" border="1" width="40%">
...
</h:panelGrid>

There are two things to note in this example. First, the headerClass has two
classes—page-header and extra-border. Both will be applied to the header facet.
In addition, the columnClasses property has classes specified for four rows. The
first column has an extra style applied to it, so it will display with both styles
combined. The other three columns use a different style, and the second-to-last
one has an extra style applied to it as well. If there were more than four columns,
these styles would repeat.

 You can use the rowClasses property just like the columnClasses property,
and you can use them at the same time. This can lead to some interesting style
combinations, which can be a good thing or a bad thing, depending on how your
style classes are set up. (If you’re not careful, you can have conflicts.)

 These simple examples should get you started with HtmlPanelGrid. You can
accomplish complex layouts by nesting several panels, just as you can with HTML
tables. We show more complex examples in part 2. If you need to lay out tabular
data retrieved from a data source, HtmlDataTable is your component, and it’s
covered in chapter 5.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

184 CHAPTER 4
Getting started with the standard components

4.10 Summary

The core promise of JSF is support for UI components—reusable units of code,
like text boxes and data tables, that handle a specific type of interaction with the
user. Like other UI component frameworks, JSF components have properties and
events, and they’re specifically designed to be used inside tools. These tools let you
drag and drop UI components from a palette and customize their properties.

 JSF includes several standard components that are guaranteed to be available
no matter which IDE or implementation you’re using. These components are tai-
lored for displaying HTML output, and they’re backed by an HTML render kit.
Components can also support facets, which are named subordinate elements,
like a header or footer.

 In this chapter, we covered the nonvisual and read-only standard compo-
nents. First, we looked at UIViewRoot, which contains all of the other components
on the page. Next, we examined UIParameter, which is used to pass parameters
to other components. For example, HtmlOutputLink uses it to specify parameters
for a hyperlink.

 We then moved on to the Output family of components: HtmlOutputText,
which displays ordinary text; the <f:verbatim> tag, which encapsulates JSP tags
and template text; HtmlOutputLabel, which provides a label for an input field;
HtmlOutputFormat, which outputs parameterized text; and HtmlOutputLink, which
displays a hyperlink.

 Images in JSF are displayed with the HtmlGraphicImage component, and
application, validation, and conversion messages are the domain of HtmlMessage
and HtmlMessages. Finally, the Panel components group together components as
a single entity. HtmlPanelGroup is generally used to group together components,
and HtmlPanelGrid lays out components in a table, with optional header and
footer facets.

 In the next chapter we look at the other side of the coin—the standard
input controls and JSF's data grid component, HtmlDataTable.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using the input and
data table components
This chapter covers
■ Registering event listeners
■ Text fields, listboxes, and combo boxes
■ Buttons and command hyperlinks
■ Data grids
185

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

186 CHAPTER 5
Using the input and data table components

Collecting user input is essential for most applications, and JSF’s standard compo-
nent set has the basic components you need for building capable data-entry screens.
These controls cover the same feature set as standard HTML forms, so their func-
tionality should be familiar to you. In this chapter, we examine the remaining com-
ponents, which focus on collecting user input rather than displaying it. We also
cover the HtmlDataTable component, which allows you to edit data sets or display
them in a tabular manner.

 As we saw in chapters 1 and 2, input controls generate events—primarily
value-change and action events—that can be consumed by event listeners (usually
located in backing beans). In this chapter, we’ll focus on each component’s prop-
erties and basic use, and tell you which events they support. In part 2 you’ll see
more examples of how to integrate event listeners with the user interface (UI), and
in part 3 we’ll discuss how to write your own event listeners.

 Input controls also support validators, which check the user’s input for cor-
rectness. Validation is covered in chapter 6. And remember that any text entered
into an input control that has a value property with a value-binding expression
will automatically update the referenced bean (for more on value-binding expres-
sions, see chapter 2), as long as the input has been validated.

 This chapter builds on some of the concepts introduced in the previous chap-
ter. If you haven’t already, you should read the first few sections of chapter 4 first.

 Before we study each component, let’s first take a closer look at events and
event listeners.

5.1 Registering event listeners

The two most important events for everyday JSF development are value-change
events and action events. These events are fired by most of the components in
this chapter; input controls generate value-change events when their value
changes, and action source components generate action events when the user
executes them (usually by clicking on them).

 Event listeners respond to events, and are written in Java code, either as a
backing bean method or as a separate class. Using a backing bean method is
more common (and quicker), but implementing a separate interface is useful
when a listener needs to be reused in many different contexts.

 You can register event listeners either in JSP or in Java code. In this section, we
show JSP examples; see part 3 for examples in Java.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Registering event listeners 187

5.1.1 Declaring value-change listeners

Any component that collects user input, such as HmtlInputText or HtmlSelect-
ManyCheckbox, generates a value-change event. If you need to execute a listener
when the event is generated, you can register a value-change listener method in a
backing bean, like so:

<h:inputText value="#{editUserForm.name}"
 valueChangeListener="#{editUserForm.nameChanged}"/>

This declares an HtmlInputText component associated with the editUserForm.name
property. The userBean.nameChanged method will be called whenever the value of
the control changes.

 If someone has written a value-change listener class instead of a backing bean
method, you can register that instead:

<h:selectManyCheckbox value="#{preferences.favoriteColors}">
 <f:selectItems value="#{preferences.colors}"/>
 <f:valueChangeListener type="myapp.ColorChangeListener"/>
</h:selectManyCheckbox>

This declares an HtmlSelectManyCheckbox associated with the preferences.favor-
iteColors property. The user will see all of the items returned by preferences.
colors, displayed as a set of checkboxes. Whenever they select a different set of
checkboxes, the value-change listener ColorChangeListener will be executed.

 You can register more than one value-change listener class, and you can com-
bine them with a single value-change listener method:

<h:selectManyCheckbox value="#{preferences.favoriteColors}"
 valueChangeListener="#{preferences.colorsChanged}">
 <f:selectItems value="#{preferences.colors}"/>
 <f:valueChangeListener type="myapp.ColorChangeListener"/>
 <f:valueChangeListener type="myapp.AnyValueChangeListener "/>
</h:selectManyCheckbox>

In this example, all three listeners will be called (in the order they were added)
whenever the value of the component changes.

5.1.2 Declaring action listeners

Components in the Command family (HtmlCommandButton and HtmlCommandLink)
generate action events. If you need to perform an operation when a user clicks on
one of these controls (or any third-party action source components), you can reg-
ister an action listener method in a backing bean, much like a value-change lis-
tener method:
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

188 CHAPTER 5
Using the input and data table components

<h:commandButton value="Update"
 actionListener="#{editPartForm.updatePrice}"/>

This declares an HtmlCommandButton component with the label “Update”. When-
ever a user clicks on this button, it will execute the backing bean method edit-
PartForm.updatePrice and redisplay the current view.

 As with value-change listeners, you can register individual action listener
classes:

<h:commandLink>
 <h:outputText value="Next >>"/>
 <f:actionListener type="myapp.NextPageListener"/>
 <f:actionListener type="myapp.NavigationListener"/>
</h:commandLink>

This declares an HtmlCommandLink component with the text “Next >>”. When a
user clicks on this link, both NextPageListener and NavigationListener will be
called. You can register zero or more action listener classes but only one action
listener method.

 As we’ve mentioned before, you can control navigation by registering an
action method instead of an action listener method:

<h:commandButton value="Next >>" action="#{wizard.nextPage}"/>

In this example, when the user clicks on the button, the action method wizard.
nextPage is executed, and the logical outcome of that action is used to decide
what page to load next. Remember, you can also hardcode the outcome like so:

<h:commandButton value="Next >>" action="next"/>

This example doesn’t execute an action listener per se, but the outcome "next" is
used by the navigation handler to select the next page (see chapter 3 for more
information on navigation).

 If you have a lot of processing to perform, you can combine action listener meth-
ods, action listener classes, and action methods (or hardcoded action properties):

<h:commandLink action="#{wizard.nextPage}"
 actionListener="#{wizard.nextPage}"
 <h:outputText value="Next >>"/>
 <f:actionListener type="myapp.NextPageListener"/>
 <f:actionListener type="myapp.NavigationListener"/>
</h:commandLink>

When the user clicks on this link, four action listeners will be executed: an action
method, an action listener method, and two action listener classes. Registering

this many listeners on a regular basis might not be particularly speedy, but it’s

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Common component properties 189

powerful to be able to associate so much functionality to a specific type of event
(an action event, in this case) when necessary.

 Now that you understand what events these controls generate, and how to
handle them, let’s examine each of these components in detail.

5.2 Common component properties

All of the UI components covered in this chapter share a set of common properties,
which are listed in table 5.1. Because these components interact with the user, they
have a few more properties in common than those in the previous chapter. When
we discuss each component, we’ll tell you which of these properties it supports.
We’ll also describe a property again if a component uses it in a special manner.

Table 5.1 Common properties for UI components discussed in this chapter.

Property Type
Default
Value

Required? Description

id String None Yes Component identifier.

value Object None Yes The component’s current local value.
Can be literal text or a value-binding
expression.

rendered boolean true No Controls whether or not the component
is visible.

converter Converter instance
(value-binding
expression or con-
verter identifier)

None No Sets the converter used to convert the
value to and from a string for display.

validator String None No A method-binding expression for a back-
ing bean method that will be called to
validate this component’s value.

immediate boolean false No Determines whether or not the
component’s input should be converted
and validated immediately (during the
Apply Request Values phase of the
Request Processing Lifecycle instead of
the Process Validations phase).

required boolean false No Controls whether or not this component
requires a value.

styleClass String None No Name of CSS style class; rendered as
an HTML class attribute. Multiple
classes can be specified with a space in

between them.

continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

190 CHAPTER 5
Using the input and data table components

5.3 Handling forms with HtmlForm

HtmlForm has the same purpose in JSF as the <form> element has in HTML—it has
the ability to send all data contained by its child controls back to the server. In
order for data to be sent back to the server, an HtmlForm must have at least one
child component that can be used to post the form data, like an HtmlCommand-
Button or HtmlCommandLink, which we cover later in this chapter.

 Any time the server needs to process user input, or simply keep track of the
state of input controls, those controls must be nested within an HtmlForm.
Because of this requirement, sometimes you won’t find HtmlForm in a component
palette inside of an IDE; tools will typically add it to your JSP automatically when
you drop an input component onto a page. JSF does, however, support multiple
HtmlForm components on the same page. If a page is simply displaying read-only
data or hyperlinks, this component is not required.

 HtmlForm is summarized in table 5.2.

valueChange-
Listener

String None No A method-binding expression for a
value-change listener method that will
be called when this component’s value
changes.

binding String None No A value-binding expression that associ-
ates this component with a backing
bean property. Must be associated with
a property that is the same type as the
component (i.e. HtmlInputText) or
its superclass.a

a Technically, this is a JSP component tag attribute, and not an actual UI component property. In other words,

you can not set this property in Java code.

Table 5.1 Common properties for UI components discussed in this chapter. (continued)

Property Type
Default
Value

Required? Description

Table 5.2 HtmlForm summary

Component HtmlForm

Family javax.faces.Form

Display
Behavior

Displays an HTML <form> element with the method attribute set to “post”. All input
controls should be nested inside this form. You can have multiple HtmlForm compo-
nents on the same page.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling forms with HtmlForm 191

As the table shows, HtmlForm doesn’t have a value—it’s basically a container for
other controls. It’s also pretty simple to use, as shown in table 5.3.

Possible IDE
Display Names

Form

Tag Library HTML

JSP Tag <h:form>

Pass-Through
Properties

HTML attributes for the <form> element (except for method, which is always “post”)

Common
Properties

id, rendered, styleClass, binding (see table 5.1)

Java-Only
Property

Type
Default
Value

Required Description

submitted boolean false No True if the form has been submitted;
false otherwise.

Table 5.3 HtmlForm example: Basic use

HTML

<form id="_id0" method="post"
 action="/jia-standard-components/scratch.jsf"
 enctype="application/x-www-form-urlencoded"
 title="claimForm">

 Enter some text:

 <input type="text" name="_id0:_id3" />
 <input type="submit" name="_id0:_id4"
 value=" Go! " />[nbsp’s?]
 <input type="hidden" name="_id0" value="_id0" />
</form>

Component
Tag

<h:form title="claimForm">
 <h:outputLabel for="inputText">
 <h:outputText value="Enter some text:"/>
 </h:outputLabel>
 <h:inputText/>
 <h:commandButton value="Go!"/>
</h:form>

Browser
Display

Table 5.2 HtmlForm summary (continued)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

192 CHAPTER 5
Using the input and data table components

As you can see, HtmlForm displays a simple HTML <form> element encasing all
child JSF components. The method attribute will always be “post”, and if you don’t
specify the enctype property, the default is always “application/x-www-form-
urlencoded”. The action is always the view identifier for the current page.

 Forms always post back to themselves so that JSF can associate the user’s input
with controls in the current view (this is called postback, and we discussed it
briefly in chapter 2). The title property is simply passed through. In addition to
the <form> element, HtmlForm outputs an additional <input> element. It uses this
field to determine whether or not it has been submitted. (You can check to see if a
form has been submitted in a Java event listener.)

 In the example, all of the child controls are displayed normally—HtmlForm

doesn’t process them at all. This means that you can nest as many UI compo-
nents as you want inside an HtmlForm without adverse results. (If you’re wonder-
ing about the origin of the non-breaking spaces in the output, they’re generated
by HtmlCommandButton.)

NOTE Whenever you use any input controls, they must be embedded within an
HtmlForm. In addition, you must have an action source, like an Html-
CommandButton or HtmlCommandLink, inside the form so that data can
be submitted back to the application.

For more examples of HtmlForm, see part 2. Now, let’s move on to the basic input
controls.

5.4 Handling basic user input

All of the simple user input controls are part of the Input family. These compo-
nents display a value and also allow the user to change it, updating any associated
beans if necessary. The notable exception is HtmlInputHidden, which displays an
HTML <hidden> field and doesn’t interact with the user.

 There are four components in this family: HtmlInputText (for displaying a
basic text box), HtmlInputTextarea (for displaying a memo field), HtmlInputSecret
(for showing a password field), and HtmlInputHidden (for a hidden input field).

NOTE The Input components (except for HtmlInputHidden) are often used
with HtmlOutputLabel to generate an HTML <label> element, which is
important for making your application accessible. See chapter 4 for
more information about HtmlOutputLabel.
In the following sections, we examine these components in more detail.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling basic user input 193

5.4.1 Declaring basic text fields with HtmlInputText

For basic user input needs, HtmlInputText is your component. It maps to a simple
text field—the <input> element with type “text”. The component is summarized
in table 5.4.

Using HtmlInputText is similar to using an ordinary HTML <input> field, as shown
in table 5.5.

As you can see, HtmlInputText generates an <input> element that was rendered

Table 5.4 HtmInputText summary

Component HtmlInputText

Family javax.faces.Input

Display
Behavior

Displays an HTML <input> element with the type attribute set to “text”

Possible IDE
Display
Names

Text Field

Tag Library HTML

JSP Tag <h:inputText>

Pass-Through
Properties

HTML attributes for the <input> element (except for type)

Events Value-change

Common
Properties

id, value, rendered, validator, converter, immediate, required,
styleClass, valueChangeListener, binding (see table 5.1)

Table 5.5 HtmlInputText example: Basic use

HTML
<input type="text" name="_id1:_id3" value="DeathMarch"
 accesskey="T" maxlength="40" size="30" tabindex="0" />

Component
Tag

<h:inputText value="#{project.name}" size="30" maxlength="40"
 accesskey="T" tabindex="0"/>

Browser
Display
with type “text”. The size, maxlength, accesskey, and tabindex properties are
passed through. In this example, the component is associated via a value-binding

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

194 CHAPTER 5
Using the input and data table components

expression with the name property of the project model object. The value of that
property is currently “DeathMarch”, but if the user enters something else, it will
be updated with the new input.

 If you want to disable an input control, you can use the standard HTML dis-
abled attribute. HtmlInputText will be one of the most common input controls
you’ll use, but it’s restricted to a single line. If you’d like a multiline input field,
use Html-InputTextarea.

5.4.2 Using HtmlInputTextarea for memo fields

HtmlInputTextarea displays a <textarea> element; it’s useful for larger memo-
style input fields. The component is summarized in table 5.6.

Just like their HTML counterparts, using HtmlInputTextarea is similar to using
HtmlInputText. Table 5.7 shows an example.

 In this example, the value property references a bean property, so any
changes made will be automatically synchronized with the bean (assuming every-
thing vali-dates successfully). As shown, the bean’s description property already

Table 5.6 HtmlInputTextarea summary

Component HtmlInputTextarea

Family javax.faces.Input

Display
Behavior

Displays an HTML <textarea> element

Possible IDE
Display
Names

Multi-Line Text Area

Tag Library HTML

JSP Tag <h:inputTextarea>

Pass-Through
Properties

HTML attributes for the <textarea> element

Events Value-change

Common
Properties

id, value, rendered, validator, converter, immediate, required,
styleClass, valueChangeListener, binding (see table 5.1)
has a value. We are also using several pass-through attributes—accesskey, rows,
tabindex, and onmouseout.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling basic user input 195

Don’t let onchange fool you—it’s just a pass-through attribute that happens to ref-
erence JavaScript. The JavaScript changes the value of another component on
this page whenever the user moves the mouse out of the text area. This isn’t a ter-
ribly useful thing to do, but it should give you an idea of how you can use pass-
through attributes.

 Both HtmlInputText and HtmlInputTextarea show all of their input; if you
want to hide what the user types from the person looking over their shoulder, use
HtmlInputSecret.

5.4.3 Displaying password fields with HtmlInputSecret

The HtmlInputSecret component is used to display a password input field, and
maps to an <input> element of type “password”. In practice, you use it a lot like
HtmlInputText; the only difference is that it has a redisplay property and, of
course, the component tag is different. Take a look at the summary in table 5.8.

Table 5.7 HtmlInputTextarea example: Using a value-binding expression and a JavaScript event

HTML

<textarea name="myForm:_id4" accesskey="A"
 onchange="form.area23.value = this.value" rows="5"
 tabindex="1">
Keeps track of the number of defects, the amount of feature creep,
and the rate of progress for a given project.
</textarea>

Component
Tag

<h:inputTextarea value="#{project.description}" rows="5"
 accesskey="A" tabindex="1"
 onmouseout="document.forms.
 myForm['myForm:area23'].value =this.value"

Browser
Display

Table 5.8 HtmlInputSecret summary

Component HtmlInputSecret

Family javax.faces.Input

Display
Behavior

Displays an HTML <input> element with the type attribute set to “password”
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

196 CHAPTER 5
Using the input and data table components

Table 5.9 shows how to use HtmlInputSecret.

The size, value, maxlength, and tabindex properties are passed through. The
value attribute will always be empty because the redisplay property is false by
default. This ensures that the field is always cleared, and is generally more secure
because it makes it impossible to view the password in the browser. Any text the
user types will be displayed using asterisks or some other character (this is up to
the browser).

If you want the text to be redisplayed, you can set redisplay to true. Remem-

Possible IDE
Display
Names

Secret Field

Tag Library HTML

JSP Tag <h:inputSecret>

Pass-Through
Properties

HTML attributes for the <input> element (except for type)

Events Value-change

Common
Properties

id, value, rendered, validator, converter, immediate, required,
styleClass, valueChangeListener, binding (see table 5.1)

Property Type
Default
Value

Required? Description

redisplay boolean false No Controls whether or not the value is
redisplayed if the page is redisplayed.
Because this is a potential security risk, the
property is false by default.

Table 5.9 HtmlInputSecret example: Basic use

HTML
<input type="password" name="myForm:_id4" value="" maxlength="10"
 size="10" tabindex="2" />

Component
Tag

<h:inputSecret value="#{user.password}" size="10" maxlength="10"
 tabindex="2"/>

Browser
Display

Table 5.8 HtmlInputSecret summary (continued)
ber, though, that if someone views the HTML source for the page, they’ll be able

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling basic user input 197

to see the real password. Also, the password will still be transferred in clear text
unless you’re using SSL or some other form of encryption. This is why redisplay is
set to false by default—normally it’s not the safest thing to do.

5.4.4 Declaring hidden fields with HtmlInputHidden

Unlike the other components in this section, HtmlInputHidden doesn’t actually
collect any input from the user; it’s used for fields that are invisible to the user.
Hidden fields are often used to pass variables around from page to page (nor-
mally to avoid saving state on the server), and this component is useful for inte-
grating JSF components into application that already use hidden fields. However,
if you’re building a new JSF application, you generally shouldn’t need to use
them. (If you really do need to save the state of your beans on the client, some JSF
implementations, like MyFaces [MyFaces], have special components that can do
this for you.)

 HtmlInputHidden maps to an HTML <input> element of type “hidden”. It’s
summarized in table 5.10.

Table 5.10 HtmlInputHidden summary

Component HtmlInputHidden

Family javax.faces.Input

Display
Behavior

Displays an HTML <input> element with the type attribute set to “hidden”

Possible
IDE Display

Names
Hidden Field

Tag Library HTML

JSP Tag <h:inputHidden>

Pass-Through
Properties

None

Events Value-change

Common
Properties

id, value, rendered, validator, converter, immediate, required,
valueChangeListener, binding (see table 5.1)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

198 CHAPTER 5
Using the input and data table components

One thing you’ll notice is that because HtmlInputHidden doesn’t actually display
anything, there are no HTML pass-through attributes, and no styleClass prop-
erty. An example of using the component is shown in table 5.11.

No surprises here—an <input> element of type “hidden” is displayed, the id
attribute is translated to the name attribute as normal, and the value attribute is
the same. Often, you’ll use this component with a value-binding expression
instead of a hardcoded value.

TIP If you have existing JavaScript code that needs to communicate with
back-end application code, the HtmlInputHidden component is a good
option if the data in question isn’t already included in visible fields.
(Don’t forget to assign an identifier first; the JavaScript will need to ac-
cess the component via its client identifier.)

That’s it for the basic input controls. It’s time to move on to UI components that
represent boolean values and item lists.

5.5 Using HtmlSelectBooleanCheckbox
for checkboxes

As its name implies, HtmlSelectBooleanCheckbox represents a single yes/no, or
boolean, value. It is displayed as an HTML <input> element of type “checkbox”.
The UI component is summarized in table 5.12.

Table 5.11 HtmlInputHidden example: Basic use

HTML
<input id="myForm:hiddenField" type="hidden"
 name="myForm:hiddenField" value="hide me!" />

Component
Tag

<h:inputHidden id="hiddenField" value="hide me!"/>

Browser
Display

N/A

Table 5.12 HtmlSelectBooleanCheckbox summary

Component HtmlSelectBooleanCheckbox

Family javax.faces.SelectBoolean
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Defining item lists 199

Using HtmlSelectBooleanCheckbox is straightforward, as shown in table 5.13.

As the table shows, this HtmlSelectBooleanCheckbox is associated with the user.
registered property. In this example, that property is false, so the browser shows
an empty checkbox. The title and tabindex attributes are simply passed through.

 This component is great for single checkboxes on a form, but if you want to
associate multiple checkboxes with a single property, you need to use an HtmlSe-
lectManyBoolean component, which is populated with an item list.

5.6 Defining item lists

User interfaces often allow a user to select one or more items from a set of possi-

Display
Behavior

Displays an HTML <input> element with the type attribute set to “checkbox”

Possible IDE
Display
Names

Check Box, Checkbox

Tag Library HTML

JSP Tag <h:selectBooleanCheckbox>

Pass-Through
Properties

HTML attributes for the <input> element (except for type)

Events Value-change

Common
Properties

id, value, rendered, validator, converter, immediate, required,
styleClass, valueChangeListener, binding (see table 5.1)

Table 5.13 HtmlSelectBooleanCheckbox example: Use with a value-binding expression that
evaluates to false

HTML
<input type="checkbox" name="myForm:_id1" tabindex="0"
 title="Registered?" />

Component
Tag

<h:selectBooleanCheckbox value="#{user.registered}"
 title="Registered?" tabindex="0"/>

Browser
Display

Table 5.12 HtmlSelectBooleanCheckbox summary (continued)
ble choices. In JSF, a selection item represents a single choice, and has a value, a

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

200 CHAPTER 5
Using the input and data table components

description, and a label. Components in the SelectMany and SelectOne families,
like HtmlSelectManyCheckbox and HtmlSelectOneListbox, display lists of items.

 Items can be organized into item groups, so a list of items may include a group
of items as well. For example, consider this list:

■ Cats
■ Dogs
■ Lizards

❏ Chameleons
❏ Geckos

Here, the first two lines, “Cats” and “Dogs,” are items. The third line is an item
group called “Lizards” with two items: “Chameleons” and Geckos.”

 When you’re writing event listener code, items are represented by the
javax.faces.model.SelectItem JSF model object, and item groups are repre-
sented by a subclass called javax.faces.model.SelectItemGroup. (For more infor-
mation on these objects from the back-end perspective, see part 3.) On the front
end, the UISelectItem component represents a single item or item group, and
the UISelectItems component represents a collection of items or item groups.
You use these two components to configure SelectMany or SelectOne compo-
nents that handle lists of items. (Third-party components may use them as well.)

 To make this clearer, we’ll take a closer look at UISelectItem and UISelectMany,
and then move on to the components that use them.

5.6.1 Using UISelectItem for single items

A UISelectItem component represents a single choice. Typically, several UISelect-
Item instances are displayed as checkboxes, radio buttons, or items in a listbox
or drop-down list. The control doesn’t display itself—it leaves display to its par-
ent component.

 Because UISelectItem components are used to display items in a list, they have
itemLabel and itemDescription properties. They also have an itemValue prop-
erty, which is typically associated directly with a bean property. Whenever users
select a particular UISelectItem component, they are really selecting the item-
Value property. This component is summarized in table 5.14.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Defining item lists 201

There are a few things to note from the table. First, because this component isn’t

Table 5.14 UISelectItem summary

Component UISelectItem

Family javax.faces.SelectItem

Display Behavior
None. Configures parent component with a single item. (Parent component usually
provides a list of items for selection.)

Possible IDE
Display Names

N/A

Tag Library Core

JSP Tag <f:selectItem>

Pass-Through
Properties

None

Common
Properties

id, binding (see table 5.1)

Property Type
Default
Value

Required? Description

value SelectItem None No The component’s current local value.
Must be a SelectItem object (or a
value-binding expression for a
SelectItem object). If this property
is set, itemDescription,
itemLabel, and itemValue are not
used. This value will not be updated.

item-
Description

String None No The description of the item—usually
longer than the itemLabel. Not
displayed in any of the standard
renderers.

itemLabel String None No The short description, or “name” of the
item.

itemValue Object None No The value of the item; often an object
or database table row identifier.

itemDisabled boolean false No Indicates whether or not this item is
disabled.
displayed, it doesn’t have any HTML pass-through properties or the styleClass

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

202 CHAPTER 5
Using the input and data table components

property. Another interesting fact is that you can either use it to specify the item-
Description, itemLabel, and itemValue properties or a value-binding expression.
Hardcoded values are set like this:

<h:foobar>
 <f:selectItem itemValue="0" itemLabel="cats"
 itemDescription="Description not displayed"/>
 <f:selectItem itemValue="1" itemLabel="dogs"/>
 <f:selectItem itemValue="2" itemLabel="birds"/>
 <f:selectItem itemValue="3" itemLabel="hamsters"/>
 <f:selectItem itemValue="4" itemLabel="lizards"/>
 <f:selectItem itemValue="5" itemLabel="snakes"/>
 <f:selectItem itemValue="6" itemLabel="koala bears" />
</h:foobar>

Here, we’ve declared a fictional foobar component that presumably displays a list
of items. Remember, UISelectItem is useless unless it’s nested within a compo-
nent that can make use of it. This example configures it with seven UISelectItem
instances. Note that the first item has an itemDescription property specified.
Currently, the standard components don’t make use of this property.

 If we had an item bean stored under the key selectHamsters, we could use it
like this:

<f:selectItem value="#{selectHamsters}"/>

Assuming that selectHamsters is an item bean with the same value as the “ham-
sters” item in the previous example, this would have the same effect as hardcod-
ing the properties.

 To specify a value-binding expression but use default values in case the bean
can’t be found, you can use the following:

<f:selectItem value="#{selectBirds}" itemValue="2"
 itemLabel="birds"/>

In this case, if no bean called selectBirds can be found in any scope, the hard-
coded values—an itemValue of 2 and an itemLabel of “birds”—will be used instead.
Most of the time, UISelectItem represents a single list item. However, if you use a
value-binding expression, it can also reference an item group. The usage is the
same—the underlying model object is just different. In the previous example,
that might mean that the "#{selectBirds}" value-binding expression would rep-
resent a Birds submenu with five different types of birds. Depending on the type
of the parent component, this could be displayed as a nested menu or options list.
You’ll some examples of how this works later in this chapter.
 You can also mix hardcoded values with a value-binding expression:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Defining item lists 203

<f:selectItem itemValue="0" itemLabel="cats"/>
<f:selectItem itemValue="1" itemLabel="dogs"
 itemDisabled="#{user.numberOfVisits < 5}"/>
<f:selectItem value="#{selectBirds}" itemValue="2"
 itemLabel="birds"/>
<f:selectItem value="#{selectHamsters}"/>

This will result in a combined list, and the user will never know that the items
came from different sources. Note that the itemDisabled property is set to a
value-binding expression; it will be true if the user has visited fewer than five
times. Remember, you can use value binding for any UI component property.

 UISelectItem is only useful for single items or item groups, so if you need
to display a collection of items (or item groups) from a bean, you should use
UISelectItems instead, which was designed specifically for that purpose. You
can mix UISelectItem and UISelectItems components together:

<f:selectItem itemValue="0" itemLabel="cats"/>
<f:selectItem itemValue="1" itemLabel="dogs"
 itemDisabled="#{user.numberOfVisits < 5}"/>
<f:selectItem value="#{selectBirds}" itemValue="2"
 itemLabel="birds"/>
<f:selectItems value="#{selectAnimals}"/>

In this example, the last component is a UISelectItems instead of a UISelectItem
component. This UISelectItems component represents a collection of different
items. The result will be just like the previous example—they will all be combined
into the same list. We cover UISelectItems in the next section.

 You use UISelectItem much the same way regardless of which parent compo-
nent you’re using. (In other words, the examples we just gave will work with all of
the components in the SelectMany and SelectOne families.) You can see more
examples of UISelectItem in the sections on those families—5.6 and 5.7, respec-
tively—as well as in part 2 of this book.

5.6.2 Using UISelectItems for multiple items

Often when you’re using a control like a drop-down listbox or a group of check-
boxes, you need to associate the contents of the list with a set of dynamic values.
These values may come from a data store or back-end business logic. The most
common example is populating a listbox from a lookup, or reference data table.
UISelectItems is designed to add these dynamic values to a parent control, like a
combo box or listbox—it has no rendering behavior of its own. It works almost
exactly the same as UISelectItem, except it can reference either an individual

item (or item group) or a collection of items (or item groups).

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

204 CHAPTER 5
Using the input and data table components

 You can use UISelectItems to configure the list of items for components in
the SelectMany and SelectOne families (covered in the next two sections). In
addition, nonstandard components can use UISelectItems as well. UISelectItems
is summarized in table 5.15.

Because UISelectItems must be associated with a bean, it doesn’t have any prop-
erties for specifying the item’s value, so it can’t be hardcoded. You have to use it
with a value-binding expression:

<h:foobar>
 <f:selectItems value="#{selectItems}"/>
</h:foobar>

Table 5.15 UISelectItems summary

Component UISelectItems

Family javax.faces.SelectItems

Display Behavior
None. Configures parent component with one or more items. (Parent component
usually provides a list of items for selection.)

Possible IDE
Display Names

N/A

Tag Library Core

JSP Tag <f:selectItems>

Pass-Through
Properties

None

Common
Properties

id, binding (see table 5.1)

Property Type
Default
Value

Required? Description

value A single
SelectItem
instance, an
array or
Collection of
SelectItem
instances, or a
Map

None No The component’s current local value. Usu-
ally specified as a value-binding expression
that points to a property of the correct
type. If the referenced object is a Map,
SelectItem instances will automatically
be created, using the Map’s keys for labels
and values as SelectItem values. This
value will not be updated.
As you can see, our UISelectItems component is nested within a foobar compo-
nent. Because the purpose of UISelectItems is to configure another component’s

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling multiple-item selections 205

list, it must always be nested within another component that displays a list of
choices, such as an HtmlSelectOneRadio component.

 In this example, we reference a bean stored under the key selectItems, which
is a list that has both items and item groups.

 If you need to hardcode some values, you can mix and match UISelectItem
and UISelectItems:

<f:selectItem itemValue="0" itemLabel="cats"/>
<f:selectItem itemValue="1" itemLabel="dogs"/>
<f:selectItem value="#{selectBirds}" itemValue="2"
 itemLabel="asdasd"/>
<f:selectItems value="#{selectAnimals}"/>

You can also combine multiple UISelectItems instances:

<f:selectItems value="#{selectAnimals}"/>
<f:selectItems value="#{selectMoreAnimals}"/>

You use UISelectItems pretty much the same way regardless of which parent
component you’re using, so these examples will work with any component in
the SelectMany and SelectOne families, as well as other components that use
UISelectItems. The following sections have additional examples of UISelectItems,
as does the case study in part 2.

5.7 Handling multiple-item selections

JSF has several standard components that represent the ability to select many dif-
ferent items from a list. These components are in the SelectMany family, and are
rendered as listboxes or checkbox groups. The items within the list are config-
ured with UISelectItem components and/or UISelectItems components (covered
in the previous sections). The value of these components is usually associated
with a single bean property that represents a collection of possible choices.

 There are three standard components in the SelectMany family: HtmlSelect-
ManyCheckbox (for displaying a group of checkboxes), HtmlSelectManyListbox (for
displaying a multiselect listbox), and HtmlSelectManyMenu (for selecting a single
item from a list but displaying only one item at a time). We cover these compo-
nents in the following sections.

5.7.1 Using HtmlSelectManyCheckbox for checkbox groups
HtmlSelectManyCheckbox displays all of the child items as checkboxes. It maps to
an HTML <table> element with several <input> elements of type “checkbox”. It’s

similar to checkbox group components in other UI frameworks. Table 5.16 sum-
marizes the component.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

206 CHAPTER 5
Using the input and data table components

Table 5.16 HtmlSelectManyCheckbox summary

Component HtmlSelectManyCheckbox

Family javax.faces.SelectMany

Display
Behavior

Displays all of its items (configured by child UISelectItem or UISelectItems
components) as <input> elements of type “checkbox” with the item label enclosed
inside a <label> element. The checkboxes are laid out according to the value of the
layout property using a <table> element. If one of the items is a group, all of the
items in that group are displayed inside another table.

Possible IDE
Display Names

Check Box Group

Tag Library HTML

JSP Tag <h:selectManyCheckbox>

Pass-Through
Properties

HTML attributes for the <input> element (except for type)

Events Value-change

Common
Properties

id, rendered, validator, converter, immediate,
styleClass, valueChangeListener, binding (see table 5.1)

Property Type
Default
Value

Required? Description

value String None No The component’s current local value.
Must be a value-binding expression
that references an array of objects or
primitives, or a List of Strings.

layout String “line-
Direction”

No Specifies how to display the
checkboxes. Possible values are
“pageDirection”, which displays the
checkboxes vertically, or “lineDirection”,
which displays them horizontally.

enabledClass String None No Name of CSS style class to use for the
label of enabled items.

disabled-
Class

String None No Name of CSS style class to use for the
label of disabled items.

Java-Only
Property

Type
Default
Value

Description

selected- Object[] None No An array of the currently selected item

Values values (this is a type-safe alias for the

value property).

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling multiple-item selections 207

Note that this component has properties for styling individual items: enabled-
Class for items that are enabled, and disabledClass for items that are not
enabled. Table 5.17 shows an example of using HtmlSelectManyCheckbox.

As you can see, HtmlSelectManyCheckbox outputs quite a bit of HTML for you. All
of the items are enclosed in a <table> element with only one row (because the
layout property defaults to “lineDirection”). For each child UISelectItem compo-
nent, the itemLabel property is rendered as a <label> element and the itemValue

Table 5.17 HtmlSelectManyCheckbox example: Used with several UISelectItem components
and the disabledClass property.

HTML

<table>
 <tr>
 <td>
 <label>
 <input name="_id1:_id2" value="0" type="checkbox"
 accesskey="C"> cats
 </input>
 </label>
 </td>
 ...
 <td>
 <label class="disabled">
 <input name="_id1:_id2" value="6" type="checkbox"
 disabled="disabled"
 accesskey="C"> koala bears</input>
 </label>
 </td>
 </tr>
</table>

Component
Tag

<h:selectManyCheckbox accesskey="C" required="true"
 disabledClass="disabled">
 <f:selectItem itemValue="0" itemLabel="cats"
 itemDescription="Description not displayed"/>
 <f:selectItem itemValue="1" itemLabel="dogs"/>
 <f:selectItem itemValue="2" itemLabel="birds"/>
 <f:selectItem itemValue="3" itemLabel="hamsters"/>
 <f:selectItem itemValue="4" itemLabel="lizards"/>
 <f:selectItem itemValue="5" itemLabel="snakes"/>
 <f:selectItem itemValue="6" itemLabel="koala bears"
 itemDisabled="#{user.numberOfVisits > 20}"/>
</h:selectManyCheckbox>

Browser
Display
property is used as the value of an <input> element of type “checkbox”.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

208 CHAPTER 5
Using the input and data table components

 The itemDescription of the first UISelectItem is not displayed at all (which is
always the case with HtmlSelectManyCheckbox). The final item is disabled because
the value-binding expression "#{user.numberOfVisits > 20}" evaluated to true.
Also note that each item has the same client identifier; this is the client identifier
of the HtmlSelectManyCheckbox, because it collects all of the selected values.

 If one of the child UISelectItem or UISelectItems components references an
item group, HtmlSelectManyCheckbox will display all items within that group in a
nested table.

 In many cases HtmlSelectManyCheckbox is a reasonable way to allow users to
select multiple choices. However, if you have more than a few choices, you can end
up with an unwieldy number of checkboxes. In such a case, you may want to use a
listbox instead, and HtmlSelectManyListbox is perfectly equipped for that job.

5.7.2 Displaying listboxes with HtmlSelectManyListbox

HtmlSelectManyListbox displays child items within a listbox control; it displays an
HTML <select> element. You can control the size of the list, allowing as many
items to be visible as you see fit. The component is summarized in table 5.18.

Table 5.18 HtmlSelectManyListbox summary

Component HtmlSelectManyListbox

Family javax.faces.SelectMany

Display
Behavior

Displays a <select> element with the multiple attribute set, and the size attribute
set to the value of the size property. All of its items (configured by child UISelectItem
or UISelectItems components) are rendered as <option> elements. Any item
groups are nested inside an <optgroup> element.

Possible IDE
Display Names

Multi-Select Listbox

Tag Library HTML

JSP Tag <h:selectManyListbox>

Pass-Through
Properties

HTML attributes for the <select> element

Events Value-change

Common
Properties

id, rendered, validator, converter, immediate, required, style-
Class, valueChangeListener, binding (see table 5.1)
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling multiple-item selections 209

Let’s take a look at an example of using an HtmlSelectManyListBox with an item
group (see table 5.19).

Property Type
Default
Value

Required? Description

value Object None No The component’s current local value. Must
be a value-binding expression that
references an array of objects.

size integer size of
the list

No Specifies the number of items to be dis-
played. The default is all items.

enabled-
Class

String None No Name of CSS style class to use for the label
of enabled items.

disabled-
Class

String None No Name of CSS style class to use for the label
of disabled items.

Java-Only
Property

Type
Default
Value

Description

selected-
Values

Object[] None No An array of the currently selected item
values (this is a type-safe alias for the
value property).

Table 5.19 HtmlSelectManyListbox example: Used with an item group

HTML

<select name="_id1:_id15" multiple tabindex="5" >
 <option value="0">cats</option>
 <option value="1">dogs</option>
 <optgroup label="lizards">
 <option value="30">chameleons</option>
 <option value="40">geckos</option>
 </optgroup>
</select>

Component
Tag

<h:selectManyListbox tabindex="5">
 <f:selectItem itemValue="0" itemLabel="cats"/>
 <f:selectItem itemValue="1" itemLabel="dogs"/>
 <f:selectItems value="#{animalForm.lizardGroup}"/>
</h:selectManyListbox>

Browser
Display

Table 5.18 HtmlSelectManyListbox summary (continued)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

210 CHAPTER 5
Using the input and data table components

In this example, the child UISelectItems component refers to a backing bean
property for an item group instead of an individual item. This group is rendered
within an <optgroup> element, so it’s indented inside the listbox and has a head-
ing, which is the label for the group.

 In addition, the tabindex property is passed through. Because we didn’t spec-
ify a size, all of the items are shown.

 In cases where using HtmlSelectManyCheckbox is not appropriate, HtmlSelect-
ManyListbox is usually your best bet. However, if you want to ensure that users
only see a single item at a time, use HtmlSelectManyMenu instead.

5.7.3 Using HtmlSelectManyMenu for single-item listboxes

HtmlSelectManyMenu works almost exactly like HtmlSelectManyListbox—it dis-
plays child items in a list box, and is rendered as a <select> element. The only
difference is that the number of items displayed always 1, so the user can only see
a single item at a time. The component is summarized in table 5.20.

Table 5.20 HtmlSelectManyMenu summary

Component HtmlSelectManyMenu

Family javax.faces.SelectMany

Display
Behavior

Displays a <select> element with the size attribute set to 1. All of its items
(configured by child UISelectItem or UISelectItems components) are rendered as
<option> elements of type “checkbox” with the item label enclosed inside a <label>
element. The checkboxes are laid out according to the value of the layout property
using a <table> element.

Possible IDE
Display Names

N/A

Tag Library HTML

JSP Tag <h:selectManyMenu>

Pass-Through
Properties

HTML attributes for the <select> element

Events Value-change

Common
Properties

id, rendered, validator, converter, immediate, required,
styleClass, valueChangeListener, binding (see table 5.1)

continued on next page
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling multiple-item selections 211

As the table shows, this component has all of the same properties and behavior as
HtmlSelectManyListbox, except for the size property. Consequently, the way you
use it is similar, as shown in table 5.21.

Property Type
Default
Value

Required? Description

value Object None No The component’s current local value. Must
be a value-binding expression that references
an array of primitives or objects, or a List.

enabled-
Class

String None No Name of CSS style class to use for the label
of enabled items.

disabled-
Class

String None No Name of CSS style class to use for the label
of disabled items.

Java-Only
Property

Type
Default
Value

Description

selected-
Values

Object[] None No An array of the currently selected item values
(this is a type-safe alias for the value
property).

Table 5.21 HtmlSelectManyMenu example: Basic use

HTML

<select name="_id1:_id19" multiple size="1"
 title="This is an animal menu">
 <option value="0">cats</option>
 <option value="1">dogs</option>
 <option value="2">birds</option>
</select>

Component
Tag

<h:selectManyMenu title="#{bundle.animalListTile}"
 immediate="true"
 styleClass="extra-border">
 <f:selectItem itemValue="0" itemLabel="cats"/>
 <f:selectItem itemValue="1" itemLabel="dogs"/>
 <f:selectItem itemValue="2" itemLabel="birds"/>
</h:selectManyMenu>

Browser
Display
(Mozilla)

Browser
display

Table 5.20 HtmlSelectManyMenu summary (continued)
(Internet
Explorer)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

212 CHAPTER 5
Using the input and data table components

The HtmlSelectManyMenu component was rendered as a <select> element with the
size 1 and the multiple attribute set. Unlike most of the other UI components,
this one looks different depending on the browser. Note that in Internet Explorer
it displays scroll bars, and Mozilla does not. Either way, you can select multiple
items. Note that we didn’t specify a size property—it’s always 1. The title prop-
erty’s value is a value-binding expression that references a string pulled from a
resource bundle. This is how JSF handles internationalization (covered in chap-
ter 6). The actual string pulled from the bundle was the English string “This is
an animal menu”.

 The items referenced by UISelectItem components are displayed as <option>
elements. Because the immediate property is set, JSF will process this component
before it processes other components on the form. And finally, the styleClass
property is simply passed through to an enclosing <select> element.

 Now that we’ve covered components that accept multiple selections, let’s look
at controls that allow only one.

5.8 Handling single-item selections

Whereas the SelectMany family of UI components allows a user to select many
items from a list, the SelectOne family represents the ability to select a single
item from a list. Components in this family are typically rendered as a combo
box or a set of radio buttons. As in the SelectMany family, the list is configured
with child UISelectItem components and/or UISelectItems components (covered
in section 5.6).

 The SelectOne family has three standard components: HtmlSelectOneRadio
(for displaying a group of radio buttons), HtmlSelectOneListbox (for displaying a
listbox), and a HtmlSelectOneMenu (for displaying a drop-down listbox). These
three components are essentially the same as HtmlSelectOneCheckbox, Html-
SelectManyListbox, and HmtlSelectManyMenu, except that they allow the user to
select only one item. We discuss these components in the following sections.

5.8.1 Using HtmlSelectOneRadio for radio button groups

HtmlSelectOneRadio displays all of the child items as a set of radio buttons, so the
user can select only one item at a time. It is rendered as a <table> element with sev-
eral <input> elements of type “radio”. This component is summarized in table 5.22.

 You can see from the table that using HtmlSelectOneRadio is almost identical
to using HtmlSelectManyCheckbox. The only difference, other than the purpose

(selecting a single item as opposed to multiple items), is that HtmlSelectOneRadio

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling single-item selections 213

has a border property, which is passed through to the rendered <table> element.
This lets you add additional formatting to make your radio group more attractive.

 As with HtmlSelectManyCheckbox, item groups are displayed using a nested
table, with the group’s label displayed above the table, as shown in table 5.23.

Table 5.22 HtmlSelectOneRadio summary

Component HtmlSelectOneRadio

Family javax.faces.SelectOne

Display
Behavior

Displays all of its items (configured by child UISelectItem or UISelectItems
components) as <input> elements of type “radio” with the item label enclosed inside a
<label> element. The radio buttons are laid out according to the value of the layout
property using a <table> element. If one of the items is a group, all of the items in that
group are displayed inside another table.

Possible IDE
Display
Names

Radio Button Group

Tag Library HTML

JSP Tag <h:selectOneRadio>

Pass-Through
Properties

HTML attributes for the <input> element (except for type) and border attribute (the
number in pixels of the border, just like the <table> element)

Events Value-change

Common
Properties

id, value, rendered, validator, converter, immediate, required,
styleClass, valueChangeListener, binding (see table 5.1)

Property Type
Default
Value

Required? Description

layout String “line-
Direction”

No Specifies how to display the check-
boxes. Possible values are “pageDi-
rection”, which displays the radio
buttons vertically, or “lineDirection”,
which displays them horizontally.

enabled-
Class

String None No Name of CSS style class to use for the
label of enabled items.

disabled-
Class

String None No Name of CSS style class to use for the
label of disabled items.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

214 CHAPTER 5
Using the input and data table components

Table 5.23 HtmlSelectManyCheckbox example: Used with an item group

HTML

<table>
 <tr>
 <td>
 <label>
 <input name="_id1:radioList" value="0"
 type="radio"> cats
 </input>
 </label>
 </td>
 </tr>
 <tr>
 <td>
 <label>
 <input name="_id1:radioList" value="1"
 type="radio"> dogs
 </input>
 </label>
 </td>
 </tr>
 <tr>
 <td>lizards</td>
 </tr>
 <tr>
 <td>
 <table border="0">
 <tr>
 <td>
 <label>
 <input name="_id1:radioList" value="30"
 type="radio"> chameleon
 </input>
 </label>
 </td>
 </tr>
 <tr>
 <td>
 <label>
 <input name="_id1:radioList" value="40"
 type="radio"> gecko</input>
 </label>
 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling single-item selections 215

As you can see, the item group is rendered as a nested table. The group’s label is
displayed on the row above this table. In addition, because we specified “pageDi-
rection” for the layout property, all of the radio buttons are in the same column.

 HtmlSelectOneRadio is a convenient way to collect a single item from a list.
However, if you don’t want to display all of the items at once, or if you want to take
up less space, you can use HtmlSelectOneListbox or HtmlSelectOneMenu.

5.8.2 Using single-select listboxes with HtmlSelectOneListbox

HtmlSelectManyListbox displays its child items within a listbox control with a con-
figurable size and is displayed as a <select> element. This is useful for displaying
very large lists—you only have to display a few items at a time. Table 5.24 summa-
rizes this component.

Component
Tag

<h:selectOneRadio id="radioList" layout="pageDirection">
 <f:selectItem itemValue="0" itemLabel="cats"/>
 <f:selectItem itemValue="1" itemLabel="dogs"/>
 <f:selectItem value="#{animalForm.lizardGroup}"/>
</h:selectOneRadio>

Browser
Display

Table 5.23 HtmlSelectManyCheckbox example: Used with an item group (continued)

Table 5.24 HtmlSelectOneListbox summary

Component HtmlSelectOneListbox

Family javax.faces.SelectOne

Display
Behavior

Displays a <select> element with the size attribute set to the value of the size
property. All of its items (configured by child UISelectItem or UISelectItems
components) are rendered as <option> elements. Any item groups are nested inside
an <optgroup> element.

Possible IDE
Display Names

Listbox

Tag Library HTML
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

216 CHAPTER 5
Using the input and data table components

As the table shows, this component is virtually identical to HtmlSelectManyList-
box, except that a user can select only one item. An example is shown in table 5.25.

The HtmlSelectOneListbox component is rendered as a <select> element.
Because the size attribute is set to 2, only two items are displayed at once. The

JSP Tag <h:SelectOneListbox>

Pass-Through
Properties

HTML attributes for the <select> element

Events Value-change

Common
Properties

id, value, rendered, validator, converter, immediate, required,
styleClass, valueChangeListener, binding (see table 5.1)

Property Type
Default
Value

Required? Description

size integer size of
the list

No Specifies the number of items to be
displayed. The default is all items.

enabled-
Class

String None No Name of CSS style class to use for the
label of enabled items.

disabled-
Class

String None No Name of CSS style class to use for the
label of disabled items.

Table 5.25 HtmlSelectManyListbox example: Used with UISelectItems

HTML

<select name="_id1:_id13" size="2">
 <option value="3">birds</option>
 <option value="4">hamsters</option>
 <option value="99">tree frog</option>
</select>

Component
Tag

<h:selectOneListbox title="Pick an animal"
 value="#{animalForm.favoriteAnimal}"
 size="2">
 <f:selectItems value="#{selectAnimals}"/>
</h:selectOneListbox>

Browser
Display

Table 5.24 HtmlSelectOneListbox summary (continued)
title and tabindex attributes are passed through. The items referenced by the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Handling single-item selections 217

UISelect-Items component are displayed as <option> elements. The only differ-
ence between the output of this component and that of HtmlSelectManyListbox is
that the multiple attribute of the <select> element isn’t set, because HtmlSelect-
OneListbox allows selection of only a single item. The behavior for handling item
groups is almost identical as well.

 HtmlSelectOneListbox is a useful way to collect a single response from a list,
but if you want to be more economical about space in your views, HtmlSelectOne-
Menu may be a better choice.

5.8.3 Declaring combo boxes with HtmlSelectOneMenu

HtmlSelectOneMenu works almost exactly like HtmlSelectOneListbox—it displays
its child items in a listbox using the HTML <select> element. The only difference
is that the number of items displayed is always one, so the result is a combo box
(also called a drop-down listbox). Table 5.26 summarizes this component.

Table 5.26 HtmlSelectOneMenu summary

Component HtmlSelectOneMenu

Family javax.faces.SelectOne

Display
Behavior

Displays a <select> element with the size attribute set to 1. All of its items (config-
ured by child UISelectItem or UISelectItems components) are rendered as
<option> elements. Any item groups are nested inside an <optgroup> element.

Possible IDE
Display Names

Combo Box, Dropdown List

Tag Library HTML

JSP Tag <h:selectOneMenu>

Pass-Through
Properties

HTML attributes for the <select> element

Events Value-change

Common
Properties

id, value, rendered, validator, converter, immediate, required,
styleClass, valueChangeListener, binding (see table 5.1)

continued on next page
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

218 CHAPTER 5
Using the input and data table components

Table 5.27 shows how to use HtmlSelectOneMenu.

The component is rendered as a <select> element with the size attribute set to 1
and the accesskey attribute passed through. The items referenced by the child
UISelectItem components are displayed as <option> elements. The item group is

Property Type
Default
Value

Required? Description

enabled-
Class

String None No Name of CSS style class to use for the
label of enabled items.

disabled-
Class

String None No Name of CSS style class to use for the
label of disabled items.

Table 5.27 HtmlSelectOneMenu example: Used with item groups

HTML

<select name="claimForm:_id26" size="1" accesskey="F">
 <option value="3">birds</option>
 <option value="4">hamsters</option>
 <option value="99">tree frog</option>
 <option value="4">hamsters</option>
 <optgroup label="lizards">
 <option value="30">chameleons</option>
 <option value="40">geckos</option>
 </optgroup>
</select>

Component
Tag

<h:selectOneMenu value="#{user.favoriteAnimal}"
 styleClass="extra-border"
 accesskey="F">
 <f:selectItems value="#{selectAnimals}"/>
 <f:selectItem value="#{selectHamster}"/>
 <f:selectItems value="#{animalForm.lizardGroup}"/>
</h:selectOneMenu>

Browser
Display

Table 5.26 HtmlSelectOneMenu summary (continued)
displayed as an <optgroup> element.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Executing application commands 219

 This concludes our discussion of JSF’s item list support. Next, we’ll examine
action source components—the ones that actually submit the form.

5.9 Executing application commands

So far, all of the components we’ve covered either output data or allow for data
input. None of them actually tell the application what to do. That’s the job of the
Command components—they represent an action initiated by the user. Normally
they are rendered as a button, a hyperlink, or a menu option.

 The other components we’ve covered in this chapter emit value-change events,
so that application code can be notified when their value changes. Command
components emit action events instead, which tell the application that the user
wants to perform an operation. Action events are handled by action listeners, which
are central to controlling how your application behaves, and can be used to control
navigation; see section 5.1 for more information about registering event listeners.

 The two standard Command components are HtmlCommandButton (for display-
ing a button) and HtmlCommandLink (for displaying a hyperlink). Because they per-
form the same operation, their usage is quite similar.

5.9.1 Declaring buttons with HtmlCommandButton

HtmlCommandButton maps directly to the <input> element with a type attribute of
either “submit” or “reset”. If you specify type “reset”, it works in the same way as
the HTML reset button (no server round-trip is made). If you specify type “sub-
mit” (the default), the form data is submitted and an action event is fired. The
HtmlCommandButton component is summarized in table 5.28.

Table 5.28 HtmlCommandButton summary

Component HtmlCommandButton

Family javax.faces.Command

Display
Behavior

Displays an <input> element with the value attribute equal to the value property,
and the type (“submit” or “reset”) passed through (the default is “submit”).

Possible IDE
Display Names

Command Button, Button

Tag Library HTML

JSP Tag <h:commandButton>
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

220 CHAPTER 5
Using the input and data table components

Because the Command components don’t actually collect user input, they don’t
have converter, validator, or required properties. Other than that, the set of
properties is similar to the other input controls. Table 5.29 shows a simple exam-
ple of using HtmlCommandButton.

Pass-Through
Properties

HTML attributes for the <input> element

Events Action

Common
Properties

id, value, rendered, immediate, styleClass, binding (see table 5.1)

Property Type
Default
Value

Required? Description

image String None No Optionally specifies the URL (absolute or
relative) of the image to be displayed for
this button. If this property is set, the
type “image” will be displayed; otherwise
the value will be displayed as the label,
and the type will be controlled by the
type property.

type String “submit” No Specifies the type of button to display.
If the type is “submit” (the default), an
action event will be generated when the
user clicks on the button. If the type is
“reset”, no server round-trip will be
made. If the image property is set, this
property will be ignored.

action-
Listener

String None No A method-binding expression for an
action listener method that will be called
when the user clicks on this button.

Table 5.29 HtmlCommandButton example: Used with a hardcoded action

HTML <input type="submit" name="_id1:_id2" value="Next >>" />

Component
Tag

<h:commandButton value="Next >>" action="next"/>

Browser
Display

Table 5.28 HtmlCommandButton summary (continued)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Executing application commands 221

Here, a single <input> element is rendered. The value property is displayed as
the value attribute, and the text “>>” is escaped automatically as “>>”.
Because no type property is specified, the default (“submit”) is displayed. When a
user clicks this button, the navigation handler executes a navigation rule for the
logical outcome “next”, which was the value of the action property.

NOTE Just as with the HTML <input> element, even though you’re allowed to
specify both the image and type properties at the same time, only the
image property will be used. In other words, you can’t use an image as a
reset button.

If you need to create a Reset button, simply set the type attribute to “reset”, as you
would with a normal HTML button—it will have no effect on the values of input
controls on the server.

 HtmlCommandButton is a great option whenever you need to submit data back to
the server, and buttons are useful in many contexts. However, in some cases, you may
want to use an ordinary HTML hyperlink to execute a command or pass parameters
to the next view, and in those cases, you should use HtmlCommandLink instead.

5.9.2 Creating an action link with HtmlCommandLink

HtmlCommandLink maps to an HTML anchor, or an <a> element. It’s different than
HmtlOutputLink, which outputs arbitrary hyperlinks (covered in chapter 4) because
it always posts back to the server and executes an action event. It can also sup-
port child UIParameter components, which gives you the opportunity to send
parameters to the associated action method or action listener. Table 5.30 summa-
rizes HtmlCommandLink.

Table 5.30 HtmlCommandLink summary

Component HtmlCommandLink

Family javax.faces.Command

Display
Behavior

Displays an <a> element where the onclick event handler has JavaScript that sets a
hidden form variable for the HtmlCommandLink itself and any child UIParameter
components, and then submits the form. (The parent HtmlForm will output the hidden
variable, as well as hidden variables for any nested UIParameter components.) Nested
UIGraphic controls can be used for a background, and UIOutput components can
be used for text.

Possible IDE
Display Names

Command Link, Link Action
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

222 CHAPTER 5
Using the input and data table components

Let’s start with the simple example shown in table 5.31.

This example outputs an <a> element and a hidden field with the same name as
the HtmlCommandLink component’s client identifier. The JavaScript in the onclick
event handler sets the value for the hidden field and then submits the form. The
text of the child HtmlOutputText component is simply displayed (and escaped).
When the user clicks on this link, the myCompany.nextPageListener class is exe-
cuted, and the navigation case for the hardcoded outcome "next" is chosen, result-

Tag Library HTML

JSP Tag <h:commandButton>

Pass-Through
Properties

HTML attributes for the <a> element (with the exception of onclick)

Events Action

Common
Properties

id, value, rendered, immediate, styleClass, binding (see table 5.1)

Property Type
Default
Value

Required? Description

action-
Listener

String None No A method-binding expression for an action
listener method that will be called when
the user clicks on this button.

Table 5.31 HtmlCommandLink example: Used with a hardcoded outcome and an action listener class

HTML

<a href="#" onclick=
 "document.forms['myForm']['myForm:_id5'].value='myForm:_id5';
 document.forms['myForm'].submit(); return false;">
 Next >>

<input type="hidden" name="myForm:_id5" />

Component
Tag

<h:commandLink action="next">
 <h:outputText value="Next >>"/>
 <f:actionListener type="myCompany.nextPageListener "/>
</h:commandLink>

Browser
Display

Table 5.30 HtmlCommandLink summary (continued)
ing in a new page.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data sets with HtmlDataTable 223

 The HTML generated by this renderer is emulating the work done with a sim-
ple button—submit the form, and execute an action event on behalf of the Com-
mand component. In this particular example, this is done by using JavaScript to
set the value of a hidden field to the name of the command and then submitting
the form. All implementations may not do it exactly this way, but the outcome
should be the same—by clicking on a link, the user can submit the form and gen-
erate an action event.

NOTE HtmlCommandLink always uses JavaScript, so be sure that your target
browser can handle it.

HtmlCommandLink also lets you nest UIParameter components, which can are ren-
dered as hidden form fields. Table 5.32 shows an example of this.

 As you can see, the nested UIParameter component is rendered as an <input>
element of type “hidden” by the parent HtmlForm component. In the onclick cli-
ent-side event handler, the value attribute of that hidden field is set based on
UIParemter’s value property defined in JSP.1 In the next view, UI components can
access these parameters using the param implicit variable (see chapter 2 for more
information about implicit variables).

 The styleClass property is rendered as a class property (the “button” CSS
style was defined elsewhere in the page). The title property is simply passed
through. This example also has a nested HtmlGraphicImage—you can nest several
components inside HtmlCommandLink and they’ll be displayed without modification.

 HtmlCommandLink is an essential component for executing commands in an
attractive manner. Often you’ll use it, with several other controls, inside an Html-
DataTable component.

5.10 Displaying data sets with HtmlDataTable

All of the components we’ve covered so far are relatively simple—they output a
string, collect data, allow the user to select an item from a list, or submit a form. If
there’s one complex requisite standard component for any UI framework, it’s a
data grid. For desktop applications, you’ll find several variations on this theme,
regardless of whether you’re developing in Swing, .NET, or Delphi. (The same is

1 You may be wondering why the hidden field’s value is set in the event handler instead of in the field’s

declaration. It’s set in the event handler so that different HtmlCommandLink components on the
same form can have the same parameter but different values.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

224 CHAPTER 5
Using the input and data table components

true for web-based UI frameworks, such as ASP.NET WebForms). In JSF, Html-
DataTable is the standard data grid.

 Technically, HtmlDataTable maps to an HTML <table>, like HtmlPanelGrid. The
key difference is that it’s designed to work with data sets backed by database results
sets, lists, or arrays. As a matter of fact, you can’t use it without a dynamic data
source. (It is, however, possible to use a list configured via the Managed Bean Cre-
ation facility.)

 You can use this component simply to display data in a tabular format, or to
use input controls to edit the data in your data source. You can also scroll through
data sets, displaying a specific number of rows at a time. JSF IDEs provide visual
tools for configuring HtmlDataTable components, as shown in figure 5.1.

 The component is summarized in table 5.33.
 Note that this component has more Java-only properties than most. These

properties allow you to better manipulate the component in event listeners (see
part 3 for more information).

Table 5.32 HtmlCommandLink example: Using nested UIParameter components

HTML

<a id="myForm:inboxLink" href="#" title="Devora's Inbox"
 onclick="document.forms['myForm']['myForm:inboxLink'].value=
 'myForm:inboxLink';
 document.forms['myForm']['showAllColumns'].value=
 'true';
 document.forms['myForm'].submit(); return false;"
 class="button">
 <img src="images/inbox.gif"
 style="border: 0; padding-right: 5px" alt="" />
Devora's Inbox

<input type="hidden" name="myForm:inboxLink" />
<input type="hidden" name="showAllColumns" />

Component
Tag

<h:commandLink id="inboxLink" action="#{mailManager.loadInbox}"
 styleClass="button"
 title="#{user.firstName}'s Inbox">
 <h:graphicImage url="images/inbox.gif"
 style="border: 0; padding-right: 5px"/>
 <h:outputText value="#{user.firstName}'s Inbox"/>
 <f:param name="showAllColumns" value="true"/>
</h:commandLink>

Browser
Display
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data sets with HtmlDataTable 225

Table 5.33 also mentions the fact that columns within an HtmlDataTable are con-
figured using child UIColumn components. Each UIColumn acts as a template for a

Table 5.33 HtmlDataTable summary

Component HtmlDataTable

Family javax.faces.Data

Display
Behavior

Displays an HTML <table>. Columns are specified with child UIColumn components.
If the header facet is specified, displays a <thead> element with the contents of the
header. If any UIColumn components have a header facet, those will be displayed in
the <thead> element as well. For each row, uses the child UIColumn components as
templates for each column. If the first property is specified, starts display with that
row. If the row property is specified, displays that many rows total (starting with
first). If the footer facet is specified (for this component or child UIColumn com-
ponents), displays a <tfoot> element with the contents of the footer(s).

Possible IDE
Display Names

Data Grid, Data Table

Tag Library HTML

JSP Tag <h:dataTable>

Pass-Through
Properties

HTML attributes for <table>

Common
Properties

id, rendered, styleClass, binding (see table 5.1)

Figure 5.1 Oracle’s JDeveloper [Oracle, JDeveloper] lets you visually manipulate the child
components in a table, and also view a table’s structure in a separate pane.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

226 CHAPTER 5
Using the input and data table components

Property Type
Default
Value

Required? Description

first int 0 No First row number in dataset to display.
Change this property to begin displaying a
new set of rows.

rows int 0 No Number of rows to display at a time. If set
to 0 (the default), all rows are displayed.

value Object None The component’s current local value. Must
be a value-binding expression that refer-
ences an array, a List, JDBC
ResultSet, JSTL ResultSet, or any
other type of object. (Other objects are
represented as one row).

var String None No Name of a request-scoped variable under
which the current row’s object will be stored.
Use this value in JSF EL expressions for
child components that refer to the current
row. (For example, if var is “currentUser”,
a child component might use the expres-
sion "#{currentUser.name}".)

headerClass String None No Name of CSS style class for the header
facet.

footerClass String None No Name of CSS style class for the footer
facet.

rowClasses String None No Comma-delimited list of CSS style classes
for the rows. You can specify multiple
styles for a row by separating them with a
space. After each style has been applied,
they repeat. For example, if there are two
style classes (style1 and style2), the
first row will be style1, the second
style2, the third style1, the fourth
style2, so on.

column-
Classes

String None No Comma-delimited list of CSS style classes
for the columns. You can specify multiple
styles for a column by separating them
with a space. After each style has been
applied, they repeat. For example, if there
are two style classes (style1 and
style2), the first column will be
style1, the second style2, the third
style1, the fourth style2, so on.

Table 5.33 HtmlDataTable summary (continued)
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data sets with HtmlDataTable 227

specific column; its contents are repeated for each row that is displayed. This
component also has header and footer facets, and it’s summarized in table 5.34.

Java-Only
Property

rowCount int None No Returns the total number of available rows
(read-only); returns -1 if the total number
is not known.

rowIndex int None No Returns the index of the currently selected
row (-1 if there is no selected row).

rowData Object None No Returns the currently selected row, if avail-
able (read-only).

row-
Available

boolean None No Returns true if rowData is available at
the current rowIndex (read-only).

Facet Description

header Child components displayed as the table’s header.

footer Child components displayed as the table’s footer.

Table 5.34 UIColumn summary

Component UIColumn

Family javax.faces.Column

Display
Behavior

None (used to define a column in HtmlDataTable)

Possible IDE
Display Names

N/A

Tag Library HTML

JSP Tag <h:column>

Pass-Through
Properties

None

Common
Properties

id, rendered, binding (see table 5.1)

continued on next page

Table 5.33 HtmlDataTable summary (continued)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

228 CHAPTER 5
Using the input and data table components

UIColumn only has three properties, and although it can be used in third-party
components, the only standard component that utilizes it is HtmlDataTable.

 HtmlDataTable is the most powerful standard component, so it’s no surprise
that there are a lot of ways you can use it. Let’s start with the simple example
shown in table 5.35.

Facet Description

header Child components displayed as the table’s header.

footer Child components displayed as the table’s footer.

Table 5.35 HtmlDataTable example: Creating a simple read-only table

HTML

<table border="1" cellspacing="2">
 <thead>
 <tr>
 <th scope="col">First Name</th>
 <th scope="col">Last Name</th>
 <th scope="col">Balance</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Devora</td>
 <td>Shapiro</td>
 <td>$32,495.00</td>
 </tr>
 <tr>
 <td>John</td>
 <td>Mann</td>
 <td>$1,200.00</td>
 </tr>
 <tr>
 <td>Joe</td>
 <td>Broke</td>
 <td>$0.00</td>
 </tr>
 <tr>
 <td>MW</td>
 <td>Mann</td>
 <td>$5,050.00</td>
 </tr>
 </tbody>
</table>

Table 5.34 UIColumn summary (continued)
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data sets with HtmlDataTable 229

Here, we have a simple HTML table with First Name, Last Name, and Balance
columns. The data comes from a list that currently has four User objects. In the
HtmlDataTable declaration, child UIColumn components are used to define tem-
plates for each column in the output. So, the header facet of each UIColumn is dis-
played within the table’s header, and the contents of each UIColumn are repeated
for every row in the list.

 HtmlDataTable and its child UIColumn components output the structure of the
table, iterating through the rows in the list. The cellpadding and border proper-
ties of the HtmlDataTable are passed through. However, the var property is used
as the name of a request-scoped variable that can be used by child components—
HtmlOutputText components in this case. This is why the child components can

Component
Tag

 <h:dataTable value="#{userList}" var="user" border="1"
 cellspacing="2">
 <h:column>
 <f:facet name="header">
 <h:outputText value="First Name"/>
 </f:facet>
 <h:outputText value="#{user.firstName}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Last Name"/>
 </f:facet>
 <h:outputText value="#{user.lastName}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Balance"/>
 </f:facet>
 <h:outputText value="#{user.balance}">
 <f:convertNumber type="currency"/>
 </h:outputText>
 </h:column>
</h:dataTable>

Browser
Display

Table 5.35 HtmlDataTable example: Creating a simple read-only table (continued)
reference a bean called user—the HtmlDataTable is making the current row available
under that name. Also, note that we used a converter for the last HtmlOutputText

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

230 CHAPTER 5
Using the input and data table components

component; this allows us to format the user.balance property as a currency (see
chapter 6 for more on converters).

 HtmlDataTable is useful for displaying data sets in a tabular format, but its real
power is the ability to edit those data sets. All you need to do is place input and
Command controls inside the table, and associate the Command controls with
backing bean methods, as shown in table 5.36.

 This example does a lot, so let’s start by comparing it to the previous one.
There are a few major changes:

■ The HtmlDataTable component has several style-related properties for the
header and footer facets, and the even and odd rows. These CSS styles are
defined in a separate stylesheet included on the page, and spruce up the
overall appearance.

■ The HtmlDataTable component’s binding property references userEdit-
Form.userDataTable. This allows userEditForm to access the component on
the server.

■ We’ve added a header and footer facet for the HtmlDataTable. The header
facet has a single HtmlOutputText component. The footer facet has two
HtmlCommandButton components—one simply submits the data (and
doesn’t call any action listeners), and the other resets the form data.

■ We replaced the HtmlOutputText components for the columns in the previ-
ous example with HtmlInputText columns so that the user can edit bean
properties.

■ We added a third Registered column that simply displays the value of the
user.registered property.

■ We added a fourth column with an HtmlCommandLink component that allows
the user to delete the current row by calling the action listener method
userEditForm.deleteUser. Internally, this method accesses the list through
the HtmlDataTable component (which it can access because of the compo-
nent’s binding property).

The result is that you can edit the first name, last name, or balance of any of the
listed users and JSF will update the underlying rows when you click the Submit
button automatically. If you click the Reset button, the browser will reset the input
fields to their original values (because the last update)—no server roundtrip will
be made. Clicking the Delete button deletes the associated row from the data set and
updates any other rows that may have been edited; the actual work of removing

the item is performed by the editUserForm.deleteUser method, and everything

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Displaying data sets with HtmlDataTable 231

Table 5.36 HtmlDataTable example: Using nested Input and Command components to edit a
data set

HTML

<table class="table-background" cellpadding="5" cellspacing="5">
 <thead>
 <tr>
 <th class="headers" colspan="5" scope="colgroup">
 Edit user information

 </th>
 </tr>
 <tr>
 <th class="headers" scope="col">First Name</th>
 <th class="headers" scope="col">Last Name</th>
 <th class="headers" scope="col">Balance</th>
 <th class="headers" scope="col">Registered?</th>
 <th class="headers" scope="col"></th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td class="table-footer" colspan="5">
 <input type="submit" name="_id1:_id20:_id37"
 value="Submit" />
 <input type="reset" name="_id1:_id20:_id38"
 value="Reset" />
 </td>
 </tr>
 </tfoot>
 <tbody>
 <tr class="table-odd-row">
 <td>
 <input id="_id1:_id20:0:inputName" type="text"
 name="_id1:_id20:0:inputName" value="Devora" />
 </td>
 <td>
 <input type="text" name="_id1:_id20:0:_id26"
 value="Shapiro" />
 </td>
 <td>
 <input type="text" name="_id1:_id20:0:_id29"
 value="$32,495.00" />
 </td>
 <td>false</td>
 <td>
 <a href="#"
 onclick="document.forms[‘_id1’][‘_id1:_id20:0:_id34’].
 value=‘_id1:_id20:0:_id34’;
 document.forms[‘_id1’].submit();
 return false;">Delete

 </td>
 </tr>
...
 <tr class="table-even-row">
 <td>
 <input id="_id1:_id20:3:inputName" type="text"
 name="_id1:_id20:3:inputName" value="MW" />
 </td>
 <td>
 <input type="text" name="_id1:_id20:3:_id26"
 value="Mann" />
 </td>
 <td>
 <input type="text" name="_id1:_id20:3:_id29"
 value="$5,050.00" />
 </td>
 <td>false</td>
 <td>
 <a href="#"
 onclick="document.forms[‘_id1’][‘_id1:_id20:3:_id34’].
 value=‘_id1:_id20:3:_id34’;
 document.forms[‘_id1’].submit();
 return false;">Delete

 </td>
 </tr>
 </tbody>
</table>
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

232 CHAPTER 5
Using the input and data table components

Component
Tag

 <h:dataTable value="#{userList}" var="user"
 styleClass="table-background"
 headerClass="headers" footerClass="table-footer"
 rowClasses="table-odd-row, table-even-row"
 cellspacing="5" cellpadding="5"
 binding="#{userEditForm.userEditTable}">
 <f:facet name="header">
 <h:outputText value="Edit user information"
 styleClass="table-header"/>
 </f:facet>
 <h:column>
 <f:facet name="header">
 <h:outputText value="First Name"/>
 </f:facet>
 <h:inputText id="inputName" value="#{user.firstName}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Last Name"/>
 </f:facet>
 <h:inputText value="#{user.lastName}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Balance"/>
 </f:facet>
 <h:inputText value="#{user.balance}">
 <f:convertNumber type="currency"/>
 </h:inputText>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Registered?"/>
 </f:facet>
 <h:outputText value="#{user.registered}"/>
 </h:column>
 <h:column>
 <h:commandLink actionListener="#{userEditForm.deleteUser}">
 <h:outputText value="Delete"/>
 </h:commandLink>
 </h:column>
 <f:facet name="footer">
 <h:panelGroup>
 <h:commandButton value="Submit"/>
 <h:commandButton value="Reset" type="reset"/>
 </h:panelGroup>
 </f:facet>
 </h:dataTable>

Browser
Display

Table 5.36 HtmlDataTable example: Using nested Input and Command components to edit a
data set (continued)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 233

else is handled by JSF. Because the Command components don’t have the action
property set, no navigation takes place—the view is always redisplayed.

 We are leaving out a piece of the puzzle—the Java code for editUserForm.
deleteUser. For more information on writing Java code that interacts with Html-
DataTable, see chapter 13. Even though some Java code is required, HtmlData-
Table does a lot of work on its own—using the proper child components, you can
display and edit data without code. It can even scroll through a data set, display-
ing parts of it at a time; see chapter 10 for a real-world example.

5.11 Summary

In this chapter, we examined all of the remaining standard components, starting
with basic form input controls, and ending with the quintessential data grid
component, HtmlDataTable. We began our survey of components with HtmlForm,
which represents a form that contains input controls. We then moved on to the
basic text fields that are supported with components from the Input family: Htm-
lInputText for text boxes, HtmlInputTextarea for text areas, HtmlInputSecret for
password fields, and HtmlInputHidden for hidden fields. For simple checkboxes,
HtmlSelectBooleanCheckbox is also available.

 Next, we looked at the SelectMany components, which allow users to select sev-
eral item from a list, and the SelectOne family, which allow users to select a single
item. These components can display both individual items and nested groups
(which display as submenus). Individual items are configured as UISelectItem or
UISelectItems components. SelectMany contains HtmlSelectManyCheckbox for check-
box groups, HtmlSelectManyListbox for multiselect listboxes, and HtmlSelectMany-
Menu for single-item listboxes. SelectOne has HtmlSelectOneRadio for radio groups,
HtmlSelectOneListbox for listboxes, and HtmlSelectOneMenu for combo boxes.

 We then examined the Command components, which generate action events that
event listeners can consume. These components actually submit form data. Html-
CommandButton is displayed as a button, and HtmlCommandLink is displayed as a
hyperlink; both can be associated with action methods and/or action listeners.

 Finally, we examined HtmlDataTable, which allows you to display tabular data
from a data source. This component lets you scroll through a list of items, edit
items in a data source, or simply display dynamic data in an easy-to-read format.

 By this point, you should be familiar with all of JSF’s standard components
and have a good handle on how things work. All of the remaining basic topics,
including internationalization, validation, and type conversion, are covered in

the next chapter.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Internationalization,
validators, and converters
This chapter covers
■ Internationalizing and localizing JSF applications
■ Using the standard validators
■ Using the standard converters
■ Customizing messages
234

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Internationalization and localization 235

By now you should have a firm understanding of the standard components pro-
vided by JavaServer Faces. This set of basic widgets is a good start, but profes-
sional-quality applications require more. Sure, you can easily output text with an
Output component, but what if that text needs to be displayed in 12 languages?
And how do you ensure that the data collected by an input control is valid? What
about dates and numbers, which have particular nuances that vary in different
cultures—how do you ensure that they’re processed correctly?

 We’re talking about support for internationalization, validation, and type con-
version. Internationalization is the ability to support different languages. Validation
enables you to control what input is accepted by your application and ensure that
no objects will be updated if the data is not valid. Type conversion ensures that the
user sees a logical representation of an object and that the application can create
an object based on user input. In this chapter, we show you how to use all of these
features with the standard JSF components.

6.1 Internationalization and localization

It’s not a small world anymore—people and corporations interact with each other
on a global scale. There are a lot of nuances to this interaction—you can’t always fly
over to a different country and start rambling in your native tongue. If the people
speak a different language, an individual may look at you like you’re crazy, humor
you with the five words they know, or speak to you in your own language (if you’re
really lucky). Regardless, you’ll probably make a lot of social blunders, like wearing
boots in a Japanese temple or holding up your middle finger in the United States.

 Even when the languages are the same, there are a lot of differences in culture
and the words used. This is evident to anyone who has bounced between the
United States and the United Kingdom—two countries that speak different ver-
sions of the same language, each with unique words and phrases that are foreign
outside the country’s borders. In software development, the culture, political
preferences, and language of a region make up a locale. In Java, a locale is a coun-
try and language combination.

 Enabling an application to support multiple locales is called internationaliza-
tion. Even though an application may be internationalized, someone still has to
do the work of customizing it for a particular locale. Text strings have to be trans-
lated, different graphics may be used, and sometimes an entire page layout may
change (especially if some of the supported languages read left-to-right and others
read right-to-left). The process of modifying an application to support a locale is

called localization.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

236 CHAPTER 6
Internationalization, validators, and converters

DEFINITION Internationalization is often abbreviated as i18n, because there are 18
letters in between the “i” and the “n”, and, well, many programmers hate
typing out long words. (I’m definitely an exception to that rule.) Local-
ization is often abbreviated as l10n (10 characters between the “l” and
the “n”).

JSF has rich support for internationalization and localization. As a matter of fact,
some implementations, like the reference implementation [Sun, JSF RI] provide
localized messages for validator and converter errors.1 So if your user’s locale is
set to French, error messages will automatically display in French. JSF also does
well with numbers, dates, and other objects accessed through the expression lan-
guage—converters handle localization for you.

 If you want the rest of the text in your application to adapt to different locales,
however, you will need to do a little bit of work. First, you’ll need to tell JSF which
locales you want to support. Next, you’ll need to create at least one resource bun-
dle, which is a group of localized strings. Then, once you load the resource bun-
dle (often with a JSP tag), you can reference localized strings with normal value
binding expressions.

TIP Even if your application isn’t going to support multiple languages, you
may want to use resource bundles so that you can place all of your strings
in one place and enforce consistency. (For example, if your application
displays a specific phrase on several pages, you can centralize the phrase
in a resource bundle and reference it from multiple pages.)

6.1.1 Looking into locales

So, a locale represents a language and country combination,2 but what does that
mean in the world of JSF? First, let’s delve a little deeper into how the Java plat-
form handles locales. A locale is represented as a string with two parts: a language
code and a country code.

 Language codes are lowercase, two-letter strings defined by the International
Organization for Standardization (ISO). For example, pl represents Polish, and en
represents English. Country codes are uppercase, two-letter strings, also defined

1 Currently, the reference implementation supports English, French, and German.
2 Technically, there is another element, called a variant, which represents a vendor and browser-specific
code like “WIN” for Windows, “MAC” for Macintosh, and “POSIX” for POSIX. It’s not used too often,
so we won’t cover it here.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Internationalization and localization 237

by ISO. PL is the country code for Poland, and GB is the code for the United
Kingdom (All of the ISO language and country codes are listed in online exten-
sion appendix E.)

 The country is optional, so en alone is a valid locale string for the English lan-
guage, regardless of country. Including the country requires adding the country
code to the end of the string, and using an underscore in between the language
and the country codes. So, en_GB means English in the U.K., and pl_PL means
Polish in Poland.

 When you’re localizing a JSF application, you’ll need to use the proper locale
for the languages and countries that you’d like to support. In some cases, simply
using the language code is enough, but it’s better to be precise in other cases, such
as when you’re dealing with currencies. (Both the United States and the United
Kingdom speak English, but the currencies are completely different.)

 Now that it’s clear how Java represents locales, let’s look at how to make sure
your JSF application supports them.

Configuring locales
The first step toward supporting multiple languages is to tell your JSF application
which locales it should support. You specify the supported locales with the <locale-
config> element in a Faces configuration file, under the <application> node:

 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
 <message-bundle>CustomMessages</message-bundle>
 </application>

The letters “en” and “es” stand for English and Spanish, respectively. So this tells
our application to support both English and Spanish, and to use English as the
default. Of course, we could be more specific:

 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>en_US</supported-locale>
 <supported-locale>es_ES</supported-locale>
 </locale-config>
 <message-bundle>CustomMessages</message-bundle>
 </application>
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

238 CHAPTER 6
Internationalization, validators, and converters

This tells our application to support English, the United States variant of English,
and Spain’s variant of Spanish, but to use plain-old English as the default. Even if
you specify country-specific locales, it’s generally a good idea to also support the
language by itself.

NOTE If you don’t specify locales in a JSF configuration file, you can’t guaran-
tee that your application will support anything other than the default
locale of the application’s Java virtual machine. (Some JSF implementa-
tions may work with other locales, but it’s not guaranteed as per the
specification.) Therefore, we highly recommend that you configure lo-
cales appropriately.

Defining what locales your application supports is one thing, but determining
which locale the application is currently using is a different story.

Determining the user’s current locale
The user’s current locale is determined based on a client application’s locale set-
tings and the locales supported by the application itself. Web browsers send an
HTTP header that specifies the languages they support. So, for JSF HTML appli-
cations, the user’s locale is selected based on the union of their browser’s locales
and the application’s supported locales.

 For example, if your browser’s primary language is Spanish (es_ES), and you
access a JSF application that supports French (fr or fr_FR) as the default and Span-
ish, you’ll see Spanish text. But, if the JSF application doesn’t support Spanish,
you’ll see French instead. As another example, suppose your browser is config-
ured to support U.K. English, Kazakh Russian (kz_RU), and Mexican Spanish
(es_MX) (in that order). If you’re accessing a JSF application that supports Khazak
Russian, Mexican Spanish, and French, you’ll see Kazakh Russian text.

 You can override the locale JSF selects by locale property of the view. You can
do this either in JSP with the <f:view> tag (see chapter 4), or with Java code in a
backing bean. In either case, make sure that you use one of the locales configured
for your application.

6.1.2 Creating resource bundles

Once you’ve configured your JSF application to support different locales, you
have to place locale-specific versions of your application’s text strings in resource
bundles. Resource bundles aren’t a JSF feature—they’re a fundamental part of the

way Java handles internationalization and localization. If you’ve already worked
with them before, you can skip ahead to the next section. Otherwise, read on.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Internationalization and localization 239

 Resource bundles are simply property files3 with key/value pairs. Each string has
a key, which is the same for all locales. So the key welcomeMessage would point to
the string that represents the welcome message, whether it’s in English, French,
Russian, or Swahili. Once you’ve created one or more resource bundles, all you
have to do is make sure that your JSF components use the string in the bundle
instead of a hardcoded text value (all of the previous examples in this book have
used hardcoded values). Listing 6.1 shows an example resource bundle, called
LocalizationResources_en.properties.

halloween=Every day is like Halloween.
numberOfVisits=You have visited us {0} time(s), {1}. Rock on!
toggleLocale=Translate to Spanish
helloImage=../images/hello.gif

You can see that the values aren’t always simple strings for display. The second
line is parameterized, and can accept two parameters that can either be hard-
coded or retrieved from an object at runtime. So if the two parameters were “23”
and “Joe”, the user would see “You have visited us 23 time(s), Joe. Rock on!” The
last line is the path for a GIF file. With this resource bundle, we can support
English. The Spanish version of the file is shown in listing 6.2.

halloween=Todos los días son como el Día de las Brujas.
numberOfVisits=Nos ha visitado {0} veces, {1}. ¡que buena onda!
toggleLocale=Traducir a Ingles
helloImage=../images/hola.gif

You can see that the keys in listing 6.1 and listing 6.2 are the same, but the values
in the latter are localized for Spanish.

WARNING You can’t use the “.” character in resource bundle keys used with JSF.
This character is a reserved character in the JSF EL.

3

Listing 6.1 LocalizationResources_en.properties: An example resource bundle

Listing 6.2 LocalizationResources_es.properties—An example resource bundle in
Spanish (translated from the resource bundle in listing 6.1)
Technically, they are subclasses of the ResourceBundle class. However, unless someone in your group
has written a custom Java class, you will probably be working with the property files.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

240 CHAPTER 6
Internationalization, validators, and converters

You may have noticed that we named the first file LocalizedResources_en.properties
and the second one LocalizedResources_es.properties. The last two letters of the
name—“en” and “es”—are the language codes for English and Spanish, respectively.

 Every internationalized application should also have a resource bundle with
no special ending—a default in case no key is found in the localized versions. In
this case, that file would be LocalizedResources.properties. Often this file will be
the same as one of the localized ones—English in our case. It can also be used
to store strings that are constant across different locales, or for strings that are
only localized sometimes. You can also place all of the strings for your default
language in this bundle and eliminate the specific bundle for your default lan-
guage altogether.

 After you have created a localized properties file (with whatever character
coding is appropriate for that language), you must convert it to use Unicode
characters. This can be done with the native2ascii tool included with the Java
Development Kit (JDK). See the API docs for PropertyResourceBundle for more
information. When the system looks for a resource bundle, it starts with the most
specific bundle it can find—one that matches language and country. If it can’t
find a key in that bundle (or if the bundle doesn’t exist), it searches for the bun-
dle with just the language. It does this for the desired locale, and if that doesn’t
work, it tries the default locale. If it still can’t find one, it uses the default bundle.
After you have created a localized properties file (with whatever character coding
is appropriate for that language), you must convert it to use Unicode characters.
This can be done with the native2ascii tool included with the Java Development
Kit (JDK). See the API docs for PropertyResourceBundle for more information.

 So, if the user’s selected locale is Spanish in Spain (es_ES) and the default
locale is English in the United States (en_US), and the base resource bundle
name is LocalizationResources, the system will search for the following bundles
in this order:

LocalizationResources_es_ES.properties
LocalizationResources_es.properties
LocalziationResources_en_US.properties
LocalizaitonResources_en.properties
LocalizationResources.properties

To keep things simple in our examples, we left out the top-level ones (the ones
that end in “es_ES” and “en_US”). That’s okay, because the system will simply
start with the ones ending in “es” and “en”.

 So, to review, we have three separate versions of our resource bundle: Location-

Resources_en.properties, LocationResources_es.properties, and LocationResources.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Internationalization and localization 241

properties. This gives us an English set of strings, a Spanish set of strings, and a
default set of strings, respectively.

 These files can be placed anywhere in the web application’s classpath. The eas-
iest thing to do is to place them right inside the WEB-INF/classes directory. How-
ever, it often makes sense to place them inside a specific package. Also, remember
that you don’t have to put all of your resources in one bundle—you can group
them however you want. In a real application, you may have different bundles for
different modules, or even topics.

NOTE This section gave you a brief overview of how to create resource bundles
in Java, and should be enough to get you started internationalizing and
localizing JSF applications. You can also create resource bundles pro-
grammatically, and like most things in Java land, there’s even more you
can do, such as map binary values to keys. For more information on in-
ternationalization and localization from a programmer’s perspective,
see the Sun Java Tutorial [Sun, i18ln].

6.1.3 Using resource bundles with components

Using a resource bundle in a JSF application is as simple as using a value-binding
expression. All you have to do is load the proper resource bundle and make it
accessible in an application scope. For JSP, there’s a JSF core tag, <f:loadBundle>,
that loads the bundle and stores it in the request scope automatically.4 Here’s how
you use it:

<f:loadBundle basename="LocalizationResources" var="bundle"/>

The basename attribute specifies the name of the resource bundle, prefixed by its
location in your classpath. Because our bundles were placed in WEB-INF/classes,
no prefix is needed. However, if we had nested them deeper, like in the WEB-INF/
classes/org/jia directory, the basename would be “org.jia.LocalizationResources”.
The variable’s name is specified by the var attribute, and that’s the value you’ll use
for the bundle attribute in your JSF component tags. Both attributes are required.

 In some cases, it might make sense to set up bundles programmatically instead
of using custom tags. This way, front-end developers don’t have to use the
<f:loadBundle> tag, although they’ll still need to know the bundle variable name.

 Once the bundle has been loaded, whenever you want to access a particular
string from that bundle, you can grab it with an ordinary value-binding expres-
sion. So, now that we’ve loaded LocalizationResources under the key bundle,
4 Technically, it creates a special Map backed by the specified ResourceBundle.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

242 CHAPTER 6
Internationalization, validators, and converters

we can access value of the key halloween, with the value-binding expression
"#{bundle.halloween}".

TIP If you’re developing a prototype (without backing Java code) first, it’s
generally best to start out hardcoding values. You can then pull strings
out into resource bundles when the application is more mature. We show
this technique in part 2.

Let’s move on to some specific examples. Figures 6.1 and 6.2 show some JSF com-
ponents displaying our localized strings in English and Spanish, respectively.

 The first example in the figure uses an HtmlOutputText. With our Localization-
Resources bundle configured under the variable name bundle, we can reference a
localized string like this:

<h:outputText value="#{bundle.halloween}"/>

This displays the string stored under the key halloween in our resource bundle,
which is referenced under the variable name bundle. If the user’s locale is English,
this is the string “Everyday is like Halloween” from LocalizationResources_en.
properties, as shown in figure 6.1. If the language is Spanish, the string “Todos
los días son como el Día de las Brujas”, taken from LocalizationResources_es.
properties, as shown in figure 6.2, is displayed.
Figure 6.1 Examples of text localized in English with different JSF components.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Internationalization and localization 243

NOTE If the resource bundle can’t find a key, it will return the string
“???<key>???” instead. So, in this example, the value displayed would
be “???halloween???”.

Using the HtmlOutputFormat component allows you to have parameterized strings
that work in different locales. The values of the parameters, which come from
model objects, may or may not be localized themselves—that’s up to the object’s
developer. Often, it’s okay if they’re not because the values are simple things like
a person’s name, or numbers:

<h:outputFormat value="#{bundle.numberOfVisits}">
 <f:param value="#{user.numberOfVisits}"/>
 <f:param value="#{user.firstName}"/>
</h:outputFormat>

This code displays the string stored under the key numberOfVisits. That string
uses a message format pattern, which is a special pattern that HtmlOutputFormat
understands (see chapter 4 for details). The string has two placeholders for
parameters, which are replaced with two UIParameter components—one for the
user’s number of visits, and the other for their first name. If the user’s name is
Joe, and they have visited 243 times, this would display “You have visited us 243

Figure 6.2 Examples of text localized in Spanish with different JSF components.
time(s), Joe. Rock on!” for English, and “Nos ha visitado 243 veces, Joe. ¡que

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

244 CHAPTER 6
Internationalization, validators, and converters

buena onda!” for Spanish. You can see that the parameter values are the same
regardless of the locale in this case.

 Button labels need to be localized too—“Submit” and “Go” aren’t universal
words. Here’s an example:

<h:commandButton value="#{bundle.toggleLocale}"
 actionListener="#{testForm.toggleLocale}"/>

For English, this displays a button with the label “Translate to Spanish”; for
Spanish, it displays the text “Traducir a Ingles”. In this case, the actionListener
property is used to launch server code that changes the locale. Because action-
Listener references a backing bean method, there’s no need to internationalize it.

 Web user interfaces often use graphics to display text, especially when simple
fonts and colors aren’t good enough. In these cases, and in situations where an
image has a specific cultural meaning, you will need to display different images
for different locales:

<h:graphicImage value="#{bundle.helloImage}"/>

For English, this selects the image “images/hello.gif ”; for Spanish, it selects
“images/hola.gif ”. Take a look at figures 6.1 and 6.2 to see the graphics them-
selves—they’re sure to be the envy of designers everywhere.

 These examples are only the tip of the iceberg. Basically, anywhere a compo-
nent accepts a value-binding expression, you can use a localized string instead of
hardcoded text. This means you can localize any component property. Just make
sure the resource bundle has been loaded, and that you’re using the proper vari-
able name (bundle, in this case).

TIP If you’re manipulating a component in Java code, the same principle ap-
plies as long as a resource bundle has been loaded and made accessible.
You can access a localized string with a value-binding expression.

6.1.4 Internationalizing text from back-end code

All of this business about linking component textg to resource bundle keys is use-
ful, but so far we’ve only shown examples of constant values. What about situations
where the text is dynamic and comes from backing beans or business objects (and
perhaps ultimately a database)? In some cases you can still use resource bundles,
but at the Java level instead. This could also be something handled in the data-
base as well, in which case the actual implementation would be dependent on

your database design. We show the simpler, non-database approach in chapter 13.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Input validation 245

6.2 Input validation

A popular phrase in software development is “garbage in–garbage out.” Having a
system that spits out garbage isn’t good for anybody’s professional image, so it
pays to keep users from inputting garbage in the first place. That’s precisely why
validation—the ability to block bad input—is so important, and that’s why JSF has
extensive support for it. Faces supports this through validator methods on back-
ing beans and validators.

NOTE There is no explicit support for client-side validation in JSF’s validation
model. In other words, any validator methods you write in backing
beans, as well as the standard validators (or custom validators you write),
will not generate JavaScript to check a component’s value on the client.
You can write support client-side validation in your own validators, and
you can also expect third-party component vendors, as well as tool ven-
dors, to provide this capability.

Either approach checks the value of a control see if its current value is acceptable.
If so, the valid property of the component is set to true, and the associated object
is updated accordingly (if one is associated with the component’s value via a
value-binding expression). If the value isn’t accepted, an error message is gener-
ated for that specific component, and the associated object is not modified. These
error messages can then be displayed back to users so that they can correct their
erroneous input. (Validation messages are displayed with either the HtmlMessage
or HtmlMessages component, both of which are covered in chapter 4).

6.2.1 Using validator methods

An input control can also be associated with a single validation method on a back-
ing bean. Validator methods are generally used for application-specific validation
and aren’t necessarily reusable for different applications. Validators, on the other
hand, are generic and designed for use in different types of applications.

 Suppose we had a backing bean called registrationBean and a validation
method called validateEmail. With JSP, we could associate an input control with
this method like so:

<h:inputText id="emailInput"
 validator="#{registrationBean.validateEmail}"
 value="#{registrationBean.email}/>
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

246 CHAPTER 6
Internationalization, validators, and converters

Now, anytime a user enters a value into this component, the validateEmail method
will check to make sure it’s valid. If so, the backing bean property registrationBean.
email will be updated; otherwise, an error message will be generated instead.

 For more examples of using validator methods, see part 2. For details on how
to write validator methods, see part 3.

6.2.2 Using validators

For any input control, you can register one or more validators. (Custom or third-
party components may validate themselves instead, but the standard components
don’t.) Both validators and converters are generally accessible in the component
palette of IDEs that support JSF, as shown in figure 6.3.

 There are two ways to register a validator with a component in JSP:

■ Nest the validator’s custom tag inside a component tag
■ Nest the core <f:validator> tag with the validator’s identifier inside the

component tag

Figure 6.3
JSF-enabled IDEs, like Java
Studio Creator [Sun,
Creator], will usually allow
you to drag and drop
validators and converters
from a component palette,
much like components. They
are nonvisual, but they will
usually show up in
document outlines.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Input validation 247

To declare a validator, you nest the validator tag inside the component tag:

<h:inputText id="SSNInput" value="#{user.ssn}">
 <jia:validateRegex expression="\\d{3}[-]\\d{2}[-]\\d{4}"/>
</h:inputText>

This snippet registers a RegularExpression validator for this input control. The
expression property tells the validator to check for a valid U.S. social security
number. If a user enters a value that matches the expression, the user.ssn prop-
erty is updated. Otherwise, an error message is generated.

 The RegularExpression validator is a custom validator covered in online exten-
sion chapter 20, and you use it the same as any other validator. It’s also possible to
use both a validation method in conjunction with one or more validators.

 If you or someone on your team has developed a custom validator, you can
also register it on a component with the <f:validator> tag from the JSF core tag
library. This is only useful for validators that don’t require any properties. Here’s
an example for a hypothetical email address validator:

<h:inputText>
 <f:validator validatorId="Email"/>
</h:inputText>

This would register an Email validator on this HtmlInputText control. (You can
configure a custom validator by name in a Faces configuration file; see chapter 1
for an example.) Theoretically, this validator will not accept any strings that
aren’t valid email addresses. Using the generic tag makes sense for this type of
validator, because it’s unlikely to have any additional properties.

 This tag is only useful for internal development or testing; professional com-
ponent libraries and IDEs are likely to have to have specific custom tags, as should
any validators developed for internal distribution.

 You can also register validators on components programmatically; see chap-
ter 11 for details. JSF includes several standard validators, which we cover in the
next section.

6.2.3 Using the standard validators

Because validation is a pretty common task, JSF includes a few standard valida-
tors right out of the box. Table 6.1 lists all of the standard validators and their
corresponding tags, which are located in the core JSF tag library.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

248 CHAPTER 6
Internationalization, validators, and converters

For the validators shown in table 6.1, you can set the minimum property, the maximum
property, or both. Whichever property you omit won’t affect the validation pro-
cess. (In other words, there is no default; the validator just won’t worry about that
end of the range.) If you want to guarantee that an input control has a value, use
the component’s required property, because these validators happily accept
empty values.

 Validators can only be accepted by input controls. Figure 6.4 shows exam-
ples of the standard validators, and use of the required property with different
input controls.

NOTE The components in the SelectMany family don’t work with the standard
validators because their value properties, which are arrays of objects,
cannot be converted to a type that the validators understand.

You can see that the right-hand side of the figure displays the error messages
generated by the validator. We examine each of the standard validators briefly
here; see part 2 for examples within a real application.

Table 6.1 The standard validators and their custom tags, which are located in the JSF core tag library.

Validator JSP Custom Tag

Java Class
(package

javax.faces.
validator)

Properties Behavior

Double-
Range

<f:validate-
DoubleRange>

Double-
Range-
Validator

minimum,
maximum

Ensures that the control’s value can be
converted to a double (a number with a
decimal point), and is greater than or
equal to minimum (if specified) and less
than or equal to maximum (if specified).
Use this when dealing with money or
fractional values.

Length <f:validate-
Length>

Length-
Validator

minimum,
maximum

Ensures that the length of the control’s
value is greater than or equal to
minimum (if specified) and less than or
equal to maximum (if specified).

Long-
Range

<f:validate-
LongRange>

LongRange-
Validator

minimum,
maximum

Ensures that the control’s value can be
converted to a long (a large integer),
and is greater than or equal to minimum
(if specified) and less than or equal to
maximum (if specified).
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Input validation 249

Requiring an input value
Every input component has a required property, which, if true, forces the com-
ponent to reject empty values (the default is false). This isn’t exactly a standard
validator, but it is validation behavior handled by the input components them-
selves. Here’s an example:

<h:selectOneMenu id="RequiredInput" required="true">
 <f:selectItem itemValue="" itemLabel=""/>
 <f:selectItem itemValue="1" itemLabel="dogs"/>
 <f:selectItem itemValue="2" itemLabel="birds"/>
 <f:selectItem itemValue="3" itemLabel="hamsters"/>

Figure 6.4 Examples of using the standard validators with different input controls.
</h:selectOneMenu>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

250 CHAPTER 6
Internationalization, validators, and converters

In this case, the user has four choices: an empty choice (the default), “dogs”,
“birds”, or “hamsters”. If the user selects the first choice (or makes no selection at
all), the component will reject the value and generate an error message. The
other options are not blank, so they are all valid.

Length validator
The Length validator verifies the length of the control’s value. This is useful for
enforcing any limits on the size of a text field. Here’s an example:

<h:inputText id="LengthInput">
 <f:validateLength minimum="2" maximum="10"/>
</h:inputText>

This ensures that the text entered by the user is always between 2 and 10 charac-
ters long. Any values outside of this range will be rejected.

TIP As a general rule, you should use the Length validator even if you’ve set
the size of the field (for instance with the maxsize property of Html-
InputText). This allows you to enforce the length of the field both on
the client and on the server.

LongRange validator
The LongRange validator ensures that the value of a control is of type long (a large
integer) and is within a specified range. Use it whenever you want to control the
range of numbers a user is entering, and the number can’t have any decimal points.
If the value is a String, it will try and convert into a Long, so it will reject any non-
numeric values, or numeric values that contain decimal points. Here’s an example:

<h:inputText id="LongRangeInput">
 <f:validateLongRange minimum="5" maximum="999999"/>
</h:inputText>

This code will reject any values that are not integers between 5 and 999,999.

DoubleRange validator
The DoubleRange validator is used to verify that a double value (a number with a
decimal point) is within a specified range. This is especially useful for monetary
values. Here’s an example:

<h:selectOneRadio id="DoubleRangeInput">
 <h:selectItem itemValue="5.0" itemLabel="5.0"/>
 <h:selectItem itemValue="6.1" itemLabel="6.1"/>

 <h:selectItem itemValue="6.8" itemLabel="6.8"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Type conversion and formatting 251

 <f:validateDoubleRange minimum="5.1" maximum="6.76"/>
</h:selectOneRadio>

In this example, only values between 5.1 and 6.76 are allowed. The user has a
choice between three possible values: 5.0, 6.1, and 6.8. If the user selects 5.0 or
6.8, an error message is generated. If the user selects 6.1, which is in the proper
range, no error is reported and the value is accepted.

6.2.4 Combining different validators

Validators don’t have exclusive control of a component; any number of them can
be associated with a single component. At the very least, you’ll often use the
required property in addition to one of the standard validators. If you use custom
or third-party validators, you can mix them with the standard ones. When you
have multiple validators registered for a control, the control’s value will be con-
sidered invalid if any one of the validators rejects it.

 Let’s say we wanted to require that a user enter a value that’s either two or
three characters long and between the numbers 10 and 999. Because this is a
required field, we can use the control’s required property. We can enforce the
string’s length with the Length validator, and the specific number values with a
LongRange validator. Here’s all three together:

<h:inputText id="MultiInput" required="true">
 <f:validateLength minimum="2" maximum="3"/>
 <f:validateLongRange minimum="10" maximum="999"/>
</h:inputText>

This snippet ensures that the control’s value is not empty, that it is between 2 and
3 characters long, and that its numeric value is between 10 and 999. (Validators are
executed in the same order they were added.) If the value entered by the user
doesn’t match all of these requirements, it will be rejected, and an error message
will be generated. Otherwise, no message will be generated, and the value will be
accepted. (Technically, the Length validator isn’t required because LongRange implic-
itly validates length.)

 That’s it for the standard validators. We cover developing custom validators in
chapter 15. Now, let’s examine JSF’s built-in type conversion abilities.

6.3 Type conversion and formatting

When users see an object on the screen, they see it in terms of recognizable text,
like “May 10th, 2003”. Programs don’t think of objects that way, though. A Date

object is more than just the string “May 10th, 2003”—it has a single property,

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

252 CHAPTER 6
Internationalization, validators, and converters

time, and useful methods like before, after, and compareTo. In order for user
interfaces to display objects in terms that users understand, the objects must be
converted into strings for display.

 Those strings may change based on a number of factors, such as the user’s
locale (dates are displayed differently in different countries) or simply the con-
straints of the page (a shorter date format might make more sense in a certain
part of a page). That’s the purpose of JSF converters—to create a string represen-
tation of an object, and to create an object representation of a string. If for some
reason a value can’t be converted, an error message will be generated. These mes-
sages can then be displayed back to the user. (Conversion error messages are dis-
played with either the HtmlMessage or HtmlMessages components, which are covered
in chapter 4.)

 JSF provides a set of standard converters to satisfy your basic type conversion
needs. You can also write your own converters, and third-party vendors will pro-
vide them as well. Converters can be registered both by type and by identifier. For
example, there is a converter associated with the Date object, but it can also be ref-
erenced by its identifier, which is DateTime.

 You can associate a converter with almost any component that displays a sim-
ple value—especially input components. Table 6.2 lists the standard compo-
nents that support converters. Whenever that component’s value is displayed, it
will be translated into a String by the converter. Conversely, whenever a user
enters data into the component, the user’s input will be converted into an Object
by the converter.

Table 6.2 Converters are supported by these components (and their superclasses).

Component JSP Component Tag

HtmlOutputText <h:outputText>

HtmlOutputFormat <h:outputFormat>

HtmlOutputLink <h:outputLink>

HtmlOutputLabel <h:outputLabel>

HtmlInputText <h:inputText>

HtmlInputTextarea <h:inputTextarea>

HtmlInputHidden <h:inputHidden>

HtmlInputSecret <h:inputSecret>
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Type conversion and formatting 253

If you don’t specify a converter, JSF will pick one for you. The framework has stan-
dard converters for all of the basic Java types: BigDecimal, BigInteger, Boolean,
Byte, Character, Integer, Short, Double, Float, and Long. So, for example, if your
component is associated with a property of type boolean, JSF will choose the
Boolean converter. These converters provide basic conversion functionality. For
example, if a Boolean’s value is true, the string “true” will be displayed. (Primitive
types are automatically converted to their object counterparts.) This isn’t any-
thing worth emailing home about, but in many cases it’s all you need.

 For converting Date objects and providing fine-grained number formatting,
there are two powerful assistants you can employ: DateTime and Number. These
converters provide considerable flexibility for displaying dates and numbers in
different ways, respectively. And, unlike the other converters, they have numerous
properties that you can configure to help them do their jobs.

 It’s important to remember that a converter is a two-way street. They’re great
for tweaking the way objects are displayed to users. But if you use them in con-
junction with an input control, the user’s input must be in the format specified
by the converter. For example, if you’ve converted your date into the string “May
23, 2003 04:55EST”, your user would have to enter a valid date in the same
format, right down to the “EST” at the end. This isn’t something that you can
necessarily expect from most users, so you’d be better off with a simpler format,
like “05/23/03”.

 These standard converters are nice, but what about objects that aren’t stan-
dard Java types? By default, the object’s toString method is used. This works in

Component JSP Component Tag

HtmlSelectBooleanCheckbox <h:selectBooleanCheckbox>

HtmlSelectManyCheckbox <h:selectManyCheckbox>

HtmlSelectManyListbox <h:selectManyListbox>

HtmlSelectManyMenu <h:selectManyMenu>

HtmlSelectOneRadio <h:selectOneRadio>

HtmlSelectOneListbox <h:selectOneListbox>

HtmlSelectOneMenu <h:selectOneMenu>

Table 6.2 Converters are supported by these components (and their superclasses). (continued)
some cases, but the method isn’t terribly flexible. Fortunately, you’re not limited
to using the standard converters. If they don’t satisfy your needs and there are no

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

254 CHAPTER 6
Internationalization, validators, and converters

suitable third-party ones, you or someone on your team can develop custom ones.
(If you are so inclined, see chapter 15 for more information.) Whether you use a
custom converter or a standard one, the usage is the same.

6.3.1 Using converters

Converter registration can be performed declaratively with a display technology
such as JSP, or you can register converters programmatically. (If you’re interested
in registering converters with Java code, see chapter 11.) Converters can also be
manipulated inside a JSF IDE in the same manner as components and validators
(refer back to figure 6.3).

 You can register a converter using JSP in one of three ways:

■ Specify the converter identifier with a component tag’s converter property.
■ Nest the <f:converter> tag with the converter’s identifier inside the com-

ponent tag.
■ Nest the converter’s custom tag inside a component tag.

WARNING Be careful assigning more than one converter to the same object. This
can happen if, for example, you have two input fields that have a regis-
tered converter and use the same value-binding expression. If the two
controls are on the same form, the converters will step over each other
(in other words, the first converter’s result will be overwritten by the last
one’s result).

If the converter has its own tag, it’s better to use it. The following employs the
User converter we develop later in this book:

<h:inputText value="#{user}">
 <jia:userConverter style="lastName_FirstName" showRole="true"/>
</h:inputText>

This example assumes that we’ve imported the converter’s tag library with the
prefix “jia.” The snippet registers a new User converter on the HtmlInputText
control and configures its style and showRole properties. These settings tell the
converter to expect the user’s name to be in the style “LastName, FirstName” and
also to display the user’s role.

 In most cases, you’ll use the converter’s tag as shown in the previous example.
The other two methods are useful only if you don’t need to set your converter’s
properties (or it’s property impoverished to begin with). Suppose we had a credit

card converter that translates between a string of digits and a string with a

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Type conversion and formatting 255

hyphen (-) or space separating the different segments of the number. So, if a user
entered the string “5555-5555-5555-5555”, the converter would translate it into
“5555555555555555”. If this converter’s identifier was creditcard, we could use
it like this:

<h:outputText value="#{user.creditCardNumber}"
 converter="creditcard"/>

This code registers a new creditcard converter for an HtmlOutputText compo-
nent without setting any converter properties. Instead of using the converter’s
identifier, we could also have used a value-binding expression that referenced a
converter instance. You can achieve the same result by using the <f:converter>
tag (from the core JSF library), which accepts only the converter’s identifier. This
converter’s identifier is creditcard so we can register it this way as well:

<h:outputText value="#{user.creditCardNumber }">
 <f:converter converterId="creditcard"/>
</h:outputText>

Usually it’s better to use the identifier because it insulates you against package or
class name changes. Converter identifiers are set up in a JSF configuration file.
All of the standard converters already have identifiers configured; see chapter 15
to learn how to write and configure your own.

 Registering converters this way usually isn’t necessary unless you’re using a
custom converter that doesn’t have its own JSP tag. Generally speaking, if there’s
a JSP custom tag for the converter, it will usually support its own properties. (Other-
wise, it’s easier to just use one of the other two methods.)

 These registration methods will work with any type of converter, but let’s delve
into the details of using the standard ones.

6.3.2 Working with the standard converters

The only standard converters that you’ll typically use explicitly are the DateTime
and Number converters. DateTime can be used for formatting a Date object, show-
ing the date, the time, or both. The Number converter can be used for formatting
any type of number, including currency and percentages. These two converters
are listed in table 6.3. (Because the other converters are called implicitly by JSF
and have no properties, we won’t discuss them here.)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

256 CHAPTER 6
Internationalization, validators, and converters

In the following sections, we examine each of these converters in detail.

Using the DateTime converter
Whenever you want to associate a Date object with a UI component, you should
use the DateTime converter. If you don’t, JSF will use the toString method of the
Date object, so you’ll end up with something like “Sep 14 13:33:43 GMT-05:00
2003”, which may not be the most readable format for your users.

 You specify the formatting by either supplying the type property (date, time,
or both) or specifying a date format pattern with the pattern property. Other
properties that affect the conversion process are listed in table 6.4.

 In the simplest case, you can use DateTime with the default values:

<h:outputText value="#{user.dateOfBirth}">

Table 6.3 The standard converters and their custom tags. All tags are located in the core JSF tag library.

Converter JSP Tag

Java Class
(package

javax.faces.
convert)

Properties Description

Date-
Time

<f:
convert-
DateTime>

DateTime-
Converter

type, dateStyle,
locale,
timeStyle,
timeZone,
pattern

Displays the date formatted
for the specified type (date,
time, or both) or for a date
format pattern specified by
the pattern property. If the
type is specified, the display
of the date can be controlled
with the dateStyle
property, and the time can be
controlled with the
timeStyle property. The
output will be localized for the
current locale unless the
locale property is used.

Number <f:
convert-
Number>

Number-
Converter

type,
currencyCode,
currencySymbol,
groupingUsed,
locale
minFractionDigits.
maxFractionDigits,
minIntegerDigits,
maxIntegerDigits,
pattern

Displays the number
formatted for the specified
type (number, currency, or
percentage) or the
decimal format pattern
specified by the pattern
property. The number will be
formatted for the current
locale unless the locale
property is used.
 <f:convertDateTime/>
</h:outputText>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Type conversion and formatting 257

This is the same as specifying a type of date and a dateStyle of medium:

<h:outputText value="#{user.dateOfBirth}">
 <f:convertDateTime type="date" dateStyle="medium"/>
</h:outputText>

This code would display something like “March 20, 1972” for the U.S. locale. For
other locales, the DateTime converter is smart enough to adjust accordingly. Table 6.5
lists some examples of different dateStyle values with two different locales.

Table 6.4 DateTime converter properties.

Property name Type Description

dateStyle String Specifies the formatting style for the date portion of the string. Valid
options are short, medium (the default), long, and full. Only
valid if the type property is set.

timeStyle String Specifies the formatting style for the time portion of the string. Valid
options are short, medium (the default), long, and full. Only
valid if the type property is set.

timeZone String Specifies the time zone for the date. If not set, Greenwich mean
time (GMT) will be used. See online extension appendix E for a list of
time zones.

locale String or
Localea

The specific locale to use for displaying this date. Overrides the user’s
current locale.

pattern String The date format pattern used to convert this number. Use this or the
type property.

type String Specifies whether to display the date, time, or both.

a The locale property of the DateTimeConverter class must be a Locale instance. The JSP tag, how-

ever, can accept a locale string (like “ru” for Russian) instead.

Table 6.5 Possible values for the dateStyle property. The DateTime converter uses the dateStyle
property to easily specify date formats that are portable across locales.

Value Example (U.S.) Example (Canada)

short 5/23/03 23/05/03

medium (default) May 23, 2003 23-May-2003

long May 23, 2003 May 23, 2003

full Friday, May 23, 2003 Friday, May 23, 2003
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

258 CHAPTER 6
Internationalization, validators, and converters

You can see from table 6.5 that sometimes the date may be formatted the same in
different locales even when using different dateStyle values. However, the values
closer to short have mostly numbers, and those closer to full have more text.
This is a general rule that works in most locales.

 Let’s look at another example that uses the dateStyle property:

<h:outputText value="#{user.dateOfBirth}">
 <f:convertDateTime type="both" dateStyle="full"/>
</h:outputText>

The dateStyle in this example is full, but this time the type is set to both, so the
date and the time will be displayed. For U.S. English, this displays a string formatted
like this one: “Saturday, May 10, 2003 6:00:00 PM”. The time portion of the string
is formatted using the default timeStyle value, which is medium. Like dateStyle,
timeStyle has a few possible values, and will automatically adjust for the current
locale. These values are listed in table 6.6, with examples in two different locales.

Like dateStyle, the actual displayed value can change quite a bit depending on
the locale, but sometimes it’s the same.

 The previous example displayed both the date and the time. You can display
only the time by setting the type property to time:

<h:outputText value="#{user.dateOfBirth}">
 <f:convertDateTime type="time" timeStyle="full"/>
</h:outputText>

For the U.S, this would display “6:50:41 PM GMT-05:00”.
 Let’s move on to something a little more interesting. The following example

specifies both date and time styles, as well as a time zone:

<h:inputText value="#{user.dateOfBirth}" size="25">

Table 6.6 Possible values for the timeStyle property. The DateTime converter uses the
timeStyle property to easily specify time formats that are portable across locales.

Value Example (U.S.) Example (Canada)

short 5:41 PM 5:41 PM

medium (default) 5:41:05 PM 5:41:05 GMT-03:00 PM

long 5:41:05 PM GMT-03:00 5:41:05 GMT-03:00 PM

full 5:41:05 PM GMT-03:00 5:41:05 o’clock PM GMT-03:00
 <f:convertDateTime type="both" dateStyle="short"

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Type conversion and formatting 259

 timeStyle="short"
 timeZone="Europe/Moscow"/>
</h:inputText>

For the U.S. locale, this displays something like “2/13/04 2:58 AM” in a text box. If
the user inputs a value that is not in this format, a conversion error will be gener-
ated, and user.dateOfBirth will not be updated. The actual displayed date, how-
ever, will be adjusted depending on how many hours ahead or behind the time
zone “Europe/Moscow” is from the JSF application’s default time zone. So, if the
application were running on a machine in the Eastern time zone in the United
States, the displayed date would be eight hours ahead of the value of the associ-
ated Date object, because that is the difference between the two time zones.

 For example, suppose the value of user.dateOfBirth equals January 5, 2004,
at 12:00 A.M. The displayed date, adjusted for the “Europe/Moscow” time zone,
would be January 5, 2004, at 8:00 A.M.—a difference of eight hours. Remem-
ber—the conversion works both ways. DateTime would convert the user’s input
back into the application’s time zone as well.

 We didn’t pull the string “Europe/Moscow” out of a hat—there are hundreds
of possible values for the timeZone property, all defined by the java.util.Time-
Zone class (which is used behind the scenes). You can write some Java code to get
them all from the TimeZone class, but they’re listed in online extension appendix E
in case you don’t have the time.

 If you want to override the user’s current locale, you can specify the locale
property as well:

<h:outputText value="#{user.dateOfBirth}">
 <f:convertDateTime type="both" dateStyle="long" timeStyle="full"
 timeZone="Europe/Moscow" locale="ru"/>
</h:outputText>

This would display a string like “13 Февраль 2004 . 3:13:58 MSK” (“Февраль” is
“February” in English). Be careful specifying the locale—usually it’s better to let
the converter adjust according to the user’s current locale.

 For most cases, using the type property with dateStyle and/or timeStyle is
sufficient. For precise control, however, you’ll need to use a date format pattern.

Using the DateTime converter with date format patterns
When you need more control over the formatting than the dateStyle and time-
Style properties provide, it’s time to use a date format pattern. A date format pat-
tern is a special string that gives you complete control over the format of the

display string—everything from how many characters to display for a year to the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

260 CHAPTER 6
Internationalization, validators, and converters

number of days in the year and whether to use short or long month names. You
can place literal values in the text as well.

NOTE Date format patterns can also be used with the HtmlOutputFormat com-
ponent inside a message format pattern. The format type is either date
or time.

A date format pattern works by interpreting special characters that are replaced
by values derived from the associated Date object. To use a date format pattern
with the DateTime converter, you specify the pattern property instead of the type
property. Table 6.7 describes all of these characters.

Table 6.7 Symbols that can be used in a date format pattern.

Date Format
Pattern Symbol

Meaning Presentation
Example
Pattern

Example Display

G Era designator Text G AD

y Year Number yyyy 1996

yy 96

M Month in year
Text (if three or more
symbols)

MMMM April

Number (if less than
three symbols)

MM 04

d Day in month Number dd 10

h Hour in am/pm (1~12) Number hh 12

H Hour in day (0~23) Number H 8

HH 08

m Minute in hour Number mm 15

s Second in minute Number ss 55

S Millisecond Number SSS 978

E Day in week Text EEEE Friday

EEE Fri

D Day in year Number DD 45

DDD 045
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Type conversion and formatting 261

When using date format pattern symbols, keep in mind a few rules:

■ When the symbol is presented as a number, the number is padded to equal
the number of characters specified. So, if the number of seconds is 4, the
pattern ‘s’ displays ‘4’, but the pattern ‘sss’ displays “004”. (The symbol ‘y’,
for year, is an exception—it is truncated to two digits unless you specify
four digits with ‘yyyy’.)

■ When the symbol is presented as text, the abbreviated value is displayed if
the symbol is repeated less than four times; otherwise, the long version is
displayed. So, the patterns ‘E’, ‘EE’, and ‘EEE’ all display “Fri” and the pat-
tern ‘EEEE’ displays “Friday”.

■ Any characters other than lowercase and uppercase letters, like ‘:’, ‘.’, ‘#’
and ‘@’, will automatically be escaped even if they have no single quotes
around them.

Let’s look at some examples. The pattern “MM/dd/yyyy (hh:mm a)” displays some-
thing like “05/23/2003 (07:24 PM)”. The pattern “yy.dd.MM - hh:mm:ss a zz” dis-
plays something like “03.24.05 - 07:24:28 PM EST”. Here’s a more complex

Date Format
Pattern Symbol

Meaning Presentation
Example
Pattern

Example Display

F Day of week in month Number FF 07

w Week in year Number w 27

W Week in month Number W 2

a Am/pm marker Text a AM

k Hour in day (1~24) Number k 9

kk 09

K Hour in am/pm (0~11) Number K 0

z Time zone Text zzzz Eastern Standard
Time

z EST

‘ Escape for text ‘literal’ literal

‘‘ Single quote ‘‘ ‘

Table 6.7 Symbols that can be used in a date format pattern. (continued)
example using literals: “EEEE, MMM dd, ‘day’ DDD ‘of year’ yyyy GG”. This displays

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

262 CHAPTER 6
Internationalization, validators, and converters

something like “Fri, May 23, day 143 of year 2003 AD”. You don’t have to include
the date and time in every format; here’s one with just the time: “hh ‘o’ ‘clock’ a
zzzz”. It looks something like this: “07 o’clock AM Korea Standard Time”.

If you’ve worked with date formats in Java before, you may have noticed
that the date format pattern is the same pattern used by the java.
util.SimpleDateFormat class.

Here’s how you use the DateTime converter with one of the date format pattern
examples:

<h:inputText value="#{user.dateOfBirth}">
 <f:convertDateTime pattern="MM/dd/yyyy (hh:mm a)"/>
</h:inputText>

This would display something like “05/23/2003 (07:24 PM)”, but inside a text box.
If the user inputs a value that is not in this format, a conversion error will be gen-
erated, and user.dateOfBirth will not be updated.

 You can’t use the dateStyle or timeStyle properties with the pattern property,
but you can use the locale and timeZone properties. Here’s an example that uses
the timeZone property:

<h:inputText size="35" value="#{user.dateOfBirth}">
 <f:convertDateTime pattern="yy.dd.MM - hh:mm:ss a zz"
 timeZone="Asia/Seoul"/>
</h:inputText>

This code converts the date to the “Asia/Seoul” time zone, and displays some-
thing like “03.24.05 - 07:24:28 AM KST” inside an input control. If a user doesn’t
enter a value using this exact format—including the “AM KST”—the value will be
rejected and an error message will be generated.

 DateTime is a powerful converter—it takes full advantage of Java’s support for
locale-aware date and time management features. The Number converter does the
same thing for any type of number.

Using the Number converter
The Number converter is useful for displaying numbers in basic formats that work
for the user’s locale. It’s generally more forgiving than the DateTime converter;
it’s more likely to reformat a user’s input rather than complain about it. As with
DateTime, you tell Number how to handle the associated component’s value with
either the type or pattern property.

BY THE
WAY
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Type conversion and formatting 263

 The type property has three possible values: number, percentage, and currency.
The pattern property uses a decimal format pattern, which is similar conceptu-
ally to the date format patterns we discussed in the last section. Number also has
several other properties, as shown in table 6.8.

WARNING Make sure you use the correct value for the type property. Some JSF tag
libraries may not check the value, so if you mistype it, you’ll get unex-
pected results.

Table 6.8 Number converter properties.

Property Name Type Description

currencyCode String
Specifies a three-digit international currency code when the type is
currency. Use this or currencySymbol. See online extension
appendix E for a list of currency codes.

currency-
Symbol

String
Specifies a specific symbol, like “$”, to be used when the type is
currency. Use this or currencyCode.

groupingUsed boolean
True if a grouping symbol (like “,” or “ ”) should be used. Default is
true.

integerOnly boolean
True if only the integer portion of the input value should be pro-
cessed (all decimals will be ignored). Default is false.

locale
String or
Localea

a The locale property of the NumberConverter class must be a Locale instance. The JSP tag, however,

The specific locale to use for displaying this number. Overrides the
user’s current locale.

minFraction-
Digits

integer Minimum number of fractional digits to display.

maxFraction-
Digits

integer Maximum number of fractional digits to display.

minInteger-
Digits

integer Minimum number of integer digits to display.

maxInteger-
Digits

integer Maximum number of integer digits to display.

pattern String
The decimal format pattern used to convert this number. Use this
or the type property.

type String
The type of number; either number (the default), currency, or
percentage. Use this or pattern.
can accept a locale string (like “ru” for Russian) instead.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

264 CHAPTER 6
Internationalization, validators, and converters

These properties allow for precise control over how a number is displayed. And,
unless you specify a locale-specific property like currencySymbol, currencyCode,
or locale, the number will automatically be formatted for the current locale.
Table 6.9 shows some examples for the type property in two different locales. For
the United States and the United Kingdom, there isn’t much difference, except
that the symbol for British currency (pounds sterling) is different than the symbol
for U.S. currency (dollars).

NOTE If you specify both currencyCode and currencySymbol, currencyCode
will take precedence unless you’re using a version of the Java Runtime
Environment (or Java Development Kit) before 1.4.

The simplest way to use the Number converter is not to specify any properties at all:

<h:inputText id="NumberInput1">
 <f:convertNumber/>
</h:inputText>

This is exactly the same as setting maxFractionDigits to 3 and groupingUsed to
true:

<h:inputText>
 <f:convertNumber maxFractionDigits="3" groupingUsed="true"/>
</h:inputText>

This will display the number with a grouping separator and three decimal points,
like “4,029.345”, rounding the last digit if necessary. In this case, a comma was
the grouping separator, but it could just as easily been a space or something else,
depending on the locale. When using the Number converter with an input control
like this example, users don’t have to worry too much about how their input is for-
matted, as long as they enter in a number with the proper separators.

 Here’s how you use the Number converter with percentages:

<h:inputText value="#{user.balance}">

Table 6.9 Possible values for the Number converter’s type property.

Property Value Example (U.S.) Example (U.K.)

percentage 293,423% 293,423%

currency $2,934.23 £2,934.23

number 2,934.233 2,934.233
 <f:convertNumber type="percent" maxFractionDigits="2"/>
</h:inputText>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Type conversion and formatting 265

If the user’s balance was 4,029.3456, this would display “402,934.56%”. This is the
same as multiplying the value times 100 and adding a percent sign. Because we set
maxFractionDigits to 2, two decimal points were displayed. The default (when the
type property is set to percent) is not to show any decimal points, so if we had left out
the maxFractionDigits property, “402,935%” would have been displayed instead.

 When updating an object’s value, the converter translates the number back
into its original value. So if you entered “55%” into the input control, the user.
balance property would be set to .55. Note that the percentage sign (or the locale’s
equivalent) is required, or the converter will generate an error and no properties
will be updated.

 Formatting percentages is useful, but currency formatting is essential. Here’s
an example using the type of currency:

<h:inputText value="#{user.balance}">
 <f:convertNumber type="currency" currencyCode="KZT"/>
</h:inputText>

Here we specify the currencyCode property, which formats the number according
to a specific currency. (Currency codes, like language and country codes, are defined
by the International Organization for Standardization. You can find a complete list
in online extension appendix E.) The currency code “KZT” stands for tenge, which
is the currency of Kazakhstan. This would display the string “KZT4,029.35”. Spec-
ifying the currency code usually results in displaying the code as the currency sign.

 If we hadn’t specified the currencyCode, and the locale was U.S. English
(en_US), this would display “$4,029.35”, using the default currency symbol for
the United States. If a user entered in a value without the dollar sign, the con-
verter would report an error and the associated object wouldn’t be updated (leav-
ing out the comma will not generate an error).

NOTE In order for the Number converter to display the proper currency sign,
you must specify support for the language and country in an application
configuration file. So, in order for a user to see a dollar sign ($), your ap-
plication must support the locale en_US. If it only supports en, the inter-
national currency symbol (¤) will be used instead.

Here’s a more complicated example:

<h:outputText id="CurrencyDigitsInput" value="#{user.balance}">
 <f:convertNumber type="currency" minIntegerDigits="2"
 maxIntegerDigits="5" maxFractionDigits="2"

 currencySymbol="$"/>
</h:outputText>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

266 CHAPTER 6
Internationalization, validators, and converters

Here we specify a minimum of 2 integer digits and a maximum of 5 digits, as
well as a two decimals and a currency symbol of “$”. So, for the number
12345678.9876, the converter will display $45,678.99. The numbers to the left of
the fifth integer digit—123—will be truncated. Also, only two of the fractional
digits will be displayed, and the last one will be rounded. And finally, a dollar sign
will be added. Any input converted with these settings would be handled simi-
larly, but would require that the user enter the dollar sign.

 You can achieve quite a bit of control over the formatting of your application’s
numbers with these properties. If, however, there’s something you can’t handle by
specifying type and a few other properties, the pattern property provides a large
amount of flexibility.

Using the Number converter with decimal format patterns
For those cases when you need precise control over things, you can use the Number
converter’s pattern property. This is a special string, called a decimal format pat-
tern, that controls such things as the number of decimals, how to display negative
numbers, and the number of digits to display.

NOTE Number format patterns can also be used with the HtmlOutputFormat
component inside a message format pattern. The format type is number.

Decimal format patterns have two parts—a positive subpattern and a negative sub-
pattern—that are separated by a semicolon. The negative subpattern is optional;
if you leave it out, negative numbers will be displayed using the positive subpat-
tern, with the localized minus sign in front (“-” in most cases).

 Each subpattern consists of literal and special characters that specify the for-
matting for the number with an optional prefix and suffix. Some of the special
characters can only be used in the number portion of the subpattern; others can be
used in either the prefix or the suffix. These characters are summarized in table 6.10.

 Here are some examples that don’t have a prefix or suffix. The pattern
“###,###” for the number 40404 displays “40,404” in the U.S. locale. The pat-
tern “#,###” and “######,###” also display “40,404”, but “###, #####”,
“#,#####”, and “######,####” display “4,0404”—the grouping separa-
tor closest to the right always wins.

 For the number -40404, both “#,###” and “#,###;-#,###” display “-40,404”,
but the pattern “#,###;(#,###)” displays “(40,404)”. You use a “0” when you
want to display a specific number of digits—for example, for the number 99, the

pattern “0000” displays “0099”. The same pattern for the number 99999 displays
“9999”—note that last digit has been lopped off.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Type conversion and formatting 267

The most common prefixes you’ll use will be for displaying percentages or cur-
rency. Whether it’s a prefix or suffix depends on where you put the symbol. For
example, the number .99 converted with the pattern “###0.00%” displays as
“99.00%”. In this case, “%” counts as a suffix.

 For the number 40404, the pattern “¤#,##0.00;(¤#,##0.00)” displays
“$40,404.00” in the United States. For -40404, it would display “($40,404.00)”. In
the U.K., “£40,404.00” and “-£40,404.00” would be displayed, respectively.

 You can also use the international currency symbol, which eliminates symbol
ambiguity (for example, “$” could mean U.S. dollars, but it could also mean Canadian
dollars or any currency in any other country uses has a dollar). The only difference
is that you use two currency symbols: “¤¤#,##0.00;(¤¤#, ##0.00)”. For the same
number, this would display USD40,404.00 for the United States, and CAD40,

Table 6.10 Special characters that can be used in a number format pattern.

Number Format
Pattern Symbol

Meaning Location

O Digit. Number

Digit, but zero is not displayed. Number

, Decimal separator or monetary decimal separator for the current locale. Number

- Localized minus sign. Number

, Localized grouping separator. Only the last separator is used. So,
“###,###” is the same as “#########,###” and “#,###”.
They all mean “place a grouping separator after every three digits.”

Number

; Separates positive and negative subpatterns. In between
subpatterns

% Multiply by 100 and show as a percentage (with localized percentage
symbol).

Prefix or
suffix

¤ Localized currency sign (this character is replaced with the proper sym-
bol). If this character appears twice in a row, the international currency
code is used—this is useful if you want to be very specific about the
type of currency (for example, “USD” is displayed instead of “$”).
Whenever this character is used in a subpattern, the
monetary decimal separator is used. The unicode character (\u004A)
can be used in Java code instead of the actual character.

Number

, Used to escape special characters—use this if you want to display a
character, such as “#”.

Number
404.00 for Canada.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

268 CHAPTER 6
Internationalization, validators, and converters

TIP Don’t forget to use the localized currency symbol (“¤”) if you want your
formatting to be automatically localized. If you use “$”, it will be treated
as a literal, which means all users will see a dollar sign even if their cur-
rency isn’t a dollar!

You can also add literals to the prefix or suffix. For instance, the number 40404
formatted with the pattern “‘#’# baby!” displays “#40404 baby!”. Notice that the
“#” character was surrounded with two single quotes so that it would be displayed
literally. All special characters must be escaped this way if you want the converter
to display them instead of interpreting them as part of the pattern.

Decimal format patterns can also format numbers as exponents, infinity,
and the like. All of the ins and outs are covered in the Java API docs for
the java.text.NumberFormat class, which this converter uses behind
the scenes.

Once you understand how to use decimal format patterns, they’re pretty easy to
use with the Number converter. All you need to do is specify the pattern property
with the appropriate pattern:

<h:inputText value="#{user.balance}">
 <f:convertNumber pattern="###,###.##;(###,###.##)"/>
</h:inputText>

For the number 4029, this would display “4,029” inside a textbox for the U.S.
locale. Any data collected from the user would have to be in the same format (with
or without the grouping separator). This is similar to using the type, maxInteger-
Digits, maxFractionDigits, and groupingUsed properties, like this:

<h:inputText value="#{user.balance}">
 <f:convertNumber type="number" maxIntegerDigits="6"
 maxFractionDigits="2" groupingUsed="true"/>
</h:inputText>

The only difference between the results of these two declarations is how they han-
dle negative numbers. The first one displays them in parenthesis: “(4029)”. The
latter uses the locale’s negative symbol (the U.S. in this case): “-4029”.

 Here’s another example:

<h:inputText value="#{user.balance}">
 <f:convertNumber pattern="¤¤#,##0.00;
 (¤¤#,##0.00)"/>
</h:inputText>

BY THE
WAY
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Customizing application messages 269

For the number -4029 in the Canada locale, this displays “(CAD4,029.00)” inside
a textbox. If the number is negative, the user’s input must be surrounded by
parentheses. The input must also have the proper country currency code (like
“CAD” or “USD”), but the grouping separator is optional.

 By leveraging the power of Java’s number formatting features, the Number con-
verter makes formatting numbers in JSF both simple and powerful. We haven’t
given any thought to the types of error messages these converters display, though.
In the next section, we discuss validation and conversion error messages, and how
to make them user-friendly.

6.4 Customizing application messages

Validators (and sometimes components) generate error messages when a user’s
input is not acceptable, and converters generate error messages whenever there’s
a problem during the conversion process. These messages are handled by JSF’s
normal application message queue, and can be displayed with the HtmlMessages
and HtmlMessage components we covered in chapter 4.

 Messages have summary text, detailed text, and a severity level. The severity
levels are Info, Warning, Error, and Fatal. All of the standard validators and con-
verters have default messages (with the Severity level info) that are usually local-
ized for a few different languages. For example, the reference implementation
[Sun, JSF RI] includes support for English, French, and German. These messages
are configured using a normal Java resource bundle with one extra rule for han-
dling the detailed text. We’ll call these specialized resource bundles message bundles.

 Here’s an example from the reference implementation:

javax.faces.validator.NOT_IN_RANGE=Validation Error: Specified
 attribute is not between the expected values of {0} and {1}.
javax.faces.validator.NOT_IN_RANGE_detail=The value must be
 between {0} and {1}.

These two lines define both the summary and detail for a standard error message
used by the DoubleRange validator. The first line represents the message summary,
and the second line represents the detail. Note that the key for the last line is the
same as the first line, but with the string “_detail” at the end.

 Each JSF application can be associated with a single message bundle, which is
defined in a JSF configuration file. Here’s how you configure the application’s
message bundle:

<application>

 <message-bundle>CustomMessages</message-bundle>
 <locale-config>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

270 CHAPTER 6
Internationalization, validators, and converters

 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
</application>

This snippet configures a message bundle called CustomMessages. The bundle’s
properties file should be accessible somewhere in the application’s classpath. This
snippet also configures support for the English and Spanish locales. In general,
you should have one localized bundle for each locale the application supports.

 Once you’ve defined a message bundle for your application, you can selec-
tively override some of the standard error messages as long as you use the proper
key. Table 6.11 lists all of the standard keys along with default messages that are
included with the reference implementation. The actual message your JSF imple-
mentation uses may differ.

Table 6.11 Standard JSF error message keys and default text.

Message Bundle Key Default Value (in reference implementation)

javax.faces.validator.
NOT_IN_RANGE

Validation Error: Specified attribute is not between the
expected values of {0} and {1}.

javax.faces.validator.
NOT_IN_RANGE_detail

The value must be between {0} and {1}.

javax.faces.validator.
DoubleRangeValidator.LIMIT

Validation Error: Specified attribute cannot be con-
verted to proper type.

javax.faces.validator.
DoubleRangeValidator.MAXIMUM

Validation Error: Value is greater than allowable maxi-
mum of ‘‘{0}’’.

javax.faces.validator.
DoubleRangeValidator.MINIMUM

Validation Error: Value is less than allowable minimum
of ‘‘{0}’’.

javax.faces.validator.
DoubleRangeValidator.TYPE

Validation Error: Value is not of the correct type.

javax.faces.validator.
LengthValidator.LIMIT

Validation Error: Specified attribute cannot be con-
verted to proper type.

javax.faces.validator.
LengthValidator.MAXIMUM

Validation Error: Value is greater than allowable maxi-
mum of ‘‘{0}’’.

javax.faces.validator.
LengthValidator.MINIMUM

Validation Error: Value is less than allowable minimum
of ‘‘{0}’’.

javax.faces.component.
UIInput.CONVERSION

Conversion error during model data update
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Customizing application messages 271

As you can see, these aren’t the friendliest messages on Earth. Most users don’t
quite know what to make of a message like “Specified attribute cannot be con-
verted to proper type.” So, depending on your user base and the quality of your
JSF implementation’s default messages, it may make sense to customize the stan-
dard error messages.

If you’re wondering why the component names in this file start with “UI”
instead of “Html”, it’s because they refer to the superclasses of the con-
crete HTML components we covered in the previous chapters. For sim-
plicity, you can think of them as keys for families. So, the key javax.
faces.component.UIInput is for the Input family, the key javax.faces.
component.UISelectMany is for the SelectMany family, and the key
javax.faces.component.UISelectMany is for the SelectMany family.
(See chapter 11 for more information about the component hierarchy.)

Listing 6.3 shows the CustomMessage message bundle, which customizes some of
the standard messages and also defines text for an application message.

Message Bundle Key Default Value (in reference implementation)

javax.faces.component.
UIInput.REQUIRED

Validation Error: Value is required.

javax.faces.component.
UISelectOne.INVALID

Validation Error: Value is not valid.

javax.faces.component.
UISelectMany.INVALID

Validation Error: Value is not valid.

javax.faces.validator.
RequiredValidator.FAILED

Validation Error: Value is required.

javax.faces.validator.
LongRangeValidator.LIMIT

Validation Error: Specified attribute cannot be con-
verted to proper type.

javax.faces.validator.
LongRangeValidator.MAXIMUM

Validation Error: Value is greater than allowable maxi-
mum of ‘‘{0}’’.

javax.faces.validator.
LongRangeValidator.MINIMUM

Validation Error: Value is less than allowable minimum
of ‘‘{0}’’.

javax.faces.validator.
LongRangeValidator.TYPE

Validation Error: Value is not of the correct type.

Table 6.11 Standard JSF error message keys and default text. (continued)

BY THE
WAY
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

272 CHAPTER 6
Internationalization, validators, and converters

javax.faces.component.UIInput.REQUIRED=This field is required.
javax.faces.component.UIInput.REQUIRED_detail=Please fill in
 this field.
javax.faces.validator.UIInput.MINIMUM=Sorry, this number must be
 greater than {0}.
javax.faces.validator.UIInput.MAXIMUM=Sorry, this number must be
 less than {0}.
javax.faces.component.UIInput.CONVERSION=Sorry, your input is not
 in the right format. Please try again.
javax.faces.component.UIInput.CONVERSION_detail=There was an
 error converting your input into a format the application
 understands.
invalid_Email=This e-mail address is invalid. Please
 try again.

All of the messages in listing 6.3 except for the last one have keys that are defined
in table 6.11. They also have the same number of parameters. Whenever a JSF
component, validator, or converter looks for an error message, it will look for
them in this bundle first. So, instead of getting the message “Conversion error
during model data update,” the user will see something that makes a little more
sense: “Sorry, your input is not in the right format. Please try again.”

 Also, note that some of the messages have details defined, and some don’t.
This is fine—the detail isn’t required. However, if the default message has
detailed text, you should define details as well; otherwise you could end up with a
customized summary and the default detailed text, which may not be exactly what
you intended.

 The message on the last line (with the key invalid_Email) is an application-
specific message rather than a validation or conversion error message. You can
use the message bundle for defining custom application messages as well. This is
generally only useful if you’re adding messages in backing beans. You can put
other localized text in this bundle too, but for larger applications it might make
sense to put ordinary text strings in separate resource bundles.

 In our sample configuration file, we specified support for both English and
Spanish. Consequently, we should customize the messages for both languages.
The Spanish version is shown in listing 6.4. As you can see, all the keys are the
same, but the values are localized for Spanish.

Listing 6.3 CustomMessages.properties: Sample message bundle that customizes
some of the standard validation messages and also adds an application
message.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 273

javax.faces.component.UIInput.REQUIRED=Se requiere este dato.
javax.faces.component.UIInput.REQUIRED_detail=Por favor, complete
 este dato.
javax.faces.validator.UIInput.MINIMUM=Disculpa, se requiere un
 número mayor que {0}.
javax.faces.validator.UIInput.MAXIMUM=Disculpa, se requiere un
 número menor que {0}.
javax.faces.component.UIInput.CONVERSION=Disculpa, el formato
 de su entrada no es correcto. Por favor intentarlo de nuevo.
javax.faces.component.UIInput.CONVERSION_detail=Había un errór
 en convertir su entrada en el formato del programa.
myapp.Invalid_Email=No se reconoce como dirección de correo
 electrónico. Por favor intentarlo de nuevo.

That’s all the work that’s required to add or customize application messages—
simply define the application’s message bundle and create a new bundle for each
locale your application supports.

6.5 Summary

In this chapter, we covered JSF’s support for multiple languages (internationaliza-
tion), rejecting incorrect input (validation) and displaying or formatting data types
(type conversion). We examined how internationalizing a JSF application starts with
configuring support for one or more locales, which represent language/country
combinations. For each locale, you create a standard Java resource bundle, which
is a property file with name/value pairs (this process is called localization). Once
the bundle has been loaded (either with a JSP tag or programmatically), you can
easily reference localized strings with ordinary value references.

 We then looked at how validation is handled by separate classes that can be
registered on any input component. The standard validators are DoubleRange,
Length, and LongRange. (Input controls also have a required property, which dis-
allows empty input.) For any given component, you can register one or more val-
idators. If any validator rejects the user’s input, an error message is generated,
and no associated objects are updated.

 Next, we examined type conversion, which is also handled by separate classes,
called converters. Converters translate back-end objects into strings for display,

Listing 6.4 CustomMessages_es.properties: Sample message bundle that customiz-
es some of the standard validation messages and also adds an applica-
tion message
and translate user input back into the right type of object. Each component that

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

274 CHAPTER 6
Internationalization, validators, and converters

supports type conversion can be registered with a single converter. JSF has
implicit converters for all of the standard Java types. It also has the DateTime and
Number converters, which provide a high level of flexibility for converting and for-
matting dates and numbers.

 Validators and converters generate application error messages that can be dis-
played with the HtmlMessage and HtmlMessages components. Finally, we discussed
how you can customize the standard error messages or define new application
messages by creating a message bundle, which is a specialized resource bundle.

 Now that we’ve covered the basic JSF concepts, the world of the standard com-
ponents, and other goodies like internationalization and validators, it’s time to
look at how these pieces fit together to build real applications. In the next two
parts, we’ll develop our case study application—ProjectTrack.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Part 2

Building user interfaces

In part 1, we examined the fundamentals of JSF, as well as its standard
functionality. In part 2, we use this knowledge to build a real-world applica-
tion, step by step. We begin with prototypical screens, and finish with a work-
ing application that is fully integrated with back-end logic.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Introducing ProjectTrack
This chapter covers
■ An overview of ProjectTrack, our case study
■ The system’s requirements and analysis
■ The hypothetical development team
277

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

278 CHAPTER 7
Introducing ProjectTrack

Now that we’ve studied the architecture of JavaServer Faces and surveyed the stan-
dard components, it’s time to develop a real application; we’ll call it ProjectTrack.
The purpose of this application is to provide a high-level view of a project as it
moves through the development lifecycle. Each project has a state (such as proposal
or beta testing), and different users can promote a project to the next state or
demote it to the previous one. The system keeps track of all of the projects under
development, their current state, and comments from managers (such as the
project and development managers) along the way. In this chapter, we examine Pro-
jectTrack’s requirements and look at how the development team might be struc-
tured. Then, in chapter 8, we start building its user interface (UI).

7.1 Requirements

One of the biggest issues with software development projects is maintaining a
macro-level view of their progress. A hypothetical consulting company, Death-
March Development, is losing track of its projects, and this is causing problems
for its customers. Projects are often late and poorly managed, and upper manage-
ment has no way to see what’s going on. The company handles many projects at
once, with managers assigned to different parts of the development lifecycle.

 DeathMarch would like a system, called ProjectTrack to track the status of its
projects. Managers should know when it is their responsibility to work with a
project and what they are expected to do. For instance, a QA manager should
know when a particular project is ready for beta testing. The manager should also
be able to say that the testing was successful, or that it failed, and why. In other
words, the system should manage the project’s workflow. For each project, the
company would like to have a history of the stages through which the project has
passed, and when.

 DeathMarch would also like to know what artifacts have been completed for a
project. They’re interested in tracking documentation artifact managers that
cover such topics as requirements, architecture, and deployment. They also want
to know the type of project and who initiated it.

 For security reasons, the company has requested a simple name- and pass-
word-based login. Each user should have a specific role—development manager,
for example. The states of a project must be assigned to roles instead of user
accounts, so that if someone leaves the company, any other person in the same role
can handle the project.

 Because this is a small company, all users work with the same projects—if there

are three users in the project manager role, then all three users will see the same

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Requirements 279

set of projects. Users should be able to view the projects currently waiting for their
attention, as well as other projects. In addition, there should be an upper man-
agement role that can view all of the projects but that can’t modify any of them.

 Finally, the company has some clients and employees who prefer to speak in
Russian instead of English.

 Now that we have a handle on DeathMarch’s list of requirements, let’s break
them down into specifics. It’s clear that the system must do the following:

■ Provide a login based on user name and password.
■ Associate a role with each user.
■ Support projects that have a specific state.
■ Provide a list of projects awaiting approval or rejection for a particular role.
■ Allow users to approve or reject (with comments) a project that is waiting for

them (this results in the project moving to the next state or a previous state).
■ Allow users to view all projects.
■ Allow users to manipulate projects details, such as the artifact types com-

pleted for a project.
■ For a given project, provide a history of previous approvals and rejections.
■ Support both English and Russian.

DeathMarch Development has provided a list of the specific roles the system
needs to support, as shown in table 7.1.

A project goes through 12 states before it is considered complete. For each state,

Table 7.1 ProjectTrack must support several roles for users that participate in the software devel-
opment lifecycle.

Role Description

Project Manager Coordinates the whole project

Development Manager Manages the development team

Business Analyst Drives the requirements process

QA Manager Manages the testing process

Systems Manager Manages deployment and maintenance

Upper Manager Higher-level company employee who needs macro view of all projects
only users with a specific role can approve it (move it to the next state) or reject it

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

280 CHAPTER 7
Introducing ProjectTrack

(move it to the previous state). Table 7.2 lists the actual states of a project, with
their associated roles.

 Every time someone logs in, that individual will see all of the projects whose
state is associated with his or her role. We’ll call this the person’s inbox. For exam-
ple, when a user in the Development Manager role logs in, his or her inbox will
contain a list of all projects that are in the Architecture, Core Development, and
Final Development states.

DeathMarch has confirmed that projects progress in sequential order as indicated
by table 7.2. However, rejection is a more complicated affair, primarily because
when someone rejects a project, it doesn’t return to a deployment state. For

Table 7.2 Each project must go through several states. Only users in a specific role can accept or reject it.

State Description Responsible Role

Proposal Project initiated; may or may not contain
formal proposal.

Project Manager

Requirements/Analysis Business requirements distilled, and analy-
sis made of the problem domain.

Business Analyst

Architecture Requirements and analysis turned into
architectural artifacts.

Development Manager

Core Development Development begins. This includes alpha
releases and minor iterations.

Development Manager

Beta Testing
Deployment

Installation into an environment for beta
testing.

Systems Manager

Beta Testing Application feature complete and alpha
testing complete. Ready for final testing.

QA Manager

Final Development Final development—mostly bug fixes. Development Manager

Acceptance Testing
Deployment

Installation into an environment for accep-
tance testing.

Systems Manager

Acceptance Testing All bugs believed to be fixed. Final user test-
ing begins.

QA Manager

Production Deployment Installation into a production environment. Systems Manager

Completion Project completed. Project Manager

Closed Project closed. Project Manager
example, if the QA manager rejects a project in the Acceptance Testing state, it

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The conceptual model 281

shouldn’t go back to the Acceptance Testing Deployment state; rather, it should
go to the Final Development state. To visualize this, take a look at the diagram
shown in figure 7.1.

 Now that we have a good handle on what the system needs to do, let’s break it
down into more granular concepts.

7.2 The conceptual model

From the requirements, we can identify the following entities for this system:
User, Role, Project, Project Type, Status, Artifact, and Operation. These are listed
in table 7.3.

Figure 7.1 A state diagram representing the states of a project. Each project moves forward
sequentially through the states. However, when a project is rejected, it may move more than one
step back.

Table 7.3 These entities are ProjectTrack’s primary actors.

Entity Notes Properties

User A company’s employee. name, password

Role A User’s function in relation to Projects in the
company.

name

Project Represents a job for a client. name, type, initiatedBy, require-
ments contact, requirements con-
tact e-mail, list of Artifacts, list of
Operations
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

282 CHAPTER 7
Introducing ProjectTrack

Here’s how these entities are related:

■ A User has a single Role.
■ Users can view, approve, edit, or reject Projects.
■ Projects have a single Status, a single Project Type, many Artifacts, and a

list of Operations.
■ A Status is associated with a Role.

The different entities, and their relationships, are shown in figure 7.2.
 So far, we know that Projects can have Project Types and Artifacts, but we don’t

know what the possible values are for either one. These are shown in table 7.4.

Project Type Represents the type of a Project (application
development, database changes, etc.).

name

Status Represents the state of a Project. name, nextStatus, rejectionStatus

Artifact An element created during the development pro-
cess—usually a document.

name

Operation Created when a Project changes its Status. All of
the Operations for a Project make up its history.

timestamp, fromStatus, toStatus,
comments

Table 7.3 These entities are ProjectTrack’s primary actors. (continued)

Entity Notes Properties

Figure 7.2 A conceptual class diagram of ProjectTrack entities. A User views, accepts, and rejects
a Project whose Status is associated with the User’s Role. A Project also has a Project Type, one or

more Operations, and one or more Artifacts.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

User interface 283

So, now we have a conceptual model of the system. We’ll use these concepts as we
discuss the system in this part of the book and the next. These concepts will also
serve as the basis of ProjectTrack’s business model (also called a domain model),
which we discuss in chapter 12. When we develop backing beans for the system,
they will make calls to classes in the business model.

 This is all useful information, but some insight into how the UI works would be
nice as well, so let’s examine that now.

7.3 User interface

Additional talks with the overworked folks at DeathMarch reveal that the system
should have the following views:

■ Login
■ Inbox
■ Show All Projects
■ Project Details
■ Create a Project
■ Approve a Project
■ Reject a Project

When a user logs in, the default page should be the Inbox page, unless the user is
an upper manager, in which case it should be the Show All Projects page. On

Table 7.4 There are several possible values for Project Types and Artifacts.

Entity Possible Values

Artifacts ■ Proposal document
■ Architecture specification
■ Test plan
■ Deployment guidelines
■ Maintenance documentation
■ User documentation

Project Types ■ Internal database
■ External database
■ External web application
■ Internal web application
■ Internal desktop application
■ External desktop application
every page except Login, we need a toolbar that provides navigation to the Inbox,

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

284 CHAPTER 7
Introducing ProjectTrack

Show All Projects, and Create a Project pages, plus the ability to log out. From the
Inbox page, a user should be able to access the Approve a Project, Reject a
Project, and Project Details pages. From the Show All Projects page, a user should
be able to access the Project Details page. All of the functions and their corre-
sponding pages are shown in table 7.5.

All of the navigation paths we just discussed are visualized in figure 7.3.
 That’s it for the requirements and analysis of ProjectTrack. We now have a

basic idea of the system’s functional requirements, its conceptual model, and its
UI. Now, let’s look at the hypothetical team developing this application.

7.4 Development team

As we step through the development of this project in the following chapters, we’ll
assume that we have a two-person team: a front-end developer, and an applica-
tion, or back-end, developer. Our front-end developer will concentrate on creat-
ing views with JSP, navigation rules, and integrating views with backing beans and
model objects. The application developer will work on everything else—backing
beans, managed bean configuration, integration with the domain logic, and so on.

 These two roles certainly aren’t a requirement for building JSF applications—

Table 7.5 ProjectTrack supports several functions that are accessible only from specific pages.

Function Display Page Comments

Login Inbox All users except Upper Managers

Show All Projects Upper Managers only

View Inbox Inbox All users except Upper Managers

View All Projects Show All Projects

View Project Details Project Details

Create a Project Create a Project Project Managers only

Approve a Project Approve a Project
Allow users to check off completion of Artifacts and add
comments

Reject a Project Reject a Project
Allow users to check off completion of Artifacts and add
comments

Logout Login
different projects can vary substantially. JSF works well in environments in which

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Development team 285

roles are segregated, but it works equally well in development teams where the
lines are more blurry or even nonexistent, and in small one-person projects. Dif-
ferent tools cater to different types of teams better than others.

 ProjectTrack is based solely on JSF and JSP, with some use of the Servlet API,
such as an authentication filter. We assume that the two people are working inde-

Figure 7.3 A class diagram representing navigation between pages in ProjectTrack.
pendently at first but communicating at key integration points (remember, this is
one of the key benefits of JSF and other MVC-style frameworks).

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

286 CHAPTER 7
Introducing ProjectTrack

7.5 Summary

In this chapter, we briefly introduced ProjectTrack, a case study designed to help
you understand what it’s like to develop a real JSF application. ProjectTrack is an
application that keeps track of a project’s state and allows users to push it forward
to the next state or back to the previous one. For each project, it maintains basic
information (a description, who started the project, and so on), and a history of
approvals and rejects performed on the project. The system will support several
roles, simple password-based authentication and both English and Russian.

 In parts 2 and 3 of this book, we will build ProjectTrack, starting with the UI
and then moving to backing beans, model objects, and additional application
functionality such as internationalization and localization. Chapters 8 through 10
will focus on building the UI from the front-end developer’s perspective. Chap-
ters 11 through 14 will look at JSF development from the application developer’s
perspective, touching on all of the core JSF APIs, backing bean development,
event listeners, and more. Every chapter won’t deal directly with ProjectTrack, but
most of them will. ProjectTrack will also take advantage of UI extensions (custom
components and validators) that we develop in online extension part 5.

 In the next chapter, we begin building ProjectTrack’s login page.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a user
interface without Java

code: the Login page
This chapter covers
■ Basic application configuration
■ Building a login page with JavaScript, CSS,

validators, and custom messages
■ Using HtmlPanelGrid for layout
287

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

288 CHAPTER 8
Developing the Login page

Now that we’ve introduced the case study, ProjectTrack, and its system require-
ments, let’s start building the application. In this chapter and the next, we’ll de-
velop ProjectTrack’s user interface (UI) with JavaServer Faces. Our goal is to have
an interactive interface without any application logic. This concept should be famil-
iar to rapid application development (RAD) developers—with tools like AWT/Swing
IDEs, Delphi, and Visual Studio .NET, it’s quite easy to lay out the entire UI with
basic navigation and validation but no real code. Integrating the real meat of the
application later is fairly straightforward. The closest thing to this for web develop-
ers is typically a set of static HTML pages that eventually get thrown away or con-
verted into application templates and then maintained separately.

 Like UIs developed with the tools we just mentioned, the one we develop in
this chapter will provide basic navigation and will be the basis for the final ver-
sion. The main difference is that instead of integrating the UI with application
logic and model objects, we’ll start with static text and hardcode the navigation
rules. Even though JSF tools allow you to work visually and generate a lot of the
code for you, we’ll show all of the examples in raw JSP so that you can get a feel for
what vanilla Faces development is like.

 If you’re not particularly interested in the JSP aspects of these chapters, bear
in mind that the behavior of the standard components is the same even if you use
another display technology; the mechanism for declaring the view would be the
primary difference.

 Developing the UI separately gives us two main benefits:

■ The front-end developer can initially work independently from the appli-
cation developer. We’re not suggesting that the two work in a vacuum;
however, communication can be limited to discussions of interface points.
(See chapter 10 for a discussion of the integration process.)

■ The working UI can serve as a prototype that can be quickly modified
based on user input; this saves time that would otherwise be wasted creat-
ing separate sets of HTML.

We’ll start with the basic configuration for the web application. Next, we’ll assem-
ble the Login page step by step, examining the fundamental aspects of con-
structing a JSF page. Then, in the next chapter, we’ll develop the remaining
pages of ProjectTrack.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Getting started 289

8.1 Getting started

Even though we’re not writing any Java code in this
chapter, we need to create a JSF application so the
framework can do its magic. All JSF applications are
standard Java web applications. All that’s required
is a properly configured deployment descriptor
and an installed JSF implementation. (This will
either be included with your application server or
installed separately, as is the case with the reference
implementation [Sun, JSF RI].) However, most
applications also require the JSF configuration file,
faces-config.xml, and this one is no different.

 Web applications have a specific directory struc-
ture. (Tools will often create the basic structure for
you.) ProjectTrack’s initial directory structure, com-
plete with the basic files, is shown in figure 8.1. You
may have noticed that this is a specific instance of
the basic directory structure shown in chapter 3
(figure 3.1, page 91).

 All JSPs will be placed in the root directory. The
deployment descriptor (web.xml) and faces-con-
fig.xml are both placed in the WEB-INF directory
(no file in this directory is visible to users). The
code is placed in the WEB-INF/lib directory. Usu-
ally, the JSF libraries will be in this directory as well.
The structure also includes a directory for images;
we listed all of the image filenames based on the
assumption that a wildly productive graphic
designer has already created them all. The ptrack-
Resources.properties will be used to customize
application messages and perform localization.

 Now that we know where the files will go, let’s
move on to configuration.

8.1.1 Setting up web.xml

Every Java web application has a deployment descriptor called web.xml. You can

Figure 8.1 ProjectTrack is a
web application, whose directory
structure includes JSPs,
libraries, images, and
configuration files.
do a lot with this file—specify event handlers for the servlet lifecycle (which is

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

290 CHAPTER 8
Developing the Login page

separate from the JSF Request Processing Lifecycle), configure security, integrate
with EJBs, and all sorts of other fun things that we don’t discuss in this book. All
that’s necessary for a simple JSF application like ProjectTrack is a declaration of
the FacesServlet and the appropriate URL mapping, as shown in listing 8.1. (We
added a default page for good measure.)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <display-name>ProjectTrack</display-name>
 <description>JavaServer Faces in Action sample application.
 </description>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file>faces/login.jsp</welcome-file>
 </welcome-file-list>
</web-app>

The <welcome-file-list> element is used to specify the default pages for the web
application. For ProjectTrack, the default page is login.jsp. Note the “faces/” pre-
fix—this ensures that the FacesServlet handles the request for the page.

 You may have noticed that this deployment descriptor looks a lot like the one
for the Hello, world! example from the first chapter. Other than the welcome file,
only the name and description are different; the basic requirements are always
the same.

8.1.2 Setting up faces-config.xml

In chapter 3, we explained how to configure navigation rules. Listing 8.2 defines
a single rule for navigating from login.jsp (which is the page we’ll develop in
this chapter).

Listing 8.1 Deployment descriptor (web.xml) for UI development

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating the Login page 291

<?xml version="1.0"?>

<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_0.dtd">

<faces-config>
 <navigation-rule>
 <from-tree-id>/login.jsp</from-tree-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-tree-id>/inbox.jsp</to-tree-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>failure</from-outcome>
 <to-view-id>/login.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

</faces-config>

This navigation rule simply says “For login.jsp, if the outcome is 'success', dis-
play inbox.jsp; if the outcome is 'failure', redisplay login.jsp.” When we build
inbox.jsp page in this chapter, we’ll hardcode the outcome "success" for our Sub-
mit button so that navigation will work without any application code. We’ll con-
tinue the process of adding navigation rules and hardcoding outcomes as we walk
through additional pages in the next chapter. Then, in chapter 10, we’ll update
our component declarations to reference action methods instead.

 There’s a lot more to JSF configuration than just navigation rules. As we build
ProjectTrack, we’ll define managed beans and configure custom validators, con-
verters, and components. If you want to know more about setting up a JSF envi-
ronment or configuration in general, see chapter 3.

8.2 Creating the Login page

Let’s get started with the Login page: login.jsp. We’ll build this page step by step,
examining various aspects of JSF as we go. We’ll then apply knowledge gained
from this process as we build the remaining pages.

 The page simply displays a welcome graphic and the name of the application,

Listing 8.2 faces-config.xml: ProjectTrack’s configuration file with a single
navigation rule
accepts the username and password for input, and has a single Submit button
(because we display only two fields, we have no real need for a Clear button). The

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

292 CHAPTER 8
Developing the Login page

password field shouldn’t display the text to the user—it should render as a stan-
dard HTML password input control so that the browser will show users asterisks
instead of the actual text the user types. Figure 8.2 is a rough mock-up of the page.

 Structurally, you can think of this design as having a table with one row and
two columns: one for the graphic and one for a smaller, embedded table that con-
tains all of the other controls. The embedded table has four rows. The first row
has one column and simply contains the title. The second and third rows have two
columns that contain a text label and an input field. The final row has two col-
umns: the first is empty, and the second contains a single Submit button.

 Now that we have our application configured, and a mock-up of the page, let’s
get started.

8.2.1 Starting with HtmlGraphicImage and
HtmlOutputText components

We’ll begin by creating a basic page that just has the graphic and the text “Pro-
jectTrack” in a large font, as shown in figure 8.3. The JSP is shown in listing 8.3.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core"
 prefix="f"%>

<%@ taglib uri="http://java.sun.com/jsf/html"

Figure 8.2 Mock-up of the Login page.

Listing 8.3 The JSP source for the Login page with only a graphic and the text
“Project Track”

Core JSF
tag library b

JSF HTML
tag library c
 prefix="h"%>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating the Login page 293

<f:view>
<html>

<head>
 <title>
 <h:outputText value="ProjectTrack"/>
 </title>
</head>

<body>

<table>
 <tr>
 <td>
 <h:graphicImage url="/images/logo.gif"
 alt="Welcome to ProjectTrack"
 title="Welcome to ProjectTrack"
 width="149" height="160"/>
 </td>
 <td>
 <font face="Arial, sans-serif"
 size="6">

 <h:outputText value="ProjectTrack"/>

 </td>
 </tr>
</table>

</body>
</html>
</f:view>

Figure 8.3
Our Login page with only
HtmlGraphicImage

View tag that
encloses all
components

 d

HtmlOutputText
component

 e

Table for
layout

 f

HtmlGraphicImage
component

 g

Format for
the heading

 h

Another
HtmlOutputText
component

 i
and HtmlOutputText
components.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

294 CHAPTER 8
Developing the Login page

All JSP-based JSF pages must import the core JSF tag library, which includes tags
without rendering functionality, like <f:view>, and the various validator and con-
verter tags. If we were using a render kit other than the standard one included
with JSF, we would still include this tag library.
We’ll be using the standard HTML components for this application, which is ref-
erenced by this tag library.
All Faces tags must be enclosed in a <f:view> tag.
Here we create an HtmlOutputText component with the text “ProjectTrack”.
For now, we’ll use standard HTML tables for all of our layout.
Here we create an HtmlGraphicImage component that references the image
located at /images/logo.gif. Because the image URL has a leading slash, it will be
rewritten to be relative to the web application’s root (“/projects” in this case). The
additional properties—alt, title, width, and height—are passed through to the
HTML output (which is the tag in this case). Most of the tags in the stan-
dard HTML tag library behave in this way.
For now, we’ll use a standard HTML tag to format our heading.
This is another HtmlOutputText component with the text “ProjectTrack”. Because
it’s enclosed in the tag described in h, it will appear in a larger font.

The corresponding HTML output is shown in listing 8.4.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
 <head>
 <title>
 ProjectTrack
 </title>
</head>
<body>

<table>
 <tr>
 <td>
 <img src="/projects/images/logo.gif"
 title="Welcome to ProjectTrack">
 </td>
 <td>

 ProjectTrack

 b

 c

 d
 e
 f
 g

 h
 i

Listing 8.4 Output of the Login page with only HtmlGraphicImage and HtmlOutputText
components

HtmlOutputText
component

HtmlGraphicImage
component

HtmlOutputText

 </td>

component

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating the Login page 295

 <tr>
</table>

</body>
</html>

This was a good start. Let’s move on to the meat of the page.

8.2.2 Adding a form

Now we’ll add the basic form elements so that we can capture the login name
and password. These include an HtmlInputText component for the username,
an HtmlInputSecret component for the password, and an HtmlCommandButton
component for the Submit button. All of these elements will be placed within an
HtmlForm so that JSF knows it will be sending the data back to the server. This
page uses nested tables to achieve the layout shown in figure 8.2. Figure 8.4
shows the resulting page, displayed in a browser.

 The JSP source is shown in listing 8.5.

Figure 8.4 The Login page with input components and a table layout.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

296 CHAPTER 8
Developing the Login page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<f:view>
<html>

<head>
 <title>
 <h:outputText value="ProjectTrack"/>
 </title>
</head>

<body>

<h:form>

<table cellpadding="0" cellspacing="0">
 <tr>
 <td>
 <h:graphicImage url="/images/logo.gif"
 alt="Welcome to ProjectTrack"
 title="Welcome to ProjectTrack" width="149"
 height="160"/>
 </td>
 <td>
 <table cellpadding="5" cellspacing="3">
 <tr>
 <td colspan="2">

 <h:outputText value="ProjectTrack"/>

 </td>
 </tr>
 <tr>
 <td>
 <h:outputLabel for="userNameInput">
 <h:outputText
 value="Enter your user name:"/>
 </h:outputLabel>
 </td>
 <td>
 <h:inputText id="userNameInput" size="20"
 maxlength="30"/>
 </td>
 </tr>

Listing 8.5 The JSP source for the Login page with input components and a table layout

HtmlForm containing
input controls

 b

Table-based
layout

 c

HtmlOutputText
rendered as a label

 d

HtmlInputText
with an id e
 <tr>
 <td>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating the Login page 297

 <h:outputLabel for="passwordInput">
 <h:outputText value="Password:"/>
 </h:outputLabel>
 </td>
 <td>
 <h:inputSecret id="passwordInput"
 size="20"
 maxlength="20"/>
 </tr>
 </tr>
 <tr>
 <td/>
 <td>
 <h:commandButton action="success"
 title="submit"
 value="Submit"/>
 </tr>
 </table>
 </td>
 </tr>
</table>

</h:form>

</body>
</html>
</f:view>

We start by declaring an HtmlForm component. This will serve as a container for
all of the Input and Command components on the page.
The table layout matches the layout of the mock-up in figure 8.2, a large table
with a single row and two columns. The graphic is in the first column, and a
nested table containing the other controls is in the second column.
Here we use the <h:outputLabel> tag to render all embedded components as a
label for the control with the identifier “userNameInput”. Any component refer-
enced by the for property of this tag must have a human-specified identifier.
The embedded component is an HtmlOutputText instance that has the text “Enter
your user name:”. So this code outputs an HTML label for a component called
“userNameInput” with the value “Enter your user name:”. The same method is
used for labeling the password field in the page.
This code creates a simple HtmlInputText component for accepting the user’s
login name. This component has been assigned an identifier so that it can be ref-
erenced elsewhere (such as with the label described in d).

HtmlInputSecret f

HtmlCommandButton g

 b

 c

 d

 e
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

298 CHAPTER 8
Developing the Login page

This code creates another HtmlInputText component for the password, except we
use the <h:inputSecret> tag, which renders as an HTML <input> tag of type
“password”. This way, no one will be able to slyly stand over the user’s shoulder
and see the password. This component has been assigned an identifier so that it
can be referenced elsewhere, as in the <h:outputLabel> tag.
Submitting a form requires a Command component. This line declares an Html-
CommandButton component, which generates an ActionEvent with the hardcoded
outcome "success". Hardcoding the action value tells JSF to bypass any applica-
tion code and simply look for a matching outcome in the page’s navigation rule.
Fortunately, in listing 8.2 we set up the navigation rule for this page so that the
outcome "success" will always load inbox.jsp.

The output of the JSP is shown in listing 8.6.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
<head>
 <title>
 ProjectTrack
 </title>
</head>

<body>

<form id="_id1" method="post"
 action="/projects/faces/login.jsp"
 enctype="application/x-www-form-urlencoded">

<table cellpadding="0" cellspacing="0">
 <tr>
 <td>
 <img src="/projects/images/logo.gif"
 alt="Welcome to ProjectTrack" height="160"
 title="Welcome to ProjectTrack" width="149" />
 </td>
 <td>
 <table cellpadding="5" cellspacing="3">
 <tr>
 <td colspan="2">

 ProjectTrack

 f

 g

Listing 8.6 The HTML output for the Login page with input components and a
table layout

Output of
HtmlForm
 </td>
 </tr>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating the Login page 299

 <tr>
 <td>
 <label for="_id1:userNameInput">

 Enter your user name:
 </label>
 </td>
 <td>
 <input id="_id1:userNameInput"
 type="text"
 name="_id1:userNameInput"
 maxlength="30"
 size="20" />
 </td>
 </tr>
 <tr>
 <td>

 Password:

 </td>
 <td>
 <input id="_id1:passwordInput" type="password"
 name="_id1:passwordInput" value=""
 maxlength="20" size="20" />
 </tr>
 </tr>
 <tr>
 <td/>
 <td>
 <input type="submit" name="_id1:_id8" value="submit"
 title="Submit" />
 </tr>
 </table>
 </td>
 </tr>
</table>

<input type="hidden" name="_id1" value="_id1" />
</form>

</body>
</html>

</form>

</body>
</html>

HtmlOutputText label

HtmlInputText
for the
username

HtmlInputSecret
for the password

HtmlCommandButton

More output of
HtmlForm
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

300 CHAPTER 8
Developing the Login page

If you’re wondering why HtmlForm has a <hidden> field at the end of the page, it’s
because the component processes that field in order to set its submitted property,
which returns true if that field exists. This isn’t something you usually have to
worry about. Also note that the form posts back to itself, which, as we mentioned
in the first part of this book, is called postback. This is the norm for JSF applica-
tions because the framework needs to associate events with the current view.

 At this point, we have a working page. If you click the Submit button, you’ll get
an error page saying that inbox.jsp can’t be found. (The obscurity of the message,
however, will depend on your web container.) This is a good sign—it means that
the navigation rule is configured correctly.

8.3 Sprucing things up

Okay, now we have a basic working Login page. But real applications are often a
little nicer-looking than figure 8.4. The tag and plain-old form buttons
are so ’90s. Fortunately, you can use familiar HTML development tricks to make
JSF applications look a little more modern (if you consider HTML modern, that
is). What we’re aiming for is something like figure 8.5, which uses JavaScript for a
rollover effect on the button and Cascading Style Sheets (CSS) for formatting the
title (instead of the tag).

Figure 8.5 The Login page with an image for a button, JavaScript for a rollover, and
CSS for formatting.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Sprucing things up 301

8.3.1 Using an image for the button

An obvious way to spice things is to use a graphic for the button. This can be done
by changing the <h:commandButton> tag as follows:

<h:commandButton action="success"
 image="#{facesContext.externalContext.requestContextPath}
 /images/submit.gif"/>

You may have noticed that the image property looks just like HTML. As a matter of
fact, it is just passed through to the rendered HTML. Most of the components
support these pass-through properties.

 Pass-through properties do, however, support value-binding expressions,
which is what we have in this example. The expression "#{facesContext.external-
Context.requestContextPath}" references the application’s context path, which is
“/projects” in this case. This is necessary for HtmlCommandButton because the image
property isn’t automatically prefixed with the context path (as it is for Html-
GraphicImage). This is a feature that we hope will be added in a future version of
JSF. In the meantime, you can either use a value-binding expression or use an
HtmlCommandLink instead.

 This expression references the externalContext property of FacesContext,
which provides access to properties of the servlet or portlet environment. See
chapter 11 for more information about this class.

 By the way, this expression is also equivalent to the JSP expression "<%=
request.getContextPath() %>". To keep things consistent, it’s usually better to
use JSF expressions instead. We’ll also use this expression to communicate the
context path to JavaScript code.

8.3.2 Integrating with JavaScript

The pass-through HTML properties also allow us to integrate with client-side Java-
Script quite easily. Although JSF components will often render JavaScript for you,
it’s quite likely that somewhere along the line you’ll need to manually integrate
with scripts, especially if you’re converting an existing application.

 For the Login page, we’ll add a simple JavaScript function to create a standard
“rollover” so our graphical button will appear to change the color of its text when
a user places the mouse over it. We can do this by adding the following JavaScript
to the <head> section of our page:

<script language="JavaScript">
 function set_image(button, img)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

302 CHAPTER 8
Developing the Login page

 button.src = img;
 }

</script>

The code for the button itself must be changed as follows:

<h:commandButton action="success" title="Submit"
 image="#{facesContext.externalContext.
 requestContextPath}/images/submit.gif"
 onMouseOver="set_image(this,
 '#{facesContext.externalContext.requestContextPath}
 /images/submit_over.gif')"
 onMouseOut="set_image(this,
 '#{facesContext.externalContext.requestContextPath}
 /images/submit.gif');"/>

If you do a lot of front-end development, this sort of code should look pretty
familiar to you. We use the standard client-side HTML event handlers to call our
little function when the user places the mouse over the button (onMouseOver) or
moves it away from the button (onMouseOut). The function receives a reference to
the button element (which will be rendered as a standard <input> element of type
“image”) by using this identifier. It also receives a string with the name of the
graphic we’d like the browser to display for that button. In the HTML 4 document
object model (DOM), this element has an src property, which is what we set to
equal the new image name in the set_image() function. The graphic submit_
over.gif looks exactly like submit.gif, except that the color of the text is black.
Consequently, while the user’s mouse is over the button, the text color appears to
change to black; it turns back to green when the user moves the mouse away.

 Note that we’ve prepended the image URL with the value-binding expression
for the web application’s context path, which is “/projects” in this case. This way, we
ensure that the images use an absolute URL instead of a relative URL. This allows
us to change the context root without worrying about hardcoded absolute paths.

 This simple example demonstrates the fact that integrating JavaScript into
JSF applications is as easy as integrating JavaScript into standard JSP applica-
tions. Generally speaking, if the custom tag you’re using for the component has
an HTML property, you can be sure it’s going to be in the HTML rendering of the
component. This allows you to attach JavaScript event handlers to any compo-
nent tag that accepts the proper properties. You can also put script elements and
references in JSF pages just as you can with any other JSP page.

 Client-side tasks like rollovers are extremely common and often require lots

of little bits of JavaScript code—sometimes way more than should be necessary.
This makes them perfect candidates for JSF components that handle all of the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Sprucing things up 303

JavaScript for you. In this example, it’d be much nicer to just specify both image
filenames as properties of the <h:commandButton> tag and forget about all of the
event handling and JavaScript. We develop a renderer with this functionality in
online extension chapter 17.

 Adding an image to the button makes things look a little better, but we could
use some additional formatting as well.

8.3.3 Adding Cascading Style Sheets

Just as we added JavaScript by using pass-through HTML properties, we can also
add Cascading Style Sheets (CSS). In the previous listings, we formatted the text
“ProjectTrack” using the HTML element. Most sites these days use CSS for
formatting HTML elements, and we have been using this approach throughout
the book.

 Some IDEs will give you tools for creating CSS styles without any knowledge of
CSS (see figure 4.1 for a screen shot), but most web developers are quite familiar
with it already. Let’s start by creating a file, stylesheet.css, and then place it in the
root of the web application directory. The first style will be the one used to format
the name of the application (replacing the tag):

.login-heading
{
 font-family: Arial, sans-serif;
 font-size: 26pt;
}

Next we can add the style sheet reference to our Login page:

<head>

...

 <link rel="stylesheet" type="text/css"
 href="stylesheet.css"/>

...

</head>

Now we can replace the tags:

<h:outputText value="ProjectTrack" styleClass="login-heading"/>

Most of the components display the class property as an HTML element.
The previous code fragment renders to the following HTML:
ProjectTrack

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

304 CHAPTER 8
Developing the Login page

That’s all there is to it. Every tag in the standard HTML tag library that supports
style sheets has a special property called styleClass. Panels and HtmlDataTable
are a little more complicated (they have styles for different rows and columns) but
any property ending in “Class” is used to reference a CSS style.

 We’ve now achieved the more attractive page shown in figure 8.5. But a page
alone isn’t all that exciting.

8.4 Adding validators

Even though our page works as is, it’s not being used as much more than a stan-
dard web form with no logic. No matter what you type in the input fields, clicking
the Submit button always forwards you to the inbox.jsp page. Because JSF has
built-in support for validation, it makes sense to add validators so that the inter-
face feels a little more interactive to users. Adding validation during UI prototyp-
ing also helps users and developers get a shared vision of how the application
should behave.

 In chapter 4, we showed you how to use HtmlMessage and HtmlMessages to dis-
play validator error messages. However, our page design has no place for report-
ing such errors. We need to report errors for both fields, which means adding
another column to the nested table. The revised mock-up of the page is shown in
figure 8.6. You can see that we’ve included a new column that is used to display
error messages—one cell for each input field. If no errors are present, the column
should be empty (in other words, the page should look like the original mock-up
in figure 8.1, page 289).

Figure 8.6 A mock-up of the Login page with a column for errors.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Adding validators 305

These error messages should grab the user’s attention, so we’ll add a new CSS
class to our style sheet for them:

.errors {
 color: red;
}

No rocket science here; this just ensures that our error message show up in red.
 Now that we know where to put the error messages and what they’ll look like,

let’s take a look at the requirements for these two fields. Because both the username
and password are necessary to validate the user, both fields are required. They
must be at least five characters long. The maximum length of the name field is
30; the maximum length of the password field is 15. This translates to setting the
required property to true, and adding a Length validator, respectively. The rele-
vant portions of the code, changed to add validation, is shown in listing 8.7.

...
<table cellspacing="0" cellpadding="0">
 <tr>
 <td>
 <h:graphicImage url="/images/logo.gif" alt="Welcome to ProjectTrack"
 title="Welcome to ProjectTrack" width="149"
 height="160"/>
 </td>
 <td>
 <table cellpadding="5" cellspacing="3">
 <tr>
 <td colspan="3">
 <h:outputText value="ProjectTrack"
 styleClass="login-heading"/>
 </td>
 </tr>
 <tr>
 <td>
 <h:outputLabel for="userNameInput">
 <h:outputText value="Enter your user name:"/>
 </h:outputLabel>
 </td>
 <td>
 <h:inputText id="userNameInput" size="20" maxlength="30"
 required="true">

 <f:validateLength minimum="5"
 maximum="30"/>

Listing 8.7 Adding validation to the Login page

Additional column
for errors

Require
input

Length
 </h:inputText>
validator

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

306 CHAPTER 8
Developing the Login page

 </td>
 <td>
 <h:message for="userNameInput"
 styleClass="errors"/>
 </td>
 </tr>
 <tr>
 <td>
 <h:outputLabel for="passwordInput">
 <h:outputText value="Password:"/>
 </h:outputLabel>
 </td>
 <td>
 <h:inputSecret id="passwordInput" size="20" maxlength="20"
 required="true">
 <f:validateLength minimum="5" maximum="15"/>
 </h:inputSecret>
 </td>
 <td>
 <h:message for="passwordInput" styleClass="errors"/>
 </td>
 </tr>
 <tr>
 <td/>
 <td>
 <h:commandButton action="success" title="Submit"
 image="#{facesContext.externalContext.requestContextPath}
 /images/submit.gif"
 onMouseOver="set_image(this,
 '#{facesContext.externalContext.requestContextPath}
 /images/submit_over.gif')"
 onMouseOut="set_image(this,
 '#{facesContext.externalContext.requestContextPath}
 /images/submit.gif');"/>
 </tr>
 <td/>
 </tr>
 </table>
 </td>
 </tr>
</table>
...

Now that we’ve added validators, the HtmlMessage components on the page will
display error messages if there are any, as shown in figure 8.7.

 With validators on the page, JSF now will automatically handle validation,

HtmlMessage
component
remembering the value of the input controls even if the value is incorrect. The
actual text of the error messages could use some help, so let’s tackle that task now.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Adding validators 307

8.4.1 Customizing validation messages

The validation error messages shown in figure 8.7 are the standard messages that
ship with Sun’s JSF RI [Sun, JSF RI]. Other implementations may have nicer mes-
sages, but because this one doesn’t, we’ll make some changes.

 In the directory listing shown in figure 8.1, we had a simple file called ptrack-
Resources.properties in the WEB-INF/classes directory. This is a resource bundle—
a file is for customizing error messages and also localizing other application strings.
During prototyping, we can use it to make our validation errors look a little more
user-friendly. In part 3, we’ll use resource bundles for localization as well.

 The file ptrackResources.properties is a standard Java properties file, which
has just plain text and name/value pairs. As long as we use the proper validation
message key, we can change the value. Listing 8.8 shows the changes necessary for
the two validation messages used in the login page.

javax.faces.component.UIInput.REQUIRED=This field is required.
javax.faces.component.UIInput.REQUIRED_detail=
 Please fill in this field.
javax.faces.validator.LengthValidator.MAXIMUM=
 This field must be less than {0} characters long.
javax.faces.validator.LengthValidator.MINIMUM=
 This field must be at least {0} characters long.

Figure 8.7 The Login page with validation errors.

Listing 8.8 Customized validation error messages
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

308 CHAPTER 8
Developing the Login page

This customizes the summary and detail text for input controls with the required
property set to true, and the summary text for the Length validator (no detail text
has been specified).

 All we have to do now is tell JSF about this file so that it will use it for valida-
tion error messages. This can be done by adding an <application> node to
faces-config.xml:

<application>
 <message-bundle>ptrackResources</message-bundle>
</application>

Note that we don’t use the extension “.properties” here—JSF will automatically
append it as necessary. After making this change (and restarting the application),
we get the friendlier messages shown in figure 8.8, which make the page a little
more like a real application. For more information on validation and customizing
error messages, see chapter 6.

 The page is now pretty complete, but we can still play with the layout.

8.5 Improving layout with HtmlPanelGrid

You may have noticed that even though our page has a decent amount of JSF com-
ponents, the layout is still handled by standard HTML tables. Another approach is
to use multiple HtmlPanelGrids for layout. This component is the closest thing JSF
has to Swing’s layout managers (as far as standard components go).

 Using HtmlPanelGrid allows you to work more exclusively with JSF compo-
nents, which means you can spend less time dealing with the nuances of HTML.

Figure 8.8 The login page with customized validation errors.
In other words, you won’t waste time trying to figure out where that missing <td>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Improving layout with HtmlPanelGrid 309

element went. Well-developed components are also intimately familiar with
HTML standards and can change their output depending on the browser type,
which saves you the effort of doing so yourself.

 So, let’s modify our page. The goal is to duplicate the structure shown in fig-
ure 8.6: a main two-column table with the image on the left, and a nested table on
the right. The nested table will have a heading with the text “ProjectTrack”, fol-
lowed by rows that have input fields, buttons, and output components.

 HtmlPanelGrid is the perfect choice for this because it lays out components in
tables without the need for a value-binding expression. The component displays
an HTML table, so just as we had one HTML table nested inside another, we’ll
have one HtmlPanelGrid nested inside another. Our completed login page, revised
to use panels, is shown in listing 8.9.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<f:view>
<html>
 <head>
 <title>
 <h:outputText value="ProjectTrack"/>
 </title>

 <link rel="stylesheet" type="text/css"
 href="/projects/stylesheet.css"/>

 <script language="JavaScript">

 function set_image(button, img)
 {
 button.src = "/projects" + img;
 }

 </script>
 </head>

<body>

<h:form>

Listing 8.9 The JSP source for our completed Login page using an HtmlPanelGrid for
component layout

HtmlPanelGrid

 <h:panelGrid columns="2" border="0" cellpadding="3"
 cellspacing="3">

instead of table b

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

310 CHAPTER 8
Developing the Login page

 <h:graphicImage url="/images/logo.gif"
 alt="Welcome to ProjectTrack"
 title="Welcome to ProjectTrack"
 width="149" height="160"/>

 <h:panelGrid columns="3" border="0"
 cellpadding="5"
 cellspacing="3"
 headerClass="login-heading">

 <f:facet name="header">
 <h:outputText value="ProjectTrack" />
 </f:facet>

 <h:outputLabel for="userNameInput">
 <h:outputText value="Enter your user name:"/>
 </h:outputLabel>
 <h:inputText id="userNameInput" size="20" maxlength="30"
 required="true">
 <f:validateLength minimum="5" maximum="30"/>
 </h:inputText>
 <h:message for="userNameInput"/>

 <h:outputLabel for="passwordInput">
 <h:outputText value="Password:"/>
 </h:outputLabel>
 <h:inputSecret id="passwordInput" size="20" maxlength="20"
 required="true">
 <f:validateLength minimum="5" maximum="15"/>
 </h:inputSecret>
 <h:message for="passwordInput"/>

 <h:panelGroup/>
 <h:commandButton action="success" title="Submit"
 image="#{facesContext.externalContext.requestContextPath}
 /images/submit.gif"
 onMouseOver="set_image(this,
 '#{facesContext.externalContext.requestContextPath}
 /images/submit_over.gif')"
 onMouseOut="set_image(this,
 '#{facesContext.externalContext.requestContextPath}
 /images/submit.gif');"/>
 <h:panelGroup/>

 </h:panelGrid>

 </h:panelGrid>
</h:form>

Nested HtmlPanelGrid
for input components c

Header
facet d

 e HtmlPanelGroup placeholder
</body>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Improving layout with HtmlPanelGrid 311

</html>
</f:view>

First, we add an enclosing HtmlPanelGid. This component uses the columns prop-
erty to determine the number of columns to display. It works by rendering its
child components in order, based on the number of columns. Because two col-
umns have been specified it will display two child components in each row (one
per column). It will display them in order: the first component will be displayed
in column one, row one. The second will be displayed in row one, column two.
The third will be displayed in row two, column one. The fourth will be displayed
in row two, column two, and so on.

 We’ve specified only two child components: an HtmlGraphicImage and another
HtmlPanelGrid, which is used to lay out additional controls. Consequently, this
will render as a table with a single row and two columns; the left column will dis-
play an image tag, and the right will have a nested table rendered by the nested
HtmlPanelGrid.
This nested HtmlPanelGrid will lay out all of the other components on the form.
The headerClass property specifies the CSS style for the header row. The columns
property is set to 3, so every group of three child components will make up a sin-
gle row (one per column). There are three groups: one for entering the name,
one for entering the password, and one for the Submit button.
In order to display the text “ProjectTrack” as a single header row with a single
column, we can place an HtmlOutputText inside of the header facet. The header-
Class property of the parent HtmlPanelGrid will be used to style it appropriately.
If you look at figure 8.6, the bottom row of the nested table has two empty cells
(the first and last). In our HTML table, we achieved this effect with the infamous
empty cell (<td/>). When using HtmlPanelGrid, we must to do the same thing to
ensure that Faces places the button in the middle column. This can be done with
the HtmlPanelGroup, which is a panel with no visual representation. If we left this
out, the component would place the next component (an HtmlCommandButton)
underneath the password input label. This isn’t the desired behavior—we want
the buttons to be under the password input field itself.

We’ve now successfully modified the page to use panels for layout. It looks exactly
as it did in figure 8.5, because the table structure rendered by the two HtmlPanel-
Grid components is the same. The generated HTML is shown in listing 8.10

 .

 b

 c

 d

 e

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

312 CHAPTER 8
Developing the Login page

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
<head>
 <title>ProjectTrack</title>
 <link rel="stylesheet" type="text/css" href="stylesheet.css">
 <script language="JavaScript" type="text/javascript">

 function set_image(button, img)
 {
 button.src = img;
 }

 </script>
</head>

<body>
 <form id="_id1" method="post"
 action="/projects/faces/login.jsp"
 enctype="application/x-www-form-urlencoded">
 <table border="0" cellpadding="3"
 cellspacing="3">
 <tbody>
 <tr>
 <td>
 <img src="/projects/images/logo.gif"
 alt="Welcome to ProjectTrack" height="160"
 title="Welcome to ProjectTrack" width="149">
 </td>

 <td>
 <table border="0"
 cellpadding="5"
 cellspacing="3">

 <thead>
 <tr>
 <th class="login-heading"
 colspan="3"
 scope="colgroup">
 ProjectTrack
 </th>
 </tr>
 </thead>

 <tbody>
 <tr>

Listing 8.10 The Login page HTML output with layout generated by two HtmlPanelGrids

Main
HtmlPanelGrid

 b

Nested
HtmlPanelGrid c

Header
facet d
 <td>
 <label for="_id1:userNameInput">

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Improving layout with HtmlPanelGrid 313

 Enter your user name:
 </label>
 </td>

 <td>
 <input id="_id1:userNameInput" type="text"
 name="_id1:userNameInput" maxlength="30"
 size="20">
 </td>

 <td></td>
 </tr>

 <tr>
 <td>
 <label for="_id1:passwordInput">
 Password:
 </label>
 </td>

 <td>
 <input id="_id1:passwordInput"
 type="password" name="_id1:passwordInput"
 value=""
 maxlength="20" size="20">
 </td>

 <td></td>
 </tr>

 <tr>
 <td></td>

 <td>
 <input type="image"
 src="/projects/images/submit.gif"
 name="_id1:_id13"
 onMouseOut="set_image(this,
 '/projects/images/submit.gif');"
 onMouseOver="set_image(this,
 '/projects/images/submit_over.gif')"
 title="Submit">

 </td>

 <td></td>
 </tr>
 </tbody>

HtmlPanelGroup
placeholder

 e
 </table>
 </td>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

314 CHAPTER 8
Developing the Login page

 </tr>
 </tbody>
 </table>

 <input type="hidden" name="_id1" value="_id1">
 </form>
</body>
</html>

This is the primary table, rendered by the first <h:panelGrid> tag. You can see
that the HTML pass-through properties were indeed passed through. You may
also have noticed that the order of the properties is different than the order in
the original JSP code. Components don’t necessary guarantee the order of pass-
through properties; they just guarantee the content.
This is the nested table, rendered by the second <h:panelGrid> tag.
This is the nested HtmlPanelGrid’s header facet. You can see that it’s a single row
that spans all three columns, and the CSS class is the same as the parent Html-
PanelGrid’s headerClass property.
HtmlPanelGroup doesn’t have a visual representation, so it just outputs empty cells.

We now have a Login page, complete with JavaScript, CSS, validation, custom
error messages, and a panel-based layout. We covered each and every step of
building this page for a good reason—this way, we can skip the topics explained
here when we describe the other pages, so you can focus on the unique aspects of
the other pages.

8.6 Summary

In this chapter, we built a static Login page, step by step, with JSF and JSP. We
began by examining each element of the Login page, one by one. The first step
was to create the page, importing the proper tag libraries and adding Html-
GraphicImage and HtmlOutputText components. We then added a form for collect-
ing the username and password. Next, we spiced up things up with a button
image, Cascading Style Sheets, and a little bit of JavaScript for an image rollover.
(Bear in mind that JSF will typically limit the amount of required JavaScript,
because components should generate it themselves.)

 We then added validators to the Login page, making sure we had enough room
for displaying the error messages. This is key—if you add validation and you want
to redisplay the page with errors, you must allow space for those errors to be dis-

 b

 c
 d

 e
played. Next, we customized those error messages with a resource bundle.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 315

 Finally, we demonstrated a powerful technique: laying out components with
panels as opposed to HTML tables. This technique lets you focus on the concep-
tual view of the layout as opposed to the specifics of HTML.

 In the next chapter, we’ll build the rest of the UI using the techniques learned
in this chapter.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a user
interface without Java

code: the other pages
This chapter covers
■ Working with JSP includes
■ Using panels to simulate data tables
■ Creating input forms
■ Creating static navigation flows
316

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Building the header with a custom component 317

In this chapter, we’ll continue developing a static, user interface (UI) prototype for
ProjectTrack. We’ll build on the concepts introduced in the previous chapter: using
HtmlForm, HtmlOutputText, HtmlInputText, HtmlCommandButton, and HtmlCommand-
Link components; validation; and HtmlPanelGrids for layout. This chapter will also
walk through pages that use HtmlSelectOneListbox for a combo box, and Html-
SelectManyCheckbox for a checkbox group.

 By the end of this chapter, you should have a solid understanding of how to
build an interactive UI with JSF and no application logic. As we said in chapter 8,
building a prototype in JSF allows you to communicate with users effectively and
easily transition into a full-fledged application.

 For all of these prototypical views, we’ll assume the role of a Project Manager,
because this is the only role that can access all of the features. In the next chapter,
we’ll disable certain functionality based on the user’s role.

9.1 Building the header with a custom component

One of ProjectTrack’s chief requirements is that all of the pages (other than the Login
page) have a header at the top to provide navigation. Consequently, the header
seems like a good place to start. We’ll develop it as a separate JSP and include it as
a dynamic resource in all of the other pages. That way, we’ll be able to make changes
in a single place, and have it automatically affect the rest of the application.

NOTE In our case study, we use JSP includes for layout and reusable page ele-
ments. For more complex applications, you may want to use something
like Tiles [ASF, Tiles] or SiteMesh [OpenSymphony, SiteMesh]. Both of
these, and any other JSP-friendly technologies, should work fine with JSF
(as a matter of fact, we discuss Tiles in chapter 14).

Figure 9.1 shows a mock-up of this page. It’s basically a series of elements: first
the text “ProjectTrack,” followed by four graphic/link description pairs and a
combo box. At the far right the username is displayed, and the whole header is
enclosed in a box to separate it from the rest of the view. This box should stretch
to cover the entire length of the page.

Figure 9.1 Mock-up of the header. This page will be included in all of the other pages (except for the

Login page). It provides navigation to different views in the system, and allows the user to change the
language on the fly.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

318 CHAPTER 9
Developing the other pages

So, how do we lay this out with panels? The most important point is that we need
one HtmlPanelGrid that serves as the main container and that will stretch horizon-
tally across the page. It should have three components: another HtmlPanelGrid
that contains the “ProjectTrack” text and the header buttons, an HtmlPanelGroup
that contains the combo box and its label, and an HtmlOutputText that displays
the user’s name. This way, we can use the embedded panel to control the layout of
the “ProjectTrack” text and the graphic/link description pairs independently of
the username text and the rest of the header.

 It may seem more intuitive to use a single HtmlPanelGrid. The problem is that
you lose explicit control of the text and the graphic/link description pairs. They
would have to be rendered with the same properties as the combo box and user-
name text, which would essentially be a single table with even spacing for all ele-
ments. This isn’t what figure 9.1 shows—headers normally don’t have their
buttons evenly spaced across the top of the page; usually all the buttons are left-
or right-justified.

NOTE This page, and the rest of the ones covered in this chapter, reference ad-
ditional styles that are defined in stylesheet.css. We’ll spare you the de-
tails in these pages, but you can examine them electronically from the
book’s web site (http://www.manning.com/mann).

The JSP source for the header is shown in listing 9.1.

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<f:subview id="header">

 <h:form>

 <h:panelGrid columns="3"
 cellspacing="0"
 cellpadding="0"
 styleClass="header"
 width="100%">

 <h:panelGrid id="header" columns="9"
 cellpadding="4"
 cellspacing="0"
 border="0">

Listing 9.1 header.jsp: ProjectTrack’s header

Required for
JSP includes

 b

Separate form c

Primary
container

 d

Child
panel

 e
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Building the header with a custom component 319

 <h:outputText value="ProjectTrack:"
 styleClass="header-header"/>

 <h:commandLink action="inbox">
 <h:graphicImage
 url="images/inbox.gif"
 styleClass="header-icon"
 alt="Inbox"/>
 <h:outputText value="Inbox"
 styleClass="header-command"/>
 </h:commandLink>

 <h:commandLink action="show_all">
 <h:graphicImage url="images/show_all.gif"
 styleClass="header-icon"
 alt="Show all projects"/>
 <h:outputText value="Show all"
 styleClass="header-command"/>
 </h:commandLink>

 <h:commandLink action="create">
 <h:graphicImage url="images/create.gif"
 styleClass="header-icon"
 alt="Create a new project"/>
 <h:outputText value="Create new"
 styleClass="header-command"/>
 </h:commandLink>

 <h:commandLink action="logout">
 <h:graphicImage url="images/logout.gif"
 styleClass="header-icon"
 alt="Logout"/>
 <h:outputText value="Logout"
 styleClass="header-command"/>
 </h:commandLink>

 </h:panelGrid>

 <h:panelGroup>
 <h:outputLabel for="languageSelect">
 <h:outputText value="Language:"
 styleClass="language-select"/>
 </h:outputLabel>
 <h:selectOneListbox
 id="languageSelect"
 size="1"
 styleClass="language-select">
 <f:selectItem itemLabel="English"
 itemValue="English"/>

Header
text

 f

 g Header
buttons

 h Language
combo box
 <f:selectItem itemLabel="Russian"
 itemValue="Russian"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

320 CHAPTER 9
Developing the other pages

 </h:selectOneListbox>
 <h:commandButton value="Go!"
 styleClass="language-select-button"/>
 </h:panelGroup>

 <h:outputText value="proj_mgr"
 styleClass="user-name"/>

 </h:panelGrid>
 </h:form>
</f:subview>

If you’re intending to include a JSP page with dynamic includes (either the
<jsp:include> or <c:import> tags), you must enclose the page in the <f:subview>
tag. (See chapter 3 for more information on JSP includes and other custom tags.)
We enclose the entire header in an HtmlForm, which is required for the header
buttons and combo box. We can still use a separate form in the page that includes
the header—the two forms will be processed independently.
We use an HtmlPanelGrid component as the primary container. Because no rows
or columns attributes were specified, it will display a single row. The style “header”
is the basic style for the whole page. Because this style sets the background color
to light blue, we satisfy the requirement of enclosing the header in a box. The
width attribute will be passed through to the rendered HTML table to ensure that
the header stretches horizontally across the page.
The embedded HtmlPanelGrid allows us to lay out the header text “ProjectTrack”
and the links to the other pages. We’ve specified five columns: one for the
header text, and one for each header button. The lack of a rows attribute indi-
cates that the component should display a single row. The cellpadding, cell-
spacing, and other attributes will be passed through to the displayed table.
We use a simple HtmlOutputText component with the style “header-header” for
the header text “ProjectTrack.”
The header buttons are represented by HtmlCommandLink components with child
HtmlGraphicImage and HtmlOutputText components. Both the child HtmlGraphic-
Image and HtmlOutputText components have specific styles applied to them; this
is required to allow the images to have different styles than the text. For now, all
of the HtmlCommandLink components have hardcoded action outcomes. We’ll map
these values to specific navigation cases in the next section, so that navigation
works in the prototype. Then, in chapter 10 we’ll change the action properties
to reference the action methods instead.

 h Language
combo box

Username i

 b

 c

 d

 e

 f

 g
Here, we specify an HtmlSelectOneListbox component that allows users to select
their language. (One of ProjectTrack’s requirements is to support both English

 h

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Building the header with a custom component 321

and Russian.) For now, we’ll just hardcode the values. In order to make this com-
ponent useful, we also need an HtmlOutputLabel and an HtmlCommandButton (to
submit the form). Because there’s no logic for changing the language currently, we
won’t set the button’s action property right now; we’ll do that in chapter 9. Note
that we’ve also defined styles for the HtmlOutputText and HtmlSelectOneListbox
components. All of these components are grouped together so that the enclosing
HtmlPanelGrid will put them in a single column.
The username is displayed with a HtmlOutputText component, with the style
“user-name”. For now, the name “proj_mgr” is hardcoded. In chapter 10, we’ll
integrate it with the model so that it displays the real user’s name.

The header, displayed in a browser, is shown in figure 9.2. You can see that a
single background color (style “header-background”) is used for the whole
header, but the heading text and the links appear left-justified. This is because
the main panel is stretched across the page but the embedded panel is not.

9.1.1 Using a custom toolbar component

Using an embedded HtmlPanelGrid for our header is useful, and works well in
most cases. However, it’s tedious to specify three components—an HtmlCommand-
Link, an HtmlGraphicImage, and an HtmlOutputText component—for every single
header button. Also, it would be nice if we could configure the buttons dynamically
from a model object, or highlight a button once it’s been selected. These types of
features can be implemented with a custom header component.

 As luck would have it, online extension chapter 19 shows you how to build such
a component, so we won’t go into all of the details here. The component is called
UINavigator, and its output is almost identical to our custom HtmlPanelGrid; how-
ever, you can associate it with a model object or hardcode the button values. And
best of all, if you hardcode the button values, it requires just one tag.

 We can easily replace the header HtmlPanelGrid with our custom component.
In listing 9.2, we show a modified version of header.jsp that uses UINavigator.

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

 i

Figure 9.2 header.jsp: The header shown in a browser.

Listing 9.2 header.jsp: Header modified to use custom toolbar component
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="jsf-in-action-components" prefix="jia"%>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

322 CHAPTER 9
Developing the other pages

<f:subview id="header">

 <h:form>

 <h:panelGrid columns="3" cellspacing="0" cellpadding="0"
 styleClass="header" width="100%">

 <jia:navigatorToolbar id="header"
 layout="horizontal"
 headerClass="header-header"
 itemClass="header-command"
 selectedItemClass="header-command"
 iconClass="header-icon"
 immediate="false">

 <f:facet name="header">
 <h:outputText value="ProjectTrack:"/>
 </f:facet>

 <jia:navigatorItem name="inbox"
 label="Inbox"
 icon="/images/inbox.gif"
 action="inbox"/>
 <jia:navigatorItem name="showAll" label="Show All"
 icon="/images/show_all.gif"
 action="show_all"/>
 <jia:navigatorItem name="createNew" label="Create New"
 icon="/images/create.gif"
 action="create"/>
 <jia:navigatorItem name="logout" label="Logout"
 icon="/images/logout.gif"
 action="logout"/>

 </jia:navigatorToolbar >

 <h:panelGroup>
 <h:outputLabel for="languageSelect">
 <h:outputText value="Language:"
 styleClass="language-select"/>
 </h:outputLabel>
 <h:selectOneListbox size="1" styleClass="language-select">
 <f:selectItem itemLabel="English" itemValue="English"/>
 <f:selectItem itemLabel="Russian" itemValue="Russian"/>
 </h:selectOneListbox>
 <h:commandButton value="Go!"
 styleClass="language-select-button"/>
 </h:panelGroup>

 <h:outputText value="proj_mgr" styleClass="user-name"/>

UINavigator
component
 </h:panelGrid>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Building the header with a custom component 323

 </h:form>
</f:subview>

Using UINavigator this way yields the same functionality and appearance as list-
ing 9.4. If that’s the case, why bother? Well, first of all, using this component is
less effort. In the first example, we had to spend time thinking about how the layout
was supposed to appear, how to use the CSS classes properly, and how to create
the appearance of a header button with an icon and a label. With UINavigator, the
choices are more explicit: it has specific properties such as layout (either “hori-
zontal” or “vertical”), immediate (which indicates whether it should be processed
before other input controls), and style properties for the header, icon, and indi-
vidual items. Each button is represented by a single NavigatorItem, which has
properties such as icon, label, action, and so on. In short, all of the guesswork
has been eliminated; all we have to do is declare the component and specify the
necessary items.

 Another benefit of UINavigator is that it can be associated with model objects;
so the individual header buttons could either be configured using the Managed
Bean Creation facility, with Java code, or pulled from a data store. We don’t use
these features in ProjectTrack, but they can be useful in other applications.

 Now that we’ve finished with header.jsp, let’s make it do something.

9.1.2 Configuring the navigation rule

In listing 9.2, each NavigatorItem has an action property. This works just like the
action property for HtmlCommandButton components—it can reference either a
hardcoded logical outcome or an action method. In order for these outcomes to
move the user from one page to the next, we need to define a navigation rule.
Because the header is included in every page, we must make this rule work for
every page. In order to do this, we’ll add the navigation rule in listing 9.3 to faces-
config.xml.

<navigation-rule>
 <description>Navigation for the toolbar.</description>
 <from-view-id>/*</from-view-id>
 <navigation-case>
 <from-outcome>inbox</from-outcome>
 <to-view-id>/inbox.jsp</to-view-id>

Listing 9.3 faces-config.xml: Navigation rule for toolbar buttons in header
 </navigation-case>
 <navigation-case>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

324 CHAPTER 9
Developing the other pages

 <from-outcome>show_all</from-outcome>
 <to-view-id>/show_all.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>create</from-outcome>
 <to-view-id>/create.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>logout</from-outcome>
 <to-view-id>/login.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

The first thing to note here is that the <from-view-id> element’s value is “/*”,
which indicates that this rule applies to all pages. Also note that the value of the
<from-outcome> elements match the values of the NavigatorItem action proper-
ties in listing 9.2.

 We’ve kept things simple: each outcome has the same name as the correspond-
ing view (with the exception of the .jsp extension). This works quite well in proto-
type situations. When we integrate these rules with real code, the outcomes may
change, but the resulting view won’t.

 Our header is now complete, with basic navigation functionality. Let’s move
on to the first pages the user sees: the Inbox and Show All pages.

9.2 Prototyping data tables with panels

There are two views in ProjectTrack that list projects—the Inbox and Show All
pages. Because the application is database driven, this list should be pulled from
a bean, and consequently it should be dynamic. The best control for displaying
dynamic lists of data is HtmlDataTable. However, this is a prototype without any
Java code, and HtmlDataTable must be associated with a bean of some sort. So, if
we’re not writing any beans, how do we prototype these pages?

 There are two choices:

■ Configure a List of Maps with the Managed Bean Creation facility and
associate it with an HtmlDataTable.

■ Use HtmPanelGrid components.

The benefit of the first approach is that it’s closer to the final application. The
downside, however, is that it’s more time-consuming to configure sample man-

aged beans. Also, some front-end developers aren’t anxious to configure objects

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Prototyping data tables with panels 325

in XML (although some tools like James Holmes’s JSF Console [Holmes] simplify
this process).

 The second approach’s primary benefit is that it’s quick and easy. It’s straight-
forward to change an HtmlPanelGrid declaration into an HtmlDataTable declara-
tion when it’s time to integrate with the back end. The downside is that if you’re
showing the same sample data on multiple pages, you will have to cut and paste
from one page to the next, and then keep the pages in sync. This is fine for a cou-
ple of pages, but not for dozens.

 Because ProjectTrack only has a couple of pages that list projects, we’ll select
the latter method.

9.2.1 The Inbox page

The first thing most ProjectTrack users will see is the Inbox. (Upper Managers will
see the Show All page instead, and won’t be able to access this page at all.) The
Inbox is the page that shows all of the projects waiting for processing, and it’s the
one that users will typically interact with the most. Users can view details, approve,
or reject any projects on this page. A mock-up is depicted in figure 9.3.

 As you can see in figure 9.3, this view has a page header and a panel that con-
tains the main content for the page. The panel has a header that states the name
of the page, a row for optional application messages, and a section that comprises
the main content of the page. Application messages will be displayed only if a
backing bean creates a message for this page, which could happen if the user tries
to approve a project that was just approved by someone else, for example.

 The inner panel simulates a data table. The first row has column headers for
the project fields we want to display: the project name, type, and status. The user
Figure 9.3 Mock-up of the Inbox page. This page lists all projects currently waiting for users, and
allows them to approve, reject, or view the details of each project.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

326 CHAPTER 9
Developing the other pages

should be able to click on any of these column headers in order to re-sort the list
by that column. The other rows cycle through the list of projects waiting for this
user, with links for the three primary operations: approve, reject, and view details.
This page is shown in listing 9.4.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<f:view>
<html>
 <head>
 <title>
 <h:outputText value="ProjectTrack - Inbox"/>
 </title>
 <link rel="stylesheet" type="text/css"
 href="stylesheet.css"/>
 </head>

<body class="page-background">

<jsp:include page="header.jsp"/>

<h:form>

 <h:panelGrid headerClass="page-header"
 styleClass="table-background"
 columns="1" cellpadding="5">

 <f:facet name="header">
 <h:outputText
 value="Inbox - approve or reject projects"/>
 </f:facet>

 <h:outputText
 value="Application messages."
 styleClass="errors"/>
 <h:panelGrid columns="6"
 styleClass="table-background"
 rowClasses="table-odd-row,table-even-row"
 cellpadding="3">

 <h:commandLink styleClass="table-header">
 <h:outputText value="Project name"/>
 </h:commandLink>
 <h:commandLink styleClass="table-header">

Listing 9.4 Inbox.jsp: JSP source

Style sheet
import

 b

Background style c

Page header
include

 d

Main
panel e

Main panel
header f

Messages
placeholder g

Inner
panel h

 i Column
headers
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Prototyping data tables with panels 327

 <h:outputText value="Type"/>
 </h:commandLink>

 <h:commandLink styleClass="table-header">
 <h:outputText value="Status"/>
 </h:commandLink>
 <h:panelGroup/>
 <h:panelGroup/>
 <h:panelGroup/>

 <h:outputText
 value="Inventory Manager v2.0"/>
 <h:outputText
 value="Internal Desktop Application"/>
 <h:outputText
 value="Requirements/Analysis"/>
 <h:commandLink action="approve">
 <h:outputText value="Approve"/>
 </h:commandLink>
 <h:commandLink action="reject">
 <h:outputText value="Reject"/>
 </h:commandLink>
 <h:commandLink action="details">
 <h:outputText value="Details"/>
 </h:commandLink>

 <h:outputText value="TimeTracker"/>
 <h:outputText value="Internal Web Application"/>
 <h:outputText value="Requirements/Analysis"/>
 <h:commandLink action="approve">
 <h:outputText value="Approve"/>
 </h:commandLink>
 <h:commandLink action="reject">
 <h:outputText value="Reject"/>
 </h:commandLink>
 <h:commandLink action="details">
 <h:outputText value="Details"/>
 </h:commandLink>

 </h:panelGrid>

 </h:panelGrid>
</h:form>

</body>
</html>
</f:view>

Import the CSS style sheet. We’ll use the same style sheet for every other page.

Column
headers i

Project
rows j

 b
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

328 CHAPTER 9
Developing the other pages

This whole page should have a pleasant light-blue background, so we’ll use a CSS
style for the HTML <body> element.
We include the header with a dynamic JSP include tag.
This is the main panel, declared with the popular HtmlPanelGrid control.
Because we want the heading to be large and bold, we add a CSS style for the
header with the headerClass attribute. This panel is basically a container for the
inner panel, so it has only one column.
Here, we specify the main panel’s header, which serves as the title of the page.
This HtmlOutputText will serve as a placeholder for application messages. In
chapter 10, we’ll replace this with an HtmlMessages component. (We use Html-
OutputText now because HtmlMessages won’t show anything unless there are actu-
ally messages, and because there’s no back-end code in our prototype, there
aren’t any application messages yet.)
This is the inner panel, which is where all of the action takes place. It’s an Html-
PanelGrid that simulates an HtmlDataTable. There are six columns, and we spec-
ify two styles for the rows so that the component will alternate between the two
when it displays the rows.
These are the column headings. You may have noticed that these make up a row
in the table, even though they’re used as headings. Laying the components out
this way allows the headings to line up in the same columns with the content in
subsequent rows. Because the HtmlPanelGrid displays headings as a single col-
umn, this would not be possible if the components were part of a heading.
(When we convert this into an HtmlDataTable, we’ll use UIColumn components,
which have header facets.)

 The first three columns are HtmlCommandLink components, so that we can re-
sort the table’s data when the user clicks on a column heading. In this prototype,
the action property isn’t set, so clicking on the header just redisplays the page
without changes. The final three columns are simply HtmlPanelGroup compo-
nents, which are used to create blank headings.
This is the actual data of the inner panel. Our prototype has only two rows, so it
looks like there are two projects in the user’s inbox. The first three columns dis-
play different project fields with HtmlOutputText components. The final three
columns represent the commands you can perform on that project with Html-
CommandLink components. We’ll create navigation cases for each of the outcomes
specified by the action properties in the next section. Then, in chapter 10, we’ll
integrate them with real action methods. Once this section is integrated with the
model, these rows will come from model objects instead of static data.

 c

 d
 e

 f
 g

 h

 i

 j
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Prototyping data tables with panels 329

The output of this page is shown in figure 9.4. You can see that the header is
seamlessly integrated. The use of style sheets for colors and fonts enhances the
look of the page.

 We have now created an attractive Inbox page. It’s time to create a navigation
rule for it.

9.2.2 Configuring the navigation rule

Each project row in the inbox has three links that perform operations for the
project displayed that row. In the JSP, we specified specific outcomes for those
links (we’ll change this in chapter 10). Listing 9.5 shows the navigation rule that
maps these outcomes to specific pages.

<navigation-rule>
 <from-view-id>/inbox.jsp</from-view-id>
 <navigation-case>
 <from-outcome>details</from-outcome>
 <to-view-id>/details.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>approve</from-outcome>
 <to-view-id>/approve.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>reject</from-outcome>
 <to-view-id>/reject.jsp</to-view-id>
 </navigation-case>

Figure 9.4 inbox.jsp: Displayed in a browser.

Listing 9.5 faces-config.xml: Navigation rule for inbox.jsp
</navigation-rule>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

330 CHAPTER 9
Developing the other pages

Nothing terribly exciting here. This rule just states that we can navigate from
inbox.jsp to three pages (details.jsp, approve.jsp, or reject.jsp) depending on the
outcome. All of these outcomes are set in the action properties of the HtmlCommand-
Link buttons in the project rows of listing 9.7.

 Remember, the rule for any given page is the union of all rules that match the
<from-view-id> pattern. The navigation rule for the header matches all pages, so
it’s possible to navigate from inbox.jsp to any page defined in the header’s navi-
gation rule (see listing 9.3) as well.

 Now that we’ve built the Inbox page, we can move on to Show All, which is
quite similar.

9.2.3 The Show All page

The Show All page is displayed to users when they want to see all of the projects,
not just the ones in their own inbox. It’s also the only way upper management can
get to projects, because they don’t have an inbox. Functionally, the page is almost
exactly the same as the Inbox page, with two main differences: it displays all
projects, and you can only view project details from the page (in other words, you
can’t approve or reject projects). The first point doesn’t matter for our discussion
right now; it will be important when we integrate the view with the back end later.

 Technically, the code for Show All is almost the same except there’s an extra
“Waiting for” column. This column wouldn’t make sense on the Inbox page,
because a project is always waiting for the person who sees it listed on that page.
In addition to the extra column, the buttons for approving and rejecting projects
have been removed. Rather than modify the Inbox page to work for both cases,
we’ll take a simple approach and create a separate JSP for this page. This gives us
the flexibility to vary the pages independently. Because the code isn’t much dif-
ferent, there’s no need to examine it in detail; figure 9.5 shows the page.

 Now, let’s take a look at this page’s navigation rule.

9.2.4 Configuring the navigation rule

The navigation rule for the Show All page is a subset of the rule for the Inbox
page; there is a single navigation case for the outcome "details". The rule is
shown in listing 9.6.

<navigation-rule>

Listing 9.6 faces-config.xml: Navigation rule for the Show All page
 <from-view-id>/show_all.jsp</from-view-id>
 <navigation-case>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating input forms 331

 <from-outcome>details</from-outcome>
 <to-view-id>/details.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

We have now successfully created the two project listing pages. Next, let’s exam-
ine views that allow you to create and edit projects.

9.3 Creating input forms

All of the pages we’ve built so far are read-only; they don’t actually modify any
projects. There are three views in ProjectTrack that can manipulate projects:
Approve a Project, Reject a Project, and Create a Project. The Approve a Project
and Create a Project pages display project information, but only allow you to
update the list of completed artifacts; the Create a Project page contains input
controls for all of the properties of a project. Because these pages share some
functionality, some portions can be reused. Let’s start by examining the Approve
a Project page.

9.3.1 The Approve a Project page

When users click the Approve button on the Inbox page, they are shown an
approval page for the selected project. This page displays all of the necessary
details about the project, and allows them to check or uncheck completed arti-
facts and add a comment to the project’s history. Once they’ve filled out the form,

Figure 9.5 show_all.jsp: The Show All page, which lists all projects currently in the system, shown in

a browser.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

332 CHAPTER 9
Developing the other pages

they can either approve or cancel the project. Both actions will return them to the
Inbox page. A mock-up of this page is shown in figure 9.6.

 Just as on all of the other pages, the header is displayed at the top. This page
also uses the standard convention of a title bar with the name of the page. Below
the heading, we have a two-column table displaying project details; the name of
the property is shown on the left, and its value is shown on the right. Only one of
these fields accepts input—the user can select or deselect completed artifacts,
represented via checkboxes. Below the details section, there’s a text area where a

Figure 9.6 Mock-up of the Approve a Project page. When approving a project (accessible from the
Inbox), the user can choose completed artifacts and add comments.
user can add comments. Finally, there are two buttons—one for approval and one
to cancel input—located at the bottom of primary table.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating input forms 333

 Once again, we’ll use nested HtmlPanelGrid components to achieve this layout.
The page header will be handled through a JSP include, and is separate from the
rest of the layout. The rest of the screen can be handled with a main panel that has
a header, a footer, and two columns. The header is used for the “Approve a project”
text. The middle section will be filled with HtmlOutputText and HtmlInputText
components. The footer is composed of two HtmlPanelGrids—one for the com-
ments section and one for the two buttons—both contained within an HtmlPanel-
Group so they’ll be treated as a single footer element. The source is shown in listing 9.7.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<f:view>
<html>
 <head>
 <title>
 <h:outputText value="ProjectTrack - Approve a Project"/>
 </title>
 <link rel="stylesheet" type="text/css" href="stylesheet.css"/>
 </head>

<body class="page-background">

<jsp:include page="header.jsp"/>

<h:form>

 <h:panelGrid columns="2" cellpadding="5"
 headerClass="page-header"
 footerClass="project-background"
 styleClass="project-background"
 rowClasses="project-row">

 <f:facet name="header">
 <h:panelGrid columns="1"
 width="100%" cellpadding="3"
 styleClass="project-background"
 headerClass="page-header">
 <f:facet name="header">
 <h:outputText value="Approve a project"/>
 </f:facet>
 <h:outputText
 value="Application messages."
 styleClass="errors"/>

Listing 9.7 approve.jsp: JSP source for the Approve a Project page

Main
panel

 b

Header for
main panel

 c
 </h:panelGrid>
 </f:facet>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

334 CHAPTER 9
Developing the other pages

 <h:outputText value="Name:"/>
 <h:outputText value="Inventory Manager 2.0"
 styleClass="project-data"/>

 <h:outputText value="Type:"/>
 <h:outputText value="Internal Web Application"
 styleClass="project-data"/>

 <h:outputText value="Initiated by:"/>
 <h:outputText value="Rip Van Winkle"
 styleClass="project-data"/>

 <h:outputText value="Requirements contact:"/>
 <h:outputText value="Joan TooBusy"
 styleClass="project-data"/>

 <h:outputText value="Requirements contact e-mail:"/>
 <h:outputText value="toobusy@deathmarch.com"
 styleClass="project-data"/>

 <h:outputText value="Initial comments:"/>
 <h:outputText value="The first version
 is horrible and completely unusable.
 It's time to rewrite it."
 styleClass="project-data"/>

 <h:outputLabel for="artifactSelect">
 <h:outputText value="Completed artifacts:"/>
 </h:outputLabel>
 <h:selectManyCheckbox
 id="artifactSelect"
 layout="pageDirection"
 styleClass="project-input">
 <f:selectItem itemValue="0"
 itemLabel="Proposal document"/>
 <f:selectItem itemValue="1"
 itemLabel="Requirements document"/>
 <f:selectItem itemValue="2"
 itemLabel="Architecture specification"/>
 <f:selectItem itemValue="3"
 itemLabel="Test plan"/>
 <f:selectItem itemValue="4"
 itemLabel="Deployment guidelines"/>
 <f:selectItem itemValue="5"
 itemLabel="Maintenance documentation"/>
 <f:selectItem itemValue="6"
 itemLabel="User documentation"/>
 </h:selectManyCheckbox>

 d Project info
display

 e Artifact
selection
 <f:facet name="footer">

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating input forms 335

 <h:panelGroup>

 <h:panelGrid columns="1" cellpadding="5"
 styleClass="table-background"
 rowClasses="table-odd-row,
 table-even-row">
 <h:outputLabel for="commentsInput">
 <h:outputText value="Your comments:"/>
 </h:outputLabel>
 <h:inputTextarea id="commentsInput"
 rows="10" cols="80"/>
 </h:panelGrid>

 <h:panelGrid columns="2"
 rowClasses="table-odd-row">
 <h:commandButton value="Approve"
 action="approve"/>
 <h:commandButton value="Cancel"
 action="cancel"
 immediate="true"/>
 </h:panelGrid>
 </h:panelGroup>

 </f:facet>

 </h:panelGrid>

</h:form>

</body>
</html>
</f:view>

This is the main panel. Note that we’ve specified several CSS styles to control the
panel’s appearance. The rendered table will have two columns, as per our mock-up.
There’s currently no JSF equivalent to the colspan attribute of an HTML table
row, so in order to have both the header text “Approve a project” and the appli-
cation messages placeholder span all of the columns, they must be in a header
facet. We group them in an HtmlPanelGrid component to make sure that each
component is in a separate row, control spacing, and ensure that styles apply to
the whole row (as opposed to just the component’s text). We also emphasize the
entire header with a border, courtesy of the “project-background” style.

 It may seem like an HtmlPanelGroup would work fine here, too, but you can’t
control the layout of the child components with HtmlPanelGroup. If we had used it,

Group for footer components f

 g Panel for
comments

 h Panel for
buttons

 b

 c
the header text and the application messages would have displayed right after
each other, rather than in separate rows.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

336 CHAPTER 9
Developing the other pages

These components display the project’s details—for each pair, there will be one
row with an HtmlOutputText component in each column. Note that we apply a style
to the second component in each row; this is to ensure that the property’s value is
a different color than its description. For example, the text “Requirements con-
tact:” will be in a different color than its value, which is “Joan TooBusy”.

 As it turns out, this whole section can be reused in the Reject a Project and
Project Details pages. In order to avoid repeating this work, we can separate it
into a separate file called project_info.jsp and include it with a static include:

<%@ include file="project_info.jsp"%>

Unlike the other project properties, the artifacts can be changed during the
approval process. This section specifies an HtmlSelectManyCheckbox instance,
which displays a set of checkboxes so that users may select or deselect any of the
listed artifacts. When we integrate this page with the application, we’ll pull the
items from a model object instead of hardcoding them in the JSP.

 Like the project info section, this too can be reused; as a matter of fact, we can
reuse it in the Reject a Project and Create a Project pages. We’ll factor it out into a
separate JSP called project_artifacts.jsp and include it in these pages:

<%@ include file="project_artifacts.jsp"%>

This panel groups the footer components.
This panel is used for displaying the HtmlOutputText and HtmlInputText compo-
nents for gathering comments. It uses an HtmlPanelGrid with a single column, so
that the HtmlOutputText component will be the first row, and the HtmlInputText
(rendered as a text area) will be the second row. Because two different CSS classes
are specified for the rowClasses attribute, the row will alternate styles.

 This section can also be moved into an external JSP and included in the other
project pages:

<%@ include file="project_comments.jsp"%>

This HtmlPanelGrid is used to lay out the two HtmlCommandButtons in a single row
of two columns. Note that the Cancel button has the immediate property set to
true. For our prototype, this makes no difference, but in the real application, this
will ensure that JSF bypasses validation and simply jumps back to the inbox. In
general, Cancel buttons should have the immediate property set to true, because
the goal is normally to bypass input processing.

The output of this page is shown in figure 9.7. There are two buttons on this page,
so now we need to configure navigation cases for them.

 d

 e

 f
 g

 h
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating input forms 337

9.3.2 Configuring the navigation rule

The navigation rule for Approve a Project is pretty simple—the outcomes from
both buttons return to inbox.jsp. The rule is shown in listing 9.8.

Figure 9.7 approve.jsp: The Approve a Project page in a browser

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

338 CHAPTER 9
Developing the other pages

<navigation-rule>
 <from-view-id>/approve.jsp</from-view-id>
 <navigation-case>
 <from-outcome>approve</from-outcome>
 <to-view-id>/inbox.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>cancel</from-outcome>
 <to-view-id>/inbox.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

Note that the specified outcomes match the two outcomes specified in the action
properties of the two HtmlCommandButtons.

 Next, let’s examine Reject a Project—a page with the opposite functionality.

9.3.3 The Reject a Project page

The Reject a Project page looks exactly like the Approve a Project page with two
key differences: the title has the text “Reject a project,” the header has the text
“Reject a project,” and the button has the text “Reject.” (Once we integrate the
application functionality, the pages will call different action methods as well.) For
simplicity, we won’t parameterize the Approve a Project page to make these
changes. However, we will include the JSPs factored out of the Approve a Project
page. This approach has the added benefit of allowing the overall look and feel of
each page to vary independently, while ensuring consistency for specific sections.

 The JSP code, with common sections included, is shown in listing 9.9. Lines
that are different than approve.jsp are marked in bold.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<f:view>
<html>
 <head>
 <title>
 <h:outputText value="ProjectTrack - Reject a Project"/>

Listing 9.8 faces-config.xml: Navigation rule for approve.jsp

Listing 9.9 reject.jsp: JSP source for the Reject a Project page
 </title>
 <link rel="stylesheet" type="text/css"

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating input forms 339

 href="stylesheet.css"/>
 </head>

<body class="page-background">
<jsp:include page="header.jsp"/>

<h:form>

 <h:panelGrid columns="2" cellpadding="5"
 footerClass="project-background"
 styleClass="project-background"
 rowClasses="project-row">

 <f:facet name="header">
 <h:panelGrid columns="1" width="100%" cellpadding="3"
 styleClass="project-background"
 headerClass="page-header">
 <f:facet name="header">
 <h:outputText value="Reject a project"/>
 </f:facet>
 <h:outputText value="Application messages."
 styleClass="errors"/>
 </h:panelGrid>
 </f:facet>

 <%@ include file="project_info.jsp"%>
 <%@ include file="project_artifacts.jsp"%>

 <f:facet name="footer">
 <h:panelGroup>

 <%@ include file="project_comments.jsp"%>

 <h:panelGrid columns="2" rowClasses="table-odd-row">
 <h:commandButton value="Reject" action="reject"/>
 <h:commandButton value="Cancel" action="cancel"
 immediate="true"/>
 </h:panelGrid>

 </h:panelGroup>
 </f:facet>

 </h:panelGrid>

</h:form>

</body>
</html>
</f:view>
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

340 CHAPTER 9
Developing the other pages

The output of this page is shown in figure 9.8.
 Like Approve a Project, the navigation rule for this page is quite simple.

Figure 9.8 reject.jsp: The Reject a Project page in a browser. This page is similar to Approve a
Project, and can be accessed from the Inbox. The user can select completed artifacts and add
comments before rejecting the project.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating input forms 341

9.3.4 Configuring the navigation rule

There are two buttons on the Reject a Project page, so there are two navigation
cases in the page’s navigation rule, as shown in listing 9.10.

<navigation-rule>
 <from-view-id>/reject.jsp</from-view-id>
 <navigation-case>
 <from-outcome>reject</from-outcome>
 <to-view-id>/inbox.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>cancel</from-outcome>
 <to-view-id>/inbox.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

As you can see, both cases send the user back to the Inbox page.
 Now let’s examine a page with several input controls.

9.3.5 The Create a Project page

The Create a Project view allows Project Managers to construct a new project; it’s
accessible from the toolbar in the header. It’s similar to the Approve a Project and
Reject a Project pages. The main difference is that the user can edit all of the
properties of the project. Because the page uses validators, it also has space for
validation errors. The comments section refers to the initial set of comments, as
opposed to comments that are part of the project’s history. A mock-up of this
page is shown in figure 9.9.

 From a layout perspective, the main difference between this page and the
Approve and Reject pages is the extra column for displaying errors. The Initial
comments field has been removed as well, because the comments entered on this
for are the initial comments. We’ll use HtmlInputText components for all of the
fields, and keep the HtmlSelectManyCheckbox component for the completed artifacts
section. We’ll also attach validators to some of the fields, including a custom
validator. Because the comments field for this page has a different purpose, we
won’t reuse project_comments.jsp. The source is shown in listing 9.11; we will only
discuss elements that are different than the previous two pages.

Listing 9.10 faces-config.xml: Navigation rule for the Reject a Project page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

342 CHAPTER 9
Developing the other pages

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="jsf-in-action-components"
 prefix="jia"%>

<f:view>

<html>

Listing 9.11 JSP source for the Create a Project page

Figure 9.9 Mock-up of the Create a Project page. In this page, the user can initialize all of the
project’s fields.

Custom
validator
import

 b
 <head>
 <title>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating input forms 343

 <h:outputText value="ProjectTrack - Create a new project"/>
 </title>
 <link rel="stylesheet" type="text/css"
 href="stylesheet.css"/>
 </head>

<body class="page-background">

<jsp:include page="header.jsp"/>

<h:form>
 <h:panelGrid columns="3" cellpadding="5"
 footerClass="project-background"
 styleClass="project-background"
 rowClasses="project-row"
 columnClasses=",project-input">

 <f:facet name="header">
 <h:panelGrid columns="1" width="100%" cellpadding="3"
 styleClass="project-background"
 headerClass="page-header">
 <f:facet name="header">
 <h:outputText value="Create a project"/>
 </f:facet>
 <h:outputText value="Application messages."
 styleClass="errors"/>
 </h:panelGrid>
 </f:facet>

 <h:outputLabel for="nameInput">
 <h:outputText value="Name:"/>
 </h:outputLabel>
 <h:inputText id="nameInput" size="40"
 required="true">
 <f:validateLength minimum="5"/>
 </h:inputText>
 <h:message for="nameInput"
 styleClass="errors"/>

 <h:outputLabel for="typeSelectOne">
 <h:outputText value="Type:"/>
 </h:outputLabel>
 <h:selectOneMenu id="typeSelectOne"
 title="Select the project type"
 required="true">
 <f:selectItem itemValue="" itemLabel=""/>
 <f:selectItem itemValue="0"
 itemLabel="Internal Database"/>
 <f:selectItem itemValue="5"
 itemLabel="External Database"/>

 c Main panel
with extra
column

 d Project info
edit fields with
validators
 <f:selectItem itemValue="10"
 itemLabel="Internal Web Application"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

344 CHAPTER 9
Developing the other pages

 <f:selectItem itemValue="15"
 itemLabel="External Web Application"/>
 <f:selectItem itemValue="20"
 itemLabel="Internal Desktop Application" />
 <f:selectItem itemValue="25"
 itemLabel="External Desktop Application"/>
 </h:selectOneMenu>
 <h:message for="typeSelectOne" styleClass="errors"/>

 <h:outputLabel for="initiatedByInput">
 <h:outputText value="Initiated by:"/>
 </h:outputLabel>
 <h:inputText id="initiatedByInput"
 size="40" required="true">
 <f:validateLength minimum="2"/>
 </h:inputText>
 <h:message for="initiatedByInput"
 styleClass="errors"/>

 <h:outputLabel for="requirementsInput">
 <h:outputText
 value="Requirements contact:"/>
 </h:outputLabel>
 <h:inputText id="requirementsInput"
 size="40"/>
 <h:panelGroup/>

 <h:outputLabel for="requirementsEmailInput">
 <h:outputText value="Requirements contact e-mail:"/>
 </h:outputLabel>
 <h:inputText id="requirementsEmailInput" size="40">
 <jia:validateRegEx
 expression="\\w+([-+.]\\w+)*@\\w
 +([-.]\\w+)*\\.\\w+([-.]\\w+)*"
 errorMessage="Please enter a
 valid e-mail address."/>
 </h:inputText>
 <h:message for="requirementsEmailInput"
 styleClass="errors"/>

 <%@ include file="project_artifacts.jsp" %>
 <h:panelGroup/>

 <f:facet name="footer">

 <h:panelGroup>

 <h:panelGrid columns="1" cellpadding="5"
 styleClass="table-background"
 rowClasses="table-odd-row,table-even-row">
 <h:outputLabel for="commentsInput">

 d Project info
edit fields with
validators
 <h:outputText value="Your comments:"/>
 </h:outputLabel>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating input forms 345

 <h:inputTextarea id="commentsInput" rows="10" cols="80"/>
 </h:panelGrid>

 <h:panelGrid columns="2" rowClasses="table-odd-row">
 <h:commandButton value="Save" action="save"/>
 <h:commandButton value="Cancel" action="cancel"
 immediate="true"/>
 </h:panelGrid>
 <h:panelGroup/>

 </h:panelGroup>

 </f:facet>

 </h:panelGrid>

</h:form>

</body>
</html>
</f:view>

This line imports the tag library for the custom validator.
This is the main panel; it has three columns, the last of which is for displaying
validation errors.
These tags specify the input fields with an HtmlSelectOneMenu component and
several HtmlInputText components. The size property is passed through to the
HTML. All of the components were assigned id attributes so that they can be
referenced by validators and labels.

 The fields that have validation requirements each have one or more validators
attached, and the required ones have the required property set to true. For the
HtmlSelectOneMenu component, the default item has an empty value and label.
Because the component’s required property is true, this means that it will con-
sider the value to be empty unless the user selects something else.

 Some of the components have length requirements as well, so they use the
Length validator. The HtmlInputText component for the requirement contact’s
email uses a custom RegularExpression validator to make sure the email address
is in the correct format. The validator’s expression property tells it which pattern
to match, and the errorMessage property tells it which error message to display if
the validation fails. (For more information about this validator, see online exten-
sion chapter 20.)

 Validation errors are displayed in the extra column with HtmlMessage compo-
nents, whose for property matches the component identifier of the associated
input control. For components that don’t have any validators, an empty panel

 b
 c

 d
group is used as a placeholder for the third column.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

346 CHAPTER 9
Developing the other pages

 The HtmlSelectOneMenu component’s items are hardcoded currently, but they
will come from the model in the final application.

 Figure 9.10 shows the page with some validation errors. As you can see, they
are displayed in the right column. Note that the error messages are friendlier than
the defaults; this is because we customized them in chapter 8. The navigation rule
for this page isn’t much different than the other pages.

Figure 9.10 create.jsp: The Create a Project page in a browser, with validation errors. The Type field
was left blank, the Initiated by field is too short, and the email address is invalid. The other fields
passed validation.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Project Details page 347

9.3.6 Configuring the navigation rule
The two buttons on this page—Save and Cancel—both return the user to the
inbox.jsp page. In the real application, we’ll modify the rule so that the Save but-
ton returns the user to the page from which they arrived—either the Inbox or the
Show All page. The navigation rule is shown in listing 9.12.

<navigation-rule>
 <from-view-id>/create.jsp</from-view-id>
 <navigation-case>
 <from-outcome>save</from-outcome>
 <to-view-id>/inbox.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>cancel</from-outcome>
 <to-view-id>/inbox.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

Now, let’s finish the prototype with one last page that displays all of a project’s
properties and its history.

9.4 The Project Details page

The Project Details page displays all of the project’s information, as well as its his-
tory. The history keeps track of each operation (approval or rejection), when it
was performed, who performed it, and the user’s comments. This page is some-
what similar to the Approve and Reject a Project pages, except that there are no
input fields, and it displays the history instead of collecting comments. Because
this view doesn’t perform any work, there’s only one button. Figure 9.11 shows a
mock-up of this page.

 Because this page displays the same set of project information as the Approve
a Project and Reject a Project pages, we can reuse the same JSP include used in
those pages. However, because the artifact listing isn’t included in that include we
must add that that section.

 The interesting part of this page is the history. In our prototype, we’ll just
include two fictitious entries, but in the real application there could be several
(one for every time the project is approved or rejected). This means that the his-
tory is the perfect candidate for an HtmlDataTable; however, we’ll prototype it

Listing 9.12 faces-config.xml: Navigation rule for the Create a Project page
with an HtmlPanelGrid, as we did for the Inbox and Show All pages. The JSP

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

348 CHAPTER 9
Developing the other pages

source is shown in listing 9.13; only portions that are different than the previous
pages are annotated.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

Listing 9.13 details.jsp: JSP source for the Project Details page

Figure 9.11 Mock-up of the Project Details page, which displays all of the project’s properties, as
well as its history. The history includes entries for every time the project was approved or rejected.
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Project Details page 349

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<f:view>
<html>
 <head>
 <title>
 <h:outputText value="ProjectTrack - Project details"/>
 </title>
 <link rel="stylesheet" type="text/css"
 href="stylesheet.css"/>
 </head>
<body class="page-background">

<jsp:include page="header.jsp"/>

<h:form>

 <h:panelGrid id="projectPanel" columns="2" cellpadding="5"
 footerClass="project-background"
 columnClasses=",project-data"
 styleClass="project-background"
 rowClasses="project-row">
 <f:facet name="header">
 <h:panelGrid columns="1" width="100%"
 cellpadding="3"
 styleClass="project-background"
 rowClasses="page-header">
 <h:outputText value="Project details"/>
 </h:panelGrid>
 </f:facet>

 <%@ include file="project_info.jsp" %>

 <h:outputText value="Completed artifacts:"/>
 <h:panelGrid columns="1"
 rowClasses="project-data"
 cellpadding="0" cellspacing="0">
 <h:outputText value="Proposal document"/>
 <h:outputText value="Project plan"/>
 </h:panelGrid>

 <f:facet name="footer">
 <h:panelGroup>
 <h:panelGrid columns="1" cellpadding="5"
 styleClass="table-background">

 <f:facet name="header">
 <h:outputText value="History" styleClass="table-header"/>
 </f:facet>

Header
without
messages

 b

JSP include for
project info

 c

Artifacts
display

 d

Groups panels for footer e

Panel for
history

 f

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

350 CHAPTER 9
Developing the other pages

 <h:panelGrid columns="1" width="100%" border="1"
 styleClass="table-even-row">

 <h:panelGrid columns="3" cellpadding="7"
 styleClass="table-even-row">
 <h:outputText
 value="Tuesday, March 4,
 2003 04:30 PM"/>
 <h:outputText
 value="Proposal -> Planning"/>
 <h:outputText
 value="(Project Manager)"/>
 </h:panelGrid>

 <h:panelGrid columns="1"
 cellpadding="3"
 styleClass="table-odd-row"
 width="100%">
 <h:outputText value="Comments:"/>
 <h:outputText
 value="Funding has been
 approved. The users are
 excited about the
 prospect of having
 something they can use."
 styleClass="project-data"/>
 </h:panelGrid>
 </h:panelGrid>

 <h:panelGrid columns="1" width="100%" border="1"
 styleClass="table-even-row">

 <h:panelGrid columns="3" cellpadding="7"
 styleClass="table-even-row">
 <h:outputText value="Monday, August 11, 2003 08:30 PM"/>
 <h:outputText value="Planning -> Requirements/Analysis"/>
 <h:outputText value="(Project Manager)"/>
 </h:panelGrid>

 <h:panelGrid columns="1" cellpadding="3"
 styleClass="table-odd-row" width="100%">
 <h:outputText value="Comments:"/>
 <h:outputText value="Initial resources have been allocated and a
 rough plan has been developed."
 styleClass="project-data"/>
 </h:panelGrid>
 </h:panelGrid>
 </h:panelGrid>

 g Panel for
history
entry
 <h:commandButton value="OK" action="inbox"
 style="margin-top: 5px"/>

Single
button

 h

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Project Details page 351

 </h:panelGroup>
 </f:facet>

 </h:panelGrid>

</h:form>

</body>
</html>
</f:view>

This page doesn’t perform any processing, so there’s no need to display applica-
tion messages. Consequently, the header facet is a little simpler than the previous
pages. It’s an HtmlPanelGrid with a single row, which contains an HtmlOutputText
component with the text “Project details”. Why place it in a panel at all? We need
to place it in some type of panel in order to place a box around it; that panel
must be an HtmlPanelGrid to ensure that that the box is stretched the entire
length of the enclosing table. (HtmlPanelGroup doesn’t offer this level of control,
because it renders to a element.)
Here, we include the JSP that was factored out of the Approve a Project page.
This page displays all of the basic project properties.
Unlike the previous pages, we only display the completed artifacts.
This panel groups two child components for the footer facet—an HtmlPanelGrid
and an HtmlCommandButton.
This HtmlPanelGrid groups together all of the history entries. This component
will be replaced with an HtmlDataTable in chapter 10.
Each history entry is enclosed in another HtmlPanelGrid, which has two nested
HtmlPanelGrid components. This is necessary to ensure that the two sections—
the history entry’s header information (date stamp, username, etc.) and the com-
ments—are laid out separately.
This page has a single button, so there’s no need to use another panel to lay out
two buttons, as we did in the previous pages. We do, however, specify a style
property to ensure that there’s a reasonable amount of space above the button.
This space was created by the button panel in the other pages.

Figure 9.12 shows the Project Details page in a browser.
 Last but not least, let’s examine this page’s navigation rule.

9.4.1 Configuring the navigation rule

In our prototype, there’s only one path from the Project Details page: the Inbox.

 b

 c

 d
 e

 f

 g

 h
The action property of the view’s solitary HtmlCommandButton is "inbox", which

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

352 CHAPTER 9
Developing the other pages

happens to be one of the global outcomes we handled in listing 9.3. In that navi-
gation rule, which we defined for the toolbar’s navigation, the outcome of
"inbox" is mapped to inbox.jsp. Because this case has already been handled,
there’s no need to create a new navigation rule.

 In the real application, we’ll make sure that users return to either the Inbox or
the Show All page, depending on how they accessed the Project Details page.

Figure 9.12 details.jsp: The Project Details page shown in a browser.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 353

9.5 Summary

Using the techniques learned in our detailed discussion of the login page, we
built the other pages of the application, starting with the header. The header can
be included in all of the other pages. After we built an initial version of the toolbar
portion of the header (which provides navigation), we then incorporated a cus-
tom toolbar component from online extension part 5 of this book. Next, we built
the Inbox and Show All pages—these are the main pages of the application. These
pages used HtmlPanelGrid components to create a static prototype of tables that
will eventually be generated by HtmlDataTable with a dynamic data source.

 We then moved on to pages that are built for data input—the Approve, Reject,
and Create a Project pages. All of them are similar, allowing you to modify prop-
erties of a project and then submit the changes back to the server. The Create a
Project page, however, allows you to modify all of the project’s fields and make
use of validators. We even used a custom regular expression validator from online
extension part 5. Finally, we built the Project Details page, which displays all of
the project’s properties as well as history of all previous approvals and rejections.

 At this point, we’ve created a fully navigational, interactive user interface, with
a custom component, a custom validator, and use of the standard validators. All
of ProjectTrack’s views have been developed. The screens may present static data,
but they show exactly what the application will look like. It’s certainly possible to
create an interactive demo with pure HTML and CSS. However, integrating that
demo with the application involves basically rewriting every single page, tediously
integrating Java scriplets or (we hope) tag libraries like JSTL. Using JSF to do
your prototype makes integration much easier—once your beans have been
developed, you simply wire all of the components up to the proper objects. And
guess what? That’s the subject of the next chapter.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating
application functionality
This chapter covers
■ Different JSF front-end development approaches
■ Integrating prototypical pages with back-end

objects
■ Converting static HtmlPanelGrids into

dynamic HtmlDataTables
■ Internationalizing and localizing the UI
354

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Understanding JSF development approaches 355

We spent the last two chapters building a prototypical JSF user interface (UI) with-
out any application code. (If you haven’t yet read chapters 8 and 9, we highly sug-
gest that you take a look at them first.) Now it’s time to bring that UI to life. In this
chapter, we’ll integrate it with backing beans and model objects developed by the
application developer.

 For the most part, this work simply requires wiring up UI component values
with backing bean properties and attaching UI components to event listener
methods. It’s something that can be done iteratively, integrating a single page at
a time. This means that your prototype can spring to life over time, in response to
user feedback. Once we’ve finished creating a fully functional application, we’ll
internationalize it and then localize it for English and Russian.

 Integrating the UI with ProjectTrack’s back-end requires an understanding
of backing beans and model objects that have been created by the application
developer. Before we examine those objects, let’s take a look at some other JSF
development approaches that don’t require a full object model on the back-end.

10.1 Understanding JSF development approaches

With RAD-style tools like Visual Studio .NET, Visual Basic, or Delphi, you often
build forms with UI components that interact directly with data source objects. In
this approach, you don’t necessarily have to have a full object model of your
application; you can simply connect each view to a data source, such as a database
or a web service. This form-centric style of development, as shown in figure 10.1,
is certainly possible with JSF.

 The basic idea behind this approach is that each view is associated with a sin-
gle backing bean, and that backing bean has objects that represent data sources
for that page. You can then wire up components on the view directly to the data
sources through the backing beans, and the application developer can write
action methods that perform any operations (which usually update the data store

Figure 10.1

Form-centric development associates backing beans directly with
data sources, and usually has one backing bean per view.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

356 CHAPTER 10
Integrating application functionality

directly). This is fundamentally the same as using “data-aware” controls, which in
tools like Delphi are associated directly with an underlying data source. Some tools,
like Sun’s Java Studio Creator [Sun, Creator], make this approach easy by allow-
ing you to easily browse for data sources and then add them to your backing bean.

 The form-centric approach works well for small applications. For larger sys-
tems, and those that need to be maintained over a long time period, JSF supports
a more object-oriented approach that is more familiar to Struts developers and
users of other frameworks. This approach requires developing model objects that
represent the business domain, and then backing beans that work with the view
and access the model objects.

 In this approach, a backing bean may be associated with one or more views,
and the source of the data is abstracted from the front-end developer, as shown in
figure 10.2. (The figure leaves out the application layer objects, which are invisi-
ble to the UI; we discuss these in chapters 12 and 13.) Of course, it’s possible to
combine the two approaches. For example, there could be a User object that is
available for the life of the user’s session, even though UI components are wired
directly to data service objects.

NOTE IDEs will often generate one backing bean per page. This approach is
certainly easy to handle (especially for tools), and works well in many cases.
JSF can support much more complicated scenarios, however. And, in
some cases, it is useful to associate the same backing bean with more than
one page.

For ProjectTrack, we take the object-based approach, largely because it’s more
familiar to users of other Java web frameworks, and also because it exhibits the
high level of flexibility that JSF provides. Regardless of the approach, integration
of the UI is similar—you wire up components to backing bean properties and
event listeners. The key difference is that in the form-based approach, the back-
ing bean property might be a data source object, like a JDBC RowSet; in the

Figure 10.2 An object-based approach to development associates views with one or more backing

beans, which expose model objects as properties. These backing beans usually talk to a separate
application layer, but that world is invisible to the UI.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Exploring the application environment 357

object-based approach, the backing bean property might be a List of Project
objects. (JSF’s EL syntax is so flexible that you can sometimes change the approach
without affecting the UI; in chapter 13, we’ll examine this capability.)

 Before we begin the integration process, let’s take a look at the ProjectTrack’s
back-end objects.

10.2 Exploring the application environment

Throughout most of this book, I’ve been talking about all of the services that JSF
provides to make building web applications easier. When web application devel-
opers write application code, their goal is to provide services—in the form of
objects—that make it easy to build the UI. This is what we call the application envi-
ronment, and it consists of backing beans, event listeners, and model objects.

 ProjectTrack’s environment is segmented into several key backing beans,
which expose model object properties such as User and Project. These objects
will be configured by the application developer as managed beans in the faces-
config.xml file. The process of writing and configuring beans (and other applica-
tion objects) is covered in part 3.

 During the integration process, you shouldn’t be concerned about which Java
class was used to implement the bean. What’s important is what the bean repre-
sents, what properties and event listener methods it has, and the key and scope
you can use to access it. Table 10.1 summarizes the beans for ProjectTrack. Armed
with this information, you can intelligently construct JSF EL expressions that
hook up the objects to your components.

Table 10.1 ProjectTrack’s application environment includes these objects. Since they’re stored
under a key in a given scope, they can be easily accessed through JSF EL expressions.

Backing Bean
Name

Description Scope Properties
Action

Methods

Action
Listener
Methods

visit Provides access to
objects that are
valid only during
the user’s session.
Contains proper-
ties for the current
user, the current
project, and the
user’s locale.

session user,
currentProject,
locale,
supported-
LocaleItems
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

358 CHAPTER 10
Integrating application functionality

As you can see, ProjectTrack has seven backing beans. Each bean has properties
that a UI component may reference, such as the currently selected projects, or the
user’s comments when approving or rejecting a project. Some backing beans also
have event listener methods—action methods and action listener methods. The
names that end in Bean represent functionality for one or more specific views; the

authentica-
tionBean

Collects login form
values, provides
login and logout,
and checks for
access to specific
functions.

session name,
password,
createNew-
Authorized,
inboxAuthorized

login,
logout

selectProject-
Bean

Lists projects and
allows user to
select one for
approval, rejection
or viewing of
details.

request inboxProjects,
allProjects,
projectTable

approve,
reject,
details

sort

updateProject-
Bean

Approves or rejects
the current project.

request comments,
artifact-
SelectMany

approve,
reject

createProject-
Bean

Creates a new
project and adds it
to the data store.

request project-
SelectOne

create,
add

showHistory-
Bean

Allows users to
scroll through the
project’s history

request current-
ProjectHistory,
firstRow,
rowsToDisplay

next,
previous

selectItems Provides access to
lookup lists for
artifacts, project
types, and roles for
use with
SelectMany and
SelectOne
components.

application artifacts,
projectTypes,
roles

Table 10.1 ProjectTrack’s application environment includes these objects. Since they’re stored
under a key in a given scope, they can be easily accessed through JSF EL expressions. (continued)

Backing Bean
Name

Description Scope Properties
Action

Methods

Action
Listener
Methods
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Exploring the application environment 359

other two objects—visit and selectItem—are used by many different views.
Table 10.2 shows which views access which beans.

ProjectTrack’s model objects are exposed as properties of these backing beans;
this is how it implements the object-based development strategy (shown in fig-
ure 10.2). In the rest of this chapter, we’ll modify each view to use JSF EL expressions
that associate its components with these backing beans. For pages that reference
action methods, we’ll also need to make modifications to the navigation rules.

 You may be thinking that it’s quite unlikely that you would ever get complete
documentation about the application environment when you begin integration.
After all, half of these objects may not even be written when the project manager
asks to see a working login page. In reality, integration can be performed in a
somewhat ad hoc manner—display of a given page is dependent only on the
objects it requires. So the entire application doesn’t have to be finished in order to
integrate the login page with the database—it only requires authenticationBean.

TIP An easy way to provide documentation for front-end developers is to
generate JavaDocs for backing beans (assuming, of course, that there are
JavaDoc comments to begin with).

Now that it’s clear what the application environment looks like, let’s begin the
integration process.

Table 10.2 Most of ProjectTrack’s views access a specific backing bean, but some access more
than one. Also, sometimes two different views interact with the same backing bean.

Views Backing Bean Name

Header, Create a Project, Approve a Project, Reject a Project, Project Details visit

Login, Header authenticationBean

Inbox, Show All Projects selectProjectBean

Approve a Project, Reject a Project updateProjectBean

Header, Create a Project createProjectBean

Project Details showHistoryBean

Create a Project, Approve a Project, Reject a Project selectItems
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

360 CHAPTER 10
Integrating application functionality

10.3 Reorganizing pages for security

One back-end object we didn’t cover in the previ-
ous section is the authentication filter, which con-
trols access to pages in the application based on
the user’s role. The only effect the filter has on the
integration process is the requirement of a specific
directory structure.

 Pages that are accessible by all authenticated
users should be in a /general directory, pages spe-
cifically for those who can create projects are in the
/protected/edit directory, and all other pages are
in the /protected directory. The Login page will
remain in the root directory, since it’s accessible to
people who haven’t yet logged in. The filter con-
trols access to our JSP pages based on these direc-
tory names. Because we have to move the files
around, it makes sense to place all of the includes
into a central directory, since they’re accessed by
multiple pages; we’ll use an /includes directory for
this purpose. The new JSP file locations are shown
in figure 10.3.

 As we update each of the pages shown in the
figure, and their corresponding navigation rules,
we’ll add the appropriate directory name.

10.4 The Login page

Let’s start with the first page users see—the Login page. This page is backed by
authenticationBean, which is summarized in table 10.3.

Figure 10.3 Our new directory
structure for ProjectTrack JSPs
with directories required by the
authentication filter. All other
directories are the same as in
figure 8.1, page 289.

Table 10.3 authenticationBean summary

Backing Bean authenticationBean

Description Provides login, logout, and access-control functionality.

Scope Session
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Login page 361

NOTE ProjectTrack uses custom security with AuthenticationBean, but JSF
also works well with container-based security. See chapter 13 for more
information.

This view uses the loginName and password properties, as well as the login action
method. Four integration tasks come to mind:

■ Add the context path to the stylesheet reference.
■ Wire up the input controls to the loginName and password properties.
■ Associate the single HtmlCommandButton with the login action method.
■ Add an HtmlMessages component to display messages generated by the

authenticationBean.login action method.

Listing 10.1 shows login.jsp updated to integrate with authenticationBean.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

Property Type Description

login String Specifies the user’s login name.

password String Contains the user’s password.

createNew-
Authorized

boolean
Specifies whether or not the user can create a
new project.

inboxAuthorized boolean Specifies whether or not the user has an inbox.

Action Method Outcomes Description

login "success_readonly",
"success_readwrite",
"failure"

Logs the user into the system. Returns
"success_readonly" if the user’s role is
Upper Manager, "success_readwrite" if it’s
any other role, and "failure" if the login is
incorrect. Sets the visit.user property.

logout "success" Logs the user out of the system (invalidates the
session).

Listing 10.1 login.jsp: Fully integrated with authenticationBean

Table 10.3 authenticationBean summary (continued)
<f:view>
<html>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

362 CHAPTER 10
Integrating application functionality

 <head>
 <title>
 <h:outputText value="ProjectTrack"/>
 </title>

 <link rel="stylesheet" type="text/css"
 href="<%= request.getContextPath() %>
 /stylesheet.css"/>

 <script language="JavaScript">

 function set_image(button, img)
 {
 button.src = img;
 }

 </script>
 </head>

<body>

<h:form>

 <h:panelGrid columns="2" border="0" cellpadding="3" '
 cellspacing="3">

 <h:graphicImage url="/images/logo.gif"
 alt="Welcome to ProjectTrack"
 title="Welcome to ProjectTrack" width="149" height="160"/>

 <h:panelGrid columns="3" border="0"
 cellpadding="5" cellspacing="3"
 headerClass="login-heading">

 <f:facet name="header">
 <h:outputText value="ProjectTrack"/>
 </f:facet>

 <h:messages globalOnly="true"
 styleClass="errors"/>
 <h:panelGroup/>
 <h:panelGroup/>

 <h:outputLabel for="userNameInput">
 <h:outputText value="Enter your user name:"/>
 </h:outputLabel>
 <h:inputText id="userNameInput" size="20" maxlength="30"
 required="true"

Add context path b

New row for
application
messages

 c
 value="#{authenticationBean.loginName}">
 <f:validateLength minimum="5" maximum="30"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Login page 363

 </h:inputText>
 <h:message for="userNameInput" styleClass="errors"/>

 <h:outputLabel for="passwordInput">
 <h:outputText value="Password:"/>
 </h:outputLabel>
 <h:inputSecret id="passwordInput" size="20" maxlength="20"
 required="true"
 value="#{authenticationBean.password}">
 <f:validateLength minimum="5" maximum="15"/>
 </h:inputSecret>
 <h:message for="passwordInput" styleClass="errors"/>

 <h:panelGroup/>
 <h:commandButton action="#{authenticationBean.login}"
 title="Submit"
 image="#{facesContext.externalContext.
 requestContextPath}/images/submit.gif"
 onmouseover="set_image(this,
 '#{facesContext.externalContext.
 requestContextPath}/images/submit_over.gif')"
 onmouseout="set_image(this,
 '#{facesContext.externalContext.
 requestContextPath}/images/submit.gif');"/>
 <h:panelGroup/>

 </h:panelGrid>

 </h:panelGrid>
</h:form>

</body>
</html>
</f:view>

We added the web application's context path in b so that stylesheet references will
work properly regardless of the directory the page is in. Note that we didn’t use a
JSF expression here, because the stylesheet link is ordinary template text that
doesn’t accept JSF expressions.1 We’ll make this change in every other page as well.

 With these changes, the page is now fully functional. When the user types in
his or her username and password, the login action will execute, and it will log
the user into the system. If the action method succeeds, the user will see the next
page. If the login action fails, it will generate a message (the most common message

1
 In JSP 2.0, you can embed JSP expressions anywhere in the template text (in JSP 2.1, slated for release
in mid-2005, JSF and JSP expressions will work together).

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

364 CHAPTER 10
Integrating application functionality

says that the username and/or password is invalid). This message will be dis-
played by the new HtmlMessages component we added to the page in c. We’re
not interested in displaying errors for a specific component (that’s what Html-
Message components are for), but we are interested in displaying general errors
that aren’t associated with a specific component. This is why the HtmlMessage
component’s globalOnly property is set to true.

TIP If you get an EvaluationException when displaying your page, it
means that there is a problem executing your EL expression. If the mes-
sage itself doesn’t make sense, be sure to check your web container’s
logs; often you’ll find the actual root of the problem there.

That’s it—four changes. Now, let’s update the navigation rule.

10.4.1 Updating the navigation rule

The login action has three possible outcomes: "success_readonly" if the user is
an Upper Manager or "success_readwrite" for any other role; otherwise, it will
return "failure". When the login action returns "success_readonly", the user
should be sent to the Show All Projects page, and when the outcome is "success_
readwrite", the user should see the Inbox page. Otherwise, the Login page should
redisplay so that the user can see any messages generated by the login action.

 The original navigation rule for this page only had a "success" outcome
defined. We’ll need to replace that navigation case with ones for "success_readonly"
and "success_readwrite". Technically, we don’t have to set up a rule for the
"failure" outcome because if an outcome isn’t defined in the navigation rule for
the page, JSF will simply redisplay the page. However, if you know all of the pos-
sible outcomes, it’s better to be explicit about the navigation cases. This way, you
can tell from the configuration files what the outcomes are, and it’ll be easier to
change things later (for example, if you added a special error page). The updated
navigation rule, with the changes in bold, is shown in listing 10.2.

<navigation-rule>
 <from-view-id>/login.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success_readonly</from-outcome>
 <to-view-id>/includes/show_all.jsp</to-view-id>
 </navigation-case>

Listing 10.2 faces-config.xml: Updated navigation rule for login.jsp
 <navigation-case>
 <from-outcome>success_readwrite</from-outcome>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The header 365

 <to-view-id>/protected/inbox.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>failure</from-outcome>
 <to-view-id>/login.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

Note that for all of these navigation cases, we use the new directory names shown
in figure 10.3.

 Now it’s time to convert the header page, which is included in every other
page except Login.

10.5 The header

The primary goal of the header is to provide navigation to the most common sec-
tions of the site—the Inbox, Show All Projects, and Create a Project pages. The
header page also displays the user’s name, and allows the user to change the cur-
rent locale. In order to accomplish these tasks, it uses three different backing
beans: authenticationBean, visit, and createProjectBean. We discussed authen-
ticationBean, which provides login and logout functionality, in the previous sec-
tion; it’s summarized in table 10.3.

 The visit bean provides access to objects that are valid only during the user’s
session (after the authenticationBean.login action method is executed, and
before authenticationBean.logout is executed). These objects are the current
user, the current project, and the user’s locale. Table 10.4 summarizes this bean.

Table 10.4 visit summary

Backing Bean visit

Description Provides access to the current user, project, and locale

Scope session

Property Type Description

user User The current user

currentProject Project The currently select project

locale Locale The user’s current locale
supportedLocales List of SelectItems Lists all of the locales that the application supports

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

366 CHAPTER 10
Integrating application functionality

The header uses the user, locale, and supportedLocale properties. The user prop-
erty is a User object, which has a few properties of its own, as shown in table 10.5.

The header also uses the create action method of the createProjectBean, which
creates a new project for the visit.currentProject property for use by the Create
a Project page. (We’ll discuss the other properties of this bean later.)

 Recall from chapter 9 that we used a custom UINavigator component (devel-
oped in online extension part 5) for the toolbar that provides navigation. Each
UINavigator has several child NavigatorItems, each of which has an action prop-
erty (much like the Command components), and a disabled property to indicate
whether or not a user can click on it. We need to make four changes to these items:

■ Enable or disable the Inbox item based on the authenticationBean.allow-
Inbox property.

■ Enable or disable the Create New item based on the authenticationBean.
createNewAuthorized property.

■ Associate the Create New item with the createProjectBean.create action
method.

■ Associate the Logout item with the authenticationBean.logout action
method.

For the rest of the page, there are two additional integration tasks:

■ Associate the HtmlOutputText component that displays the user’s name
with the visit.user.login property.

■ Associate the HtmlSelectOneListbox for selecting the user’s locale with the
visit.locale and visit.supportedLocales properties.

Table 10.5 The properties for User model objects.

Property Type Description

login String Name used to log into the system

firstName String The user’s first name

lastName String The user’s last name

password String The user’s password

role RoleType The user’s role
These changes are shown in listing 10.3.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The header 367

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="jsf-in-action-components" prefix="jia"%>

<f:subview id="header">

 <h:form>

 <h:panelGrid columns="3" cellspacing="0" cellpadding="0"
 styleClass="header" width="100%">

 <jia:navigatorToolbar id="toolbar" layout="horizontal"
 headerClass="toolbar-header" itemClass="toolbar-command"
 selectedItemClass="toolbar-command"
 iconClass="toolbar-icon" immediate="false">

 <f:facet name="header">
 <h:outputText value="ProjectTrack:"/>
 </f:facet>

 <jia:navigatorItem name="inbox" label="Inbox"
 icon="/images/inbox.gif"
 action="inbox"
 disabled=
 "#{!authenticationBean.
 inboxAuthorized}"/>
 <jia:navigatorItem name="showAll" label="Show All"
 icon="/images/show_all.gif"
 action="show_all"/>
 <jia:navigatorItem name="createNew" label="Create New"
 icon="/images/create.gif"
 action="#{createProjectBean.create}"
 disabled="#{!authenticationBean.createNewAuthorized}"/>
 <jia:navigatorItem name="logout" label="Logout"
 icon="/images/logout.gif"
 action="#{authenticationBean.logout}"/>

 </jia:navigatorToolbar>

 <h:panelGroup>
 <h:outputLabel for="languageSelect">
 <h:outputText value="Language:"
 styleClass="language-select"/>
 </h:outputLabel>
 <h:selectOneListbox id="languageSelect" size="1"
 styleClass="language-select"

Listing 10.3 header.jsp: Integrated with authenticationBean, visit, and
createProjectBean

Expression used for
disabled property
 value="#{visit.locale}">

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

368 CHAPTER 10
Integrating application functionality

 <f:selectItems
 value="#{visit.
 supportedLocaleItems}"/>
 </h:selectOneListbox>
 <h:commandButton value="Go!"
 styleClass="language-select-button"/>
 </h:panelGroup>

 <h:outputText value="(#{visit.user.login})"
 styleClass="user-name"/>

 </h:panelGrid>
 </h:form>
</f:subview>

As you can see, the changes are minor. What’s interesting is that we have initial-
ized the disabled property of two of NavigatorItems with a JSF EL expression.
The expression "#{!authenticationBean.inboxAuthorized}" returns true if the user
does not have an inbox, and the expression "#{!authenticationBean.createNew-
Authorized}" returns true if the user cannot create a new project. Remember, you
can use a value-binding expression for any standard component property, and
often for properties in custom components, as is the case here.

 Another interesting change is the replacement of two static UISelectItem com-
ponents with a single UISelectItems component in b. Populating the item list
with the visit.supportedLocaleItems property (which is a list of SelectItem
objects) ensures that the list will always contain the locales that the application
currently supports. It also ensures that the proper value is used when the parent
HtmlSelectOneListbox component updates its value, which is now set to visit.
locale. These two properties were designed to work together. The list of sup-
ported locales is defined in an application configuration file; see section 10.10.3,
page 402 for details.

TIP If the backing bean you referenced doesn’t show up, there are a few pos-
sibilities: (1) your reference is incorrect, (2) the object isn’t there, or (3)
the value of the property is empty. A handy trick is to output the object
itself: <h:outputText value="#{visit}"/>. If you see a string like “org.
jia.ptrack.web.Visit@1ba5839” (the output of the default toString meth-
od) then you know JSF found the object, and at least the first part of your
expression is correct (which eliminates possibility #1).

List populated
with SelectItems

 b
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The header 369

We now have a working header page that disables some toolbar items for partic-
ular users, can create a new project and log users out, and allows users to change
their locale. It also provides basic navigation (as it did in the prototype) and dis-
plays the user’s login name. Let’s examine the view’s navigation rules.

10.5.1 Updating the navigation rule

This page references two action methods (createProjectBean.create and authen-
ticationBean.logout), both of which return the outcome "success". Since the out-
come is the same, we need to specify the <from-action> element so that JSF knows
the action method for which to look. These two navigation cases replace the ones
defined in the prototype for the "create" and "logout" outcomes, respectively.
We also need to update the <to-view-id> nodes to include the new directories
that have been added. The updated rule is shown in listing 10.4.

<navigation-rule>
 <description>Navigation for the toolbar.</description>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>inbox</from-outcome>
 <to-view-id>/protected/inbox.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>show_all</from-outcome>
 <to-view-id>/includes/show_all.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{createProjectBean.create}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/protected/edit/create.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{authenticationBean.logout}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/login.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

Now that we’ve completed the header page, let’s move on to the meat of the
application—the project selection pages.

Listing 10.4 faces-config.xml: Updated global navigation rule
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

370 CHAPTER 10
Integrating application functionality

10.6 Integrating data grids

The Inbox and Show All pages let a user select a project from a table. The table
also has HtmlCommandLink components users can click on to perform specific func-
tions like viewing details, approving the project, or rejecting the project. For each
page, we need to change the existing HtmlPanelGrid into an HtmlDataTable and
integrate it (and its child components, which include the HtmlCommandLink com-
ponents) with the appropriate backing bean. Let’s start with the Inbox page.

10.6.1 The Inbox page

The Inbox page is essentially ProjectTrack’s main menu—it’s the first page seen
by all of the users who can participate in the process flow, and it lists all of the
projects currently waiting for them to process. This view is backed by inboxBean,
whose properties and methods are described in table 10.6.

Table 10.6 inboxBean and showAllBean summary

Backing Bean inboxBean or showAllBean

Description Lists current projects waiting for a user, or all projects.

Scope Request

Component
Binding Property

Type Description

projectTable HtmlDataTable Property for the table that lists all of the projects. Must be set
so the bean can determine which row was selected.

Property Type Description

inboxProjects List List of all of projects in the current user’s inbox.

allProjects List List of all projects.

Action Methods Outcomes Description

approve "success",
"failure",
"error"

Loads the selected project for approval and makes it available
through visit.currentProject. Returns "success" if
the project loaded properly, "failure" if there was a nonfa-
tal error, and "error" if there was a fatal error.

reject "success",
"failure",
"error"

Loads the selected project for rejection and makes it available
through visit.currentProject. Returns "success" if
the project loaded properly, "failure" if there was a nonfa-
tal error, and "error" if there was a fatal error.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating data grids 371

As the table shows, inboxBean has exactly the same properties and methods as
showAllBean, which is used by the Show All page (because they’re two instances of
the same object). Note that this bean has a component-binding property that’s
intended to be associated with the HtmlDataTable that lists the projects. Also note
that this bean has an action listener method, which is used to sort the project list.
We’ll be registering that method with the column headings, which are HtmlCom-
mandLink components.

 Integrating the Inbox with the application objects requires the following steps:

■ Update the paths for the JSP includes.
■ Change the HtmlPanelGrid used to display projects to an HtmlDataTable.
■ Wire input controls to the corresponding visit.currentProject properties.
■ Replace the HtmlOutputText at the top of the page with an HtmlMessages

component.
■ Associate HtmlCommandLink components for the column headers with an

action listener.
■ Associate HtmlCommandLink components for the functions with action

methods.

Because changing an HtmlPanelGrid into an HtmlDataTable is a common task with
a few nuances, let’s examine that process first. The main issue is thinking in terms
of columns instead of rows. HtmlPanelGrid groups a set of components together as
a row, while HtmlPanelTable uses UIColumn components to specify columns. Let’s
look at the original HtmlPanelGrid declaration and the new HtmlDataTable decla-
ration side by side (changes related to component layout are marked in bold):

Action Methods Outcomes Description

details "success",
"failure",
"error"

Loads the selected project for viewing of details and makes it
available through visit.currentProject. Returns
"success" if the project loaded properly, "failure" if
there was a nonfatal error, and "error" if there was a fatal
error.

Action Listener Methods

sort Sorts the list according to the selected column.

Table 10.6 inboxBean and showAllBean summary (continued)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

372 CHAPTER 10
Integrating application functionality

Prototype JSP Integrated JSP

<h:panelGrid columns="6"
 styleClass="table-background"
 rowClasses="table-odd-row,
 table-even-row"
 cellpadding="3">

<%-- Header (technically the first
row) --%>

 <h:commandLink
 styleClass="table-header">
 <h:outputText
 value="Project name"/>
 </h:commandLink>
 <h:commandLink
 styleClass="table-header">
 <h:outputText value="Type"/>
 </h:commandLink>
 <h:commandLink
 styleClass="table-header">
 <h:outputText value="Status"/>
 </h:commandLink>
 <h:panelGroup/>
 <h:panelGroup/>
 <h:panelGroup/>

 <%-- Static data row 1 --%>

 <h:outputText
 value="Inventory Manager v2.0"/>
 <h:outputText
 value="Internal Desktop
 Application"/>
 <h:outputText
 value="Requirements/Analysis"/>
 <h:commandLink action="approve">
 <h:outputText value="Approve"/>
 </h:commandLink>
 <h:commandLink action="reject">
 <h:outputText value="Reject"/>
 </h:commandLink>
 <h:commandLink action="details">
 <h:outputText value="Details"/>
 </h:commandLink>

 <%-- Static data row 2 --%>

<h:dataTable
 styleClass="table-background"
 rowClasses="table-odd-row,
 table-even-row"
 cellpadding="3"
 value="#{inboxBean.
 inboxProjects}"
 var="project"
 binding="#{inboxBean.
 projectTable}">

 <h:column>
 <f:facet name="header">
 <h:commandLink
 styleClass="table-header"
 actionListener=
 "#{inboxBean.sort}">
 <h:outputText
 value="Project name"/>
 <f:param name="column"
 value="name"/>
 </h:commandLink>
 </f:facet>
 <h:outputText
 value="#{project.name}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:commandLink
 styleClass="table-header"
 actionListener=
 "#{inboxBean.sort}">
 <h:outputText value="Type"/>
 <f:param name="column"
 value="type"/>
 </h:commandLink>
 </f:facet>
 <h:outputText
 value="#{project.type}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:commandLink
 styleClass="table-header"
 actionListener=
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating data grids 373

There are several changes in the column on the right; for now, let’s discuss the
ones in bold, which are related to the conversion from an HtmlPanelGrid to an
HtmlDataTable. We started by simply changing the <h:panelGrid> tags to <h:data-
Table> tags, and then adding specific HtmlDataTable properties.

 The value property references inboxBean.inboxProjects, which returns a list
of all of the projects in the user’s inbox. The component will cycle through each
row in this list and expose a request-scoped variable called projects (set by the
var property), displaying each column. The binding property binds the compo-
nent to the inboxBean.projectTable property, so that this component can be

 <h:outputText value="TimeTracker"/>
 <h:outputText
 value="Internal Web
 Application"/>
 <h:outputText
 value="Requirements/Analysis"/>
 <h:commandLink action="approve">
 <h:outputText value="Approve"/>
 </h:commandLink>
 <h:commandLink action="reject">
 <h:outputText value="Reject"/>
 </h:commandLink>
 <h:commandLink action="details">
 <h:outputText value="Details"/>
 </h:commandLink>

</h:panelGrid>

 "#{inboxBean.sort}">
 <h:outputText value="Status"/>
 <f:param name="column"
 value="status"/>
 </h:commandLink>
 </f:facet>
 <h:outputText
 value="#{project.status}"/>
 </h:column>

 <h:column>
 <h:commandLink
 action="#{inboxBean.
 approve}">
 <h:outputText value="Approve"/>
 </h:commandLink>
 </h:column>

 <h:column>
 <h:commandLink
 action="#{inboxBean.reject}">
 <h:outputText value="Reject"/>
 </h:commandLink>
 </h:column>

 <h:column>
 <h:commandLink
 action="#{inboxBean.details}">
 <h:outputText value="Details"/>
 </h:commandLink>
 </h:column>

</h:dataTable>

Prototype JSP Integrated JSP
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

374 CHAPTER 10
Integrating application functionality

manipulated in code. Note that we were able to keep the several properties that
are common between the two components.

 The main change is that all of the columns are split into individual columns
and grouped inside a UIColumn component. HtmlDataTable requires this—all of its
children must be either UIColumns or facets.

TIP A common mistake when converting a panel to a table is to forget to enclose
the child components in a header or footer facet, or inside a UIColumn.
If you forget to do this, your child components won’t be displayed.

Also, note that we’ve moved the three header columns into header facets for the
individual UIColumn components. Remember, each column can have its own
header or footer, in addition to a header or footer for the entire table. Because
each column acts as a template for each row, we need to specify the column only
once—it’ll be repeated for each row returned by inboxBean. This is different than
the prototype, which explicitly specified two static rows of data.

 We glossed over the value-bindings that were added to the page. All of the
components that are children of the HtmlDataTable reference the projects vari-
able. This object is of type Project, which is one of the key model objects in our
application. Its properties are shown in table 10.7.

Table 10.7 The properties for Project model object (usually accessed through visit.current-
Project).

Property Type Description

artifacts
List of
ArtifactTypes

All of the artifacts this project has completed.
Use when listing artifacts.

history
List of
Operations

All of the operations (approvals or rejections)
that have been performed on this project.

initialComments String
Initial comments entered by a user when the
project was created.

initiatedBy String
The name of the individual responsible for
starting the project.

name String The project’s name.

requirementsContact String The name of the contact for requirements.

requirementsContactEmail String The email address of the requirements contact.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating data grids 375

It’s important to note that the status and type properties can be displayed with-
out any explicit conversion. Now that we know more about the Project object,
let’s examine the updates to the entire page in listing 10.5.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<f:view>
<html>
 <head>
 <title>
 <h:outputText value="ProjectTrack - Inbox"/>
 </title>
 <link rel="stylesheet" type="text/css"
 href="<%= request.getContextPath() %>/stylesheet.css"/>
 </head>

<body class="page-background">

<jsp:include page="/includes/header.jsp"/>

<h:form>

 <h:panelGrid headerClass="page-header"
 styleClass="table-background"
 columns="1" cellpadding="5">

 <f:facet name="header">
 <h:outputText value="Inbox - approve or reject projects"/>
 </f:facet>

 <h:messages globalOnly="true" styleClass="errors"/>

status StatusType
The current status (Proposal, Requirements/
Analysis, Deployment, etc.).

type ProjectType
The project type (Internal Desktop Application,
External Web Application, etc.).

Listing 10.5 inbox.jsp: Integrated with the inboxProjects backing bean

Table 10.7 The properties for Project model object (usually accessed through visit.current-
Project). (continued)

Property Type Description

HtmlOutputText
replaced with

 b
HtmlMessages

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

376 CHAPTER 10
Integrating application functionality

 <h:dataTable styleClass="table-background"
 rowClasses="table-odd-row,table-even-row" cellpadding="3"
 value="#{inboxBean.inboxProjects}"
 var="project"
 binding="#{inboxBean.projectTable}">

 <h:column>
 <f:facet name="header">
 <h:commandLink id="name"
 styleClass="table-header"
 actionListener=
 "#{inboxBean.sort}">
 <h:outputText
 value="Project name"/>
 </h:commandLink>
 </f:facet>
 <h:outputText value="#{project.name}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:commandLink id="type"
 styleClass="table-header"
 actionListener=
 "#{inboxBean.sort}">
 <h:outputText value="Type"/>
 </h:commandLink>
 </f:facet>
 <h:outputText value="#{project.type}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:commandLink id="status"
 styleClass="table-header"
 actionListener="#{inboxBean.sort}">
 <h:outputText value="Status"/>
 </h:commandLink>
 </f:facet>
 <h:outputText value="#{project.status}"/>
 </h:column>

 <h:column>
 <h:commandLink action="#{inboxBean.approve}">
 <h:outputText value="Approve"/>
 </h:commandLink>
 </h:column>

 <h:column>

Action listener
method for
sorting by name

 c

Action listener
method for
sorting by type

 d

Action listener
method for
sorting by status

 e
 <h:commandLink action="#{inboxBean.reject}">
 <h:outputText value="Reject"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating data grids 377

 </h:commandLink>
 </h:column>

 <h:column>
 <h:commandLink action="#{inboxBean.details}">
 <h:outputText value="Details"/>
 </h:commandLink>
 </h:column>

 </h:dataTable>

 </h:panelGrid>

</h:form>

</body>
</html>
</f:view>

Note that in b we’ve replaced the static HtmlOutputText from the prototype with an
HtmlMessages component that displays application messages. Such messages may
be generated by inboxBean when a user executes one of its action methods (if a user
tries to reject a message that has just been rejected by someone else, for example).

 The HtmlCommandLink component used for each column’s titles has been asso-
ciated with the inboxBean.sort method (c, d, e), which will sort the list by the col-
umn. All three columns execute the same action, and they differentiate themselves
with by assigning different identifiers to the HtmlCommandLink components.

 The Inbox page is now fully integrated with the application. Let’s see how this
affects its navigation rule.

Updating the navigation rule
All three action methods used on this page (inboxBean.approve, inboxBean.reject,
and inboxBean.details) return one of the following outcomes:

■ "success", which indicates successful completion.
■ "falure", which indicates a nonfatal error executing the update.
■ "error", which indicates a serious database error.

However, these action methods should send the user to completely different
pages. Unsurprisingly, these pages are approve.jsp, reject.jsp, and details.jsp. As
before, we can have different navigation cases for the same outcomes if we use the

<from-action> element. In the prototype, the expected outcomes had the same

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

378 CHAPTER 10
Integrating application functionality

name as the page itself, so that will have to be changed as well. The updated rule
is shown in listing 10.6.

<navigation-rule>
 <from-view-id>/protected/inbox.jsp</from-view-id>
 <navigation-case>
 <from-action>#{inboxBean.details}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/includes/details.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{inboxBean.approve}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/protected/approve.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{inboxBean.reject}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/protected/reject.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

Note that we also changed the path for the <from-view-id> elements; we’ll have
to do this for every page.

 That’s it for the Inbox page. Let’s take a look at the Show All page.

10.6.2 The Show All page

The Show All page is almost exactly like the Inbox page. Other than static display
text (like the title and heading of the page), the only changes are that it has an
additional column, it displays all projects, and the user can’t approve or reject
projects. This boils down to the following differences:

■ There is an additional UIColumn called “Waiting for” that retrieves its value
from "#{project.status.role}".

■ The HtmlDataTable uses the value-binding expression "#{inboxBean.all-
Projects}" instead of "#{inboxBean.inboxProjects}".

■ There are no columns for the Approve and Reject buttons.

Other than that, all of the integration steps are the same, including the naviga-
tion rule changes.

Listing 10.6 faces-config.xml: Updated navigation rule for approve.jsp
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating input forms 379

10.7 Integrating input forms

The operation pages—Approve a Project and Reject a Project—allow users to view
information about a project, add or remove completed artifacts, and submit com-
ments to be added to the project’s history. The pages are pretty similar, but they
execute different action methods. The Create a Project page allows a user to create
a new project, and is conceptually similar to the other two pages, but is backed by
a different bean. Because these pages display or edit several properties of the cur-
rent project, the main task is simply integrating controls with the correct property.

TIP If a page redisplays unexpectedly, make sure you’re not getting a con-
version or validation error—place an HtmlMessages component at the
top of the page to display any possible errors.

10.7.1 Updating the includes

In chapter 9, we defined three JSP includes that were used by these pages: project_
info.jsp, project_artifacts.jsp, and project_comments.jsp. The input controls on
the first two of these pages need to be wired to properties of the current project
(visit.currentProject). This is a Project model object, whose properties are listed
in table 10.7. Listings 10.7 and 10.8 show how it is integrated with these pages.

<h:outputText value="Name:"/>
<h:outputText value="#{visit.currentProject.name}"
 styleClass="project-data"/> <!>

<h:outputText value="Type:"/>
<h:outputText value="#{visit.currentProject.type}"
 styleClass="project-data"/>

<h:outputText value="Initiated by:"/>
<h:outputText value="#{visit.currentProject.initiatedBy}"
 styleClass="project-data"/>

<h:outputText value="Requirements contact:"/>
<h:outputText value="#{visit.currentProject.requirementsContact}"
 styleClass="project-data"/>

<h:outputText value="Requirements contact e-mail:"/>
<h:outputText value="#{visit.currentProject.
 requirementsContactEmail}"

Listing 10.7 project_info.jsp: Integrated with visit.currentProject
 styleClass="project-data"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

380 CHAPTER 10
Integrating application functionality

<h:outputText value="Initial comments:"/>
<h:outputText value="#{visit.currentProject.initialComments}"
 styleClass="project-data"/>

<h:outputLabel for="artifactSelect">
 <h:outputText value="Completed artifacts:"/>
</h:outputLabel>
<h:selectManyCheckbox id="artifactSelect" layout="pageDirection"
 styleClass="project-input"
 value="#{visit.currentProject.artifacts}"
 converter="ArtifactType">
 <f:selectItems
 value="#{selectItems.artifacts}"/>
</h:selectManyCheckbox>

As you can see, for the most part, integration is straightforward—simply replace
static values with value-binding expressions. Note that for project_artifacts.jsp
(b), we’ve changed several UISelectItem components into a single UISelect-
Items component that references selectItems.artifacts, which provides a list of
all of possible artifact types. The selectItems backing bean has three properties
that can be used to populate lists for SelectMany and SelectOne components.
This bean is summarized in table 10.8.

Whenever we encounter a SelectMany or SelectOne component that requires one

Listing 10.8 project_artifacts.jsp: Integrated with visit.currentProject and
selectItems.artifacts

Table 10.8 selectItems summary

Backing Bean selectItems

Description
Provides access to global, static lookup lists for use with SelectMany or SelectOne
components.

Scope application

Property Type Description

artifacts List of SelectItems List of all of the artifact types.

roles List of SelectItems List of all of the different roles.

projectTypes List of SelectItems List of project types.

Global list of
SelectItems

 b
of these lists, we’ll reference selectItems.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating input forms 381

 The last include, project_comments.jsp, is associated with updateProjectBean,
which is used for both the Approve a Project and Reject a Project pages. This bean
is summarized in table 10.9.

The only property used by project_comments.jsp is the comments property, which
needs to be wired to the HtmlInputTextarea control on the page. The updated
page is shown in listing 10.9.

<h:panelGrid columns="1" cellpadding="5"
 styleClass="table-background"
 rowClasses="table-odd-row,table-even-row">
 <h:outputLabel for="commentsInput">
 <h:outputText value="Your comments:"/>

Table 10.9 updateProjectBean summary

Backing Bean updateProjectBean

Description Provides action methods for approving or rejecting a project.

Scope request

Property Type Description

comments List of SelectItems List of all of the artifact types.

Action
Methods

Outcomes Description

approve "success_readonly",
"success_readwrite",
"failure", "error"

Approves the project, moving it to the next status and
adding a new approval operation to its history. Returns
"success_readonly" or "success_readwrite"
if the update operation is successful, and "failure"
otherwise. The "error" outcome is returned if there is
a data store error.

reject "success",
"failure",
"error"

Rejects the project, moving it to the previous status and
adding a new rejection operation to its history. Returns
"success" if the update operation is successful, and
"failure" otherwise. The "error" outcome is
returned if there is a data store error.

cancel "cancel_readonly",
"cancel_readwrite"

Returns "cancel_readonly" if this is a read-only
user (Upper Manager), or "cancel_readwrite" for
other users.

Listing 10.9 project_comments.jsp: Integrated with updateProjectBean
 </h:outputLabel>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

382 CHAPTER 10
Integrating application functionality

 <h:inputTextarea id="commentsInput" rows="10" cols="80"
 value="#{updateProjectBean.comments}"/>
</h:panelGrid>

That’s all we needed to change—just the value of one HtmlInputTextarea control.
 With these includes integrated, the changes to the actual input forms are

minor. Let’s examine those changes now.

10.7.2 The Approve a Project page

The purpose of the Approve a Project page is to do just what it says—approve the
current project. Part of the approval process is to collect comments and update
the list of completed artifacts; these are functions that are performed by the JSP
includes we discussed in the previous section. The view leverages updateProject-
Beand to perform its work. These are the only changes necessary for the page
itself:

■ Update the paths for the JSP includes.
■ Replace the HtmlOutputText at the top of the page with an HtmlMessages

component.
■ Associate the Approve HtmlCommandButton with the updateProjectBean.

approve action method.

The updated page is shown in listing 10.10.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<f:view>
<html>
 <head>
 <title>
 <h:outputText value="ProjectTrack - Approve a Project"/>
 </title>
 <link rel="stylesheet" type="text/css"
 href="<%= request.getContextPath() %>/stylesheet.css"/>
 </head>

<body class="page-background">

Listing 10.10 approve.jsp: Integrated with updateProjectBean
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating input forms 383

<jsp:include page="/includes/header.jsp"/>
<h:form>

 <h:panelGrid columns="2" cellpadding="5"
 footerClass="project-background"
 styleClass="project-background"
 rowClasses="project-row">

 <f:facet name="header">
 <h:panelGrid columns="1" width="100%" cellpadding="3"
 styleClass="project-background"
 headerClass="page-header">
 <f:facet name="header">
 <h:outputText value="Approve a project"/>
 </f:facet>
 <h:messages globalOnly="true"
 styleClass="errors"/>
 </h:panelGrid>
 </f:facet>

 <%@ include file="/includes/project_info.jsp"%>
 <%@ include file="/includes/project_artifacts.jsp"%>

 <f:facet name="footer">

 <h:panelGroup>

 <%@ include file="/includes/project_comments.jsp"%>

 <h:panelGrid columns="2" rowClasses="table-odd-row">
 <h:commandButton value="Approve"
 action="#{updateProjectBean.approve}"/>
 <h:commandButton value="Cancel"
 action="#{createProjectBean.cancel}"
 immediate="true"/>
 </h:panelGrid>
 </h:panelGroup>

 </f:facet>

 </h:panelGrid>

</h:form>

</body>
</html>
</f:view>

HtmlOutputText replaced
with HtmlMessages

 b
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

384 CHAPTER 10
Integrating application functionality

If updateProject.approve has a problem updating the database, it will add the
appropriate error messages to the JSF message queue, and return "failure". Any
such messages will be displayed by the HtmlMessages component added in b.

 With these changes, we now have a complete working page. It displays all of
the project’s properties, and allows the user to add artifacts or comments. When
the user clicks on the Approve HtmlCommandButton, the updateProject.approve
method is executed, the current project moves to the next status, and a new
approve operation is added to the project’s history. When viewing the project
later with the Project Details page, the user will see a record of this operation.

 Next, we examine the view’s navigation rule.

Updating the navigation rule
The updateProjectBean.approve method has four possible outcomes:

■ "success_readonly", which indicates successful completion for Upper
Managers.

■ "success_readwrite", which indicates success for other users.
■ "failure", which indicates a nonfatal error executing the update.
■ "error", which indicates a serious database error.

The prototype only had the positive outcome "success", which was mapped to
inbox.jsp. We’ll update that navigation case to map to the outcome "success_
readwrite", and add a new navigation case for "success_readonly" that maps to
show_all.jsp because read-write users (i.e., Upper Managers) don’t have an inbox.

 For the "failure" outcome, we want the page to redisplay so that the user can
see error messages. Originally, we didn’t define a navigation case for this out-
come, and because JSF redisplays the page for unknown outcomes, this is our
desired behavior. It’s generally better to be explicit, though, so we’ll add a navi-
gation case for "failure" as well. The "error" outcome was handled by the global
navigation rule shown in listing 10.2.

 The Cancel button calls the updateProjectBean.cancel method, which returns
"cancel_readonly" for Upper Managers and "cancel_readwrite" for everybody
else. This is so that Upper Managers can be sent to the Show All page, and every-
body else will see the Inbox page. We’ll change the "cancel" navigation case so
that it expects "cancel_readwrite", and add a new case for "cancel_readonly".

 We’ll also make sure that all of the cases include the new directories that we’ve
added. The updated navigation rule is shown in listing 10.11.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating input forms 385

<navigation-rule>
 <from-view-id>/protected/approve.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success_readonly</from-outcome>
 <to-view-id>/protected/show_all.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>success_readwrite</from-outcome>
 <to-view-id>/protected/inbox.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>failure</from-outcome>
 <to-view-id>/protected/approve.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>cancel_readonly</from-outcome>
 <to-view-id>/protected/show_all.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>cancel_readwrite</from-outcome>
 <to-view-id>/protected/inbox.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>

Now, when a user leaves the Approve a Project page, he or she will return to
either the Inbox or Show All page, or see the Approve a Project again with error
messages. Next, let’s examine the Reject a Project page.

10.7.3 The Reject a Project page

Integrating the Reject a Project page can be performed in exactly the same man-
ner because most of the page is composed of the JSP includes project_info.jsp,
project_artifacts.jsp, and project_comments.jsp, which are shared by the Approve
a Project page. Both pages use the updateProject bean, but the Reject a Project
page uses the reject action method instead. As you’ve probably guessed, this
action method moves the project’s status backward (as opposed to forwards, like
the approve action method), but still creates an operation entry in the project’s
history, which can be displayed on the Project Details page.

 Because the reject action method has exactly the same outcomes as the
approve action method, the changes to the navigation rule are identical as well.

 Let’s move on to something a bit more complicated: the Create a Project page.

Listing 10.11 faces-config.xml: Updated navigation rule for approve.jsp
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

386 CHAPTER 10
Integrating application functionality

10.7.4 The Create a Project page

The Create a Project page collects all of the information necessary for adding a
new project to the data store. It’s backed by createProjectBean, which has two
action methods: create, which the header uses to create a new project, and add,
which adds the current project to the database. The backing bean is summarized,
in table 10.10.

Table 10.10 createProjectBean summary

Backing Bean createProjectBean

Description
Provides action methods for creating a new project and adding it to the data
store.

Scope request

Component Binding
Property

Type Description

reqContactEmail HtmlInputText Property for the control used to collect the
requirements contact e-mail. Used by the
validateReqContact method.

projectSelect-
One

UISelectOne Property for HtmlSelectOneListbox or
HtmlSelectOneMenu, or HtmlSelect
OneRadio control in the view that’s used to
select the project type. This property allows the
bean to configure a converter for the control.

Validator Methods Description

validateReq-
Contact

Requires that an e-mail address be entered into the control bound to reqCon-
tactEmail if the validated control is not empty. Used to ensure that if someone
enters a requirement contact's name, they also enter an e-mail address.

Action Methods Outcomes Description

add "success_readonly",
"success_readwrite",
"failure", "error"

Adds visit.currentProject to the database.
Returns "success_readonly" or "success_
readwrite" if successful; "failure" for non-
fatal errors, and "error" for major problems.

create "success" Creates a new Project object and makes it
available through visit.currentProject.
Should be called before loading the Create a
Project page.

cancel "cancel_readonly", Returns "cancel_readonly" if this is a read-

"cancel_readwrite" only user (Upper Manager), or

"cancel_readwrite" for other users.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating input forms 387

As the table shows, this backing bean has a component binding property. This
allows the bean to initialize the component as it sees fit. In ProjectTrack, create-
ProjectBean sets the UISelectOne’s properties, and configures a converter in
order to show this can be done in code. In your applications, the backing bean
can do just about anything when it initializes a component—configure proper-
ties, add child components, and so on.

 The table also shows that the create action method creates a new Project
object for the visit.currentProject property. This means that if we wire up all of
the controls on this page to visit.currentProject, we’ll be modifying the new
project, because the header executes the create action method before this page is
loaded. The properties of Project model objects are summarized in table 10.7.

 Integration the Create a Project page involves:

■ Update paths of the JSP includes.
■ Changing the HtmlOutputText for displaying messages to an HtmlMessages

component.
■ Wiring input controls to the corresponding view.currentProject properties.
■ Wire input controls to component binding properties.
■ Setting the validator property of HtmlInputText that collects a require-

ment contact’s name.
■ Associating the HtmlCommmandButtons with the appropriate action methods.

The updated page is shown in listing 10.12.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="jsf-in-action-components" prefix="jia"%>

<f:view>

<html>
 <head>
 <title>
 <h:outputText value="ProjectTrack - Create a new project"/>
 </title>
 <link rel="stylesheet" type="text/css"
 href="<%= request.getContextPath() %>/stylesheet.css"/>

Listing 10.12 create.jsp: Integrated with visit.currentProject and createProjectBean
 </head>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

388 CHAPTER 10
Integrating application functionality

<body class="page-background">

<jsp:include page="/includes/header.jsp"/>

<h:form>
 <h:panelGrid columns="3" cellpadding="5"
 footerClass="project-background"
 styleClass="project-background"
 rowClasses="project-row"
 columnClasses=",project-input">

 <f:facet name="header">
 <h:panelGrid columns="1" width="100%" cellpadding="3"
 styleClass="project-background"
 headerClass="page-header">
 <f:facet name="header">
 <h:outputText value="Create a project"/>
 </f:facet>
 <h:messages globalOnly="true" showDetail="true" styleClass="errors"/>
 </h:panelGrid>
 </f:facet>

 <h:outputLabel for="nameInput">
 <h:outputText value="Name:"/>
 </h:outputLabel>
 <h:inputText id="nameInput" size="40" required="true"
 value="#{visit.currentProject.name}">
 <f:validateLength minimum="5"/>
 </h:inputText>
 <h:message for="nameInput" styleClass="errors"/>

 <h:outputLabel for="typeSelectOne">
 <h:outputText value="Type:"/>
 </h:outputLabel>
 <h:selectOneMenu
 binding="#{createProjectBean.
 projectSelectOne}">
 <f:selectItems value="#{selectItems.projectTypes}"/>
 </h:selectOneMenu>
 <h:message for="typeSelectOne" styleClass="errors"/>

 <h:outputLabel for="initiatedByInput">
 <h:outputText value="Initiated by:"/>
 </h:outputLabel>
 <h:inputText id="initiatedByInput" size="40" required="true"
 value="#{visit.currentProject.initiatedBy}">
 <f:validateLength minimum="2"/>
 </h:inputText>
 <h:message for="initiatedByInput" styleClass="errors"/>

Bind to bean for
initialization
 <h:outputLabel for="requirementsInput">
 <h:outputText value="Requirements contact:"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating input forms 389

 </h:outputLabel>
 <h:inputText id="requirementsInput" size="40"
 value="#{visit.currentProject.requirementsContact}"
 validator="#{createProjectBean.validateReqContact}"/>
 <h:panelGroup/>

 <h:outputLabel for="requirementsEmailInput">
 <h:outputText value="Requirements contact e-mail:"/>
 </h:outputLabel>
 <h:inputText id="requirementsEmailInput" size="40"
 value="#{visit.currentProject.
 requirementsContactEmail}"
 binding="#{createProjectBean.reqContactEmailInput}">
 <jia:validateRegEx
 expression=
 "\\w+([-+.]\\w+)*@\\w+([-.]\\w+)*\\.\\w+([-.]\\w+)*"
 errorMessage="Please enter a valid e-mail address."/>
 </h:inputText>
 <h:message for="requirementsEmailInput" styleClass="errors"

 <%@ include file="\includes\project_artifacts.jsp" %>

 <h:panelGroup/>

 <f:facet name="footer">

 <h:panelGroup>

 <h:panelGrid columns="1" cellpadding="5"
 styleClass="table-background"
 rowClasses="table-odd-row,table-even-row">
 <h:outputLabel for="commentsInput">
 <h:outputText value="Your comments:"/>
 </h:outputLabel>
 <h:inputTextarea id="commentsInput" rows="10" cols="80"
 value="#{visit.currentProject.initialComments}"/>
 </h:panelGrid>

 <h:panelGrid columns="2" rowClasses="table-odd-row">
 <h:commandButton value="Save"
 action="#{createProjectBean.add}"/>
 <h:commandButton value="Cancel"
 action="#{createProjectBean.cancel}"
 immediate="true"/>
 </h:panelGrid>
 <h:panelGroup/>

 </h:panelGroup>
 </f:facet>

Add
validator
method

Bind to bean
for use with
validator
method
 </h:panelGrid>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

390 CHAPTER 10
Integrating application functionality

</h:form>

</body>
</html>
</f:view>

Fortunately, the page with the most input controls was fairly straightforward to
integrate—just hook up the value-bindings, and voilà! One integrated page.

Updating the navigation rule
This view references two action methods: createProjectBean.approve and create-
ProjectBean.cancel. As luck would have it, these two methods have the exact
same set of outcomes as the action methods referenced by the Approve a Project
and Reject a Project pages, so the navigation rule changes are the same. See sec-
tion 10.7.2, page 382 for details.

10.8 The Project Details page

The Project Details page is a read-only view of everything there is to know about a
project. Most of its components are similar to the ones used in the Approve a Project
and Create a Project pages, except that all of them (other than a single HtmlCom-
mandButton) are output components. The model object we’re interested in here is
visit.currentProject, whose properties we listed earlier in table 10.7. This view
also uses a backing bean called showHistoryBean to allow the user to page through
the list of previous operations. That bean is summarized in table 10.11.

Table 10.11 showHistoryBean summary

Backing Bean showHistoryBean

Description Allows the user to page through the current project’s history.

Scope request

Component Binding
Property

Type Description

historyDataTable HtmlDataTable Property for the table that lists the project
history. Must be set so that the table will page
through the history.

continued on next page
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Project Details page 391

As you can see, this bean exposes a currentProjectHistory property to contain
the list of operations, and then exposes other properties that integrate well with
an HtmlDataTable component. We’ll use the next and previous action methods
for buttons at the bottom of the history table.

 Most of the integration work involves the simple process of adding value-bindings
to the input controls, as usual; however, there are few anomalies. The steps are

■ Update the paths for the JSP includes.
■ Wire input controls to the corresponding view.currentProject properties.
■ Change the HtmlPanelGrid used to display artifacts to an HtmlDataTable.
■ Change the HtmlPanelGrid that displays project history to an HtmlData-

Table, and associate it with showHistoryBean.
■ Change the Ok HtmlCommandButton to reference an action method.

Note that two of these steps involve changing HtmlPanelGrids into HtmlData-
Tables, as we did in section 10.6. The translation is fairly simple, but it involves
the same shift we discussed earlier—changing from a row-oriented layout of Html-
PanelGrid to a column-based layout of HtmlDataTable. The table for displaying the

Property Type Description

currentProject-
History

List List of operations that represent the current
project’s history.

firstRow int First row to display for the current page.

rowsToDisplay int Number of rows to display for each page.

Action Methods Outcomes Description

next "success",
"failure"

Scrolls to the next page (changes the value of
firstRow). Always returns "success" unless
the last page has already been reached.

previous "success",
"failure"

Scrolls to the previous page (changes the value
of firstRow). Always returns "success"
unless the first page has already been reached.

cancel "cancel_readonly",
"cancel_readwrite"

Returns "cancel_readonly" if this is a
read-only user (Upper Manager), or
"cancel_readwrite" for other users.

Table 10.11 showHistoryBean summary (continued)
project’s history will be associated with showHistoryBean and also require an

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

392 CHAPTER 10
Integrating application functionality

additional footer with buttons for moving forward and backward in the history
list; these buttons will be wired to the next and previous action methods of
showHistoryBean. The updated page is shown in listing 10.13.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<f:view>
<html>
 <head>
 <title>
 <h:outputText value="ProjectTrack - Project details"/>
 </title>
 <link rel="stylesheet" type="text/css"
 href="<%= request.getContextPath() %>/stylesheet.css"/>
 </head>

<body class="page-background">

<jsp:include page="/includes/header.jsp"/>

<h:form>

 <h:panelGrid id="projectPanel" columns="2" cellpadding="5"
 footerClass="project-background"
 columnClasses=",project-data"
 styleClass="project-background"
 rowClasses="project-row">

 <f:facet name="header">
 <h:panelGrid columns="1" width="100%" cellpadding="3"
 styleClass="project-background"
 rowClasses="page-header">
 <h:outputText value="Project details"/>
 </h:panelGrid>
 </f:facet>

 <%@ include file="/includes/project_info.jsp" %>

 <h:outputText value="Completed artifacts:"/>
 <h:dataTable
 value="#{visit.currentProject.artifacts}"
 var="artifact" rowClasses="project-data"
 cellpadding="0" cellspacing="0">

Listing 10.13 details.jsp: Integrated with visit.currentProject and showHistoryBean

Convert
HtmlPanelGrid to
HtmlDataTable

 b
 <h:column>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Project Details page 393

 <h:outputText value="#{artifact}"/>
 </h:column>
 </h:dataTable>

 <f:facet name="footer">

 <h:panelGroup>
 <h:dataTable cellpadding="5"
 styleClass="table-background"
 value="#{showHistoryBean.
 currentProjectHistory}"
 var="operation"
 binding="#{showHistoryBean.
 historyDataTable}"
 rows="#{showHistoryBean.
 rowsToDisplay}">

 <f:facet name="header">
 <h:outputText value="History" styleClass="table-header"/>
 </f:facet>

 <h:column>
 <h:panelGrid columns="1" width="100%" border="1"
 styleClass="table-even-row">

 <h:panelGrid columns="3" cellpadding="7"
 styleClass="table-even-row">
 <h:outputText value="#{operation.timestamp}">
 <f:convertDateTime
 dateStyle="full"
 timeStyle="short"/>
 </h:outputText>
 <h:outputText value=
 "#{operation.fromStatus} -> #{operation.toStatus}"/>
 <h:outputText value="(#{operation.user.role})"/>
 </h:panelGrid>

 <h:panelGrid columns="1" cellpadding="3"
 styleClass="table-odd-row" width="100%">
 <h:outputText value="Comments:"/>
 <h:outputText value="#{operation.comments}"
 styleClass="project-data"/>
 </h:panelGrid>
 </h:panelGrid>
 </h:column>

 <f:facet name="footer">
 <h:panelGroup>
 <h:commandLink action="#{showHistoryBean.previous}"

 c Convert
HtmlPanelGrid to
HtmlDataTable

Add converter
for date value

 d

Add footer for
scrolling buttons e
 rendered="#{showHistoryBean.showPrevious}"
 style="padding-right: 5px;">

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

394 CHAPTER 10
Integrating application functionality

 <h:outputText value="Previous"/>
 </h:commandLink>
 <h:commandLink action="#{showHistoryBean.next}"
 rendered="#{showHistoryBean.showNext}">
 <h:outputText value="Next"/>
 </h:commandLink>
 </h:panelGroup>
 </f:facet>

 </h:dataTable>

 <h:commandButton value="Ok"
 action="#{showHistoryBean.cancel}"
 immediate="true" style="margin-top: 5px"/>

 </h:panelGroup>
 </f:facet>

 </h:panelGrid>

</h:form>

</body>
</html>
</f:view>

In this section, we change the artifact list from an HtmlPanelGrid with static data
to an HtmlDataTable with dynamic data. In the updated code, we replaced the
<h:panelGrid> tag with the <h:dataTable> tag, and were able to keep the row-
Classes property as well as the HTML pass-through properties. The prototype
had two hardcoded example HtmlOutputText components, which we replaced
with a single component with a value-binding expression. This component is
nested within a UIColumn so that the HtmlDataTable will use it as a template col-
umn. Because there’s only one column in this table, this has the effect of showing
all of the artifacts for the project—one per row.
In this case, we replace the static HtmlPanelGrid with an HtmlDataTable for showing
the project’s history, which can consist of several operations (approvals or rejec-
tions). The new HtmlDataTable is bound to the showProjectHistory bean, which
provides scrollable access to the project’s history. The component’s rows property
is set to the rowsToDisplay property of the bean. We were able to keep the cell-
padding and styleClass properties from the previous HtmlPanelGrid declaration.

 All of the child panels remain the same, except for the addition of value-bind-
ing expressions for the operation variable (which represents the current row) and

Set immediate
to true

 f

 b

 c
removal of the extra static row. These panels are explicitly grouped inside a single
UIColumn component because there is only one column.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The Project Details page 395

Here we configure a DateTime converter for the operation.timestamp property.
In our prototype, timestamps are hardcoded in text and look like this: “Tuesday,
March 4, 2003 04:30 PM”. But once we set use the value-binding expression
"#{operation.timestamp}", which is of type Date, the output looks more like this:
“Tue Mar 4 16:30:23 EDT 2003”. We could just leave it that way, but users have
an uncanny way of expecting everything to look just like the prototype. Instead,
we can achieve the same formatting as the prototype with a DateTime converter
that has a dateStyle attribute set to full and a timeStyle attribute set to short.
In order to control scrolling, we need Next and Previous buttons, which are
bound to the showHistoryBean’s next and previous action methods. These meth-
ods update the values of the currentProjectHistory, firstRow, and rowsToDisplay
properties as necessary. (These properties are bound to the HtmlDataTable com-
ponent in c). The buttons, which are HtmlCommandButton components, are grouped
inside the footer using an HtmlPanelGroup component.
In the prototype, we didn’t set the immediate property because there were no other
input controls on the page. However, now that we’ve added other HtmlCommand-
Buttons, it’s prudent to ensure that cancellation happens before any other pro-
cessing takes place. This is generally a good idea for cancel buttons anyway,
regardless of the other components on the page. (Even though the button says
Ok, it functions more like a cancel button, so we associated with the showHistory-
Bean.cancel action method.)
Now that we’ve dissected the changes to this view, let’s see what needs to be done
with the navigation rule.

10.8.1 Updating the navigation rule

In the prototype, we didn’t define a navigation rule for the Project Details page
because it returned an outcome that was defined in the toolbar’s navigation
rule. In our integrated page, there’s a single HtmlCommandButton component that
calls the showHistoryBean.cancel method, which returns either the "success_
readonly" or "success_readwrite" outcomes. The new navigation rule is shown
in listing 10.14.

<navigation-rule>
<from-view-id>/includes/details.jsp</from-view-id>
<navigation-case>
 <from-outcome>cancel_readonly</from-outcome>
 <to-view-id>/includes/show_all.jsp</to-view-id>
 </navigation-case>

 d

 e

 f

Listing 10.14 faces-config.xml: New navigation rule for details.jsp
 <navigation-case>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

396 CHAPTER 10
Integrating application functionality

 <from-outcome>cancel_readwrite</from-outcome>
 <to-view-id>/protected/inbox.jsp</to-view-id>
</navigation-case>
</navigation-rule>

When users click the page’s Ok button, they will be sent to either the Show All or
the Inbox page.

 We’re almost there. This is the last page from chapters 8 and 9 that we need to
integrate. With a quick set of relatively minor changes, we were able to fully inte-
grate it with our backing beans, resulting in a fully functional application. Well,
it’s fully functional except for things like an error page and internationalization.

10.9 Adding an error page

Now that we have a fully working application, the question of the day is: what do
we do if something goes wrong? We haven’t configured an error page for our web
application, and although some action methods return an "error" outcome, we
haven’t defined a navigation case to handle it. So, let’s make a simple error page and
then let the rest of our application know about it. The page is shown in listing 10.15.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>
 <head>
 <title>ProjectTrack - Error"</title>
 <link rel="stylesheet" type="text/css"
 href="stylesheet.css"/>
 </head>

<body class="page-background">

 Sorry, a fatal error has occurred. The error has been logged.

<p>
 <a href="<%= request.getContextPath()%>">Please log in again.
</p>

</body>
</html>

Listing 10.15 error.jsp: Simple JSP error page (with no JSF controls)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Adding an error page 397

The one odd thing about this page is that it doesn’t reference any JSF compo-
nents. Why not? Because if there’s a problem with the JSF implementation itself,
the error page wouldn’t work. It’s entirely possible to create one error page with
JSF components that’s referenced in your navigation rules, and another one with-
out JSF components that’s referenced in web.xml, but then you have to maintain
two files. Another option is to define a single page in web.xml and then have your
actions throw exceptions—this way, it will catch errors. This approach doesn’t
allow you to specify different error pages for different actions, as you can with JSF
navigation rules. So, we’ll define this page both in the deployment descriptor and
in the navigation rules.

10.9.1 Updating web.xml

To add the error page, we can add the following three lines to ProjectTrack’s
deployment descriptor (web.xml):

<web-app>
...
 <error-page>
 <location>/error.jsp</location>
 </error-page>
...
</web-app>

Now, if there’s ever a fatal error that our application doesn’t handle, or in the JSF
implementation itself, this page will be displayed.

10.9.2 Updating the navigation rule

For cases where our application catches its exceptions (as it should), we must
define a new navigation case. The outcome we’re going to handle is "error",
which is returned by several ProjectTrack action methods. In order to ensure that
it’s always handled, we can add it to our global navigation rule:

<navigation-rule>
 <description>Navigation for the toolbar.</description>
 <from-view-id>*</from-view-id>
...
 <navigation-case>
 <from-outcome>error</from-outcome>
 <to-view-id>/error.jsp</to-view-id>
 </navigation-case>
...
</navigation-rule>
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

398 CHAPTER 10
Integrating application functionality

That’s it for the error page. A real application would most likely have something a
little more sophisticated, possibly with different error pages for different out-
comes or views.

 Now, let’s make this application speak another language.

10.10 Internationalizing and localizing the UI

At this point, we have a complete, working application. However, when we
defined ProjectTrack’s requirements in chapter 7, we specified support for
English and Russian. So far, we’ve been dealing exclusively with English text.
Since we’ve hardcoded all of this English text in every page, supporting another
language will take a bit of work.

 That bit of work is called internationalization—the ability to support more than
one language. Fortunately, it’s a onetime affair. Once we’ve internationalized Pro-
jectTrack, it will be fairly easy to add other languages, or localize, the application
(assuming the language isn’t different enough to force different layouts).

TIP If your prototype is fairly complicated, it can save time to international-
ize it first, even if it only supports one language.

Internationalization and localization are covered in detail in chapter 6, but the
process is pretty straightforward. The first step is to add the proper text to a
resource bundle.

10.10.1 Externalizing text into the resource bundle

In order to internationalize ProjectTrack, we need to pull out all of our display
strings into a resource bundle and then change all hardcoded text to value-bind-
ing expressions that reference that bundle. In general, this means every string
that the user sees. Having all of the strings in one or more resource bundles not
only makes localization possible, it also makes it easier to change the text the
application displays, especially if you have the same text in more than one place.

 In chapter 8, we created a resource bundle for ProjectTrack’s messages called
ptrackResources.properties, placed it in the WEB-INF/classes directory and added
it to faces-config.xml. All we need to do now is centralize all of the application’s
display strings in this file, as shown in listing 10.16.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Internationalizing and localizing the UI 399

...
Login
LoginCaption=Enter your user name:
PasswordCaption=Password:
SubmitButtonImage=/images/submit.gif

Header
AppNameHeader=ProjectTrack
InboxToolbarButton=Inbox
ShowAllToolbarButton=Show All
CreateNewToolbarButton=Create New
LogoutToolbarButton=Logout
LanguageCaption=Language
LanguageButton=Go!

Inbox
InboxHeader=Inbox - approve or reject projects

Show All
ShowAllHeader=Show all projects
ProjectWaitingForHeader=Waitingfor

Inbox and Show All
ProjectNameHeader=Project name
ProjectTypeHeader=Type
ProjectStatusHeader=Status

Create a Project
CreateProjectHeader=Create a project

Approve a Project
ApproveProjectHeader=Approve a project

Reject a Project
RejectProjectHeader=Reject a project

Project Details
ProjectDetailsHeader=Project details
ProjectHistoryHeader=History
ProjectHistoryCommentsCaption=Comments

Create a Project, Approve a Project, Reject a Project,
Project Details
ProjectNameCaption=Name
ProjectTypeCaption=Type
ProjectInitiatedByCaption=Initiated by
ProjectReqContactCaption=Requirements contact

Listing 10.16 ptrackResources.properties: Text strings from the UI
ProjectReqContactEmailCaption=Requirements contact e-mail
ProjectArtifactsCaption=Completed artifacts

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

400 CHAPTER 10
Integrating application functionality

ProjectComments=Your comments
...

Note that we organized the entries by page, and that some entries are used by sev-
eral pages. If one day we decide the “Requirements contact” label, which is dis-
played on four pages, should be replaced with the text “The person responsible
for this mess,” we could make the change once in ptrackResources.properties
instead of each page.

 That takes care of step one. Step two is actually modifying the pages.

10.10.2 Internationalizing the header

Once we’ve externalized the text and placed it in a resource bundle, we need to
modify all of the views to use value-binding expressions instead of hardcoded
text. We can load this resource bundle with the <f:loadBundle> tag. Let’s take a
look at a modified version of the header (listing 10.17) that’s fully international-
ized and that uses the ptrackResources.properties bundle we defined in the pre-
vious section.

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="jsf-in-action-components" prefix="jia"%>

<f:loadBundle basename="ptrackResources"
 var="bundle"/>

<f:subview id="header">

 <h:form>

 <h:panelGrid columns="3" cellspacing="0" cellpadding="0"
 styleClass="header" width="100%">

 <jia:navigatorToolbar id="toolbar" layout="horizontal"
 headerClass="toolbar-header" itemClass="toolbar-command"
 selectedItemClass="toolbar-command"
 iconClass="toolbar-icon"
 immediate="false"> <!>

 <f:facet name="header">
 <h:outputText value="#{bundle.AppNameHeader}:"/>
 </f:facet>

Listing 10.17 header.jsp: Internationalized

Load bundle as request-
scoped variable
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Internationalizing and localizing the UI 401

 <jia:navigatorItem name="inbox"
 label="#{bundle.InboxToolbarButton}"
 icon="/images/inbox.gif"
 action="inbox"
 disabled="#{!authenticationBean.
 inboxAuthorized}"/>
 <jia:navigatorItem name="showAll"
 label="#{bundle.ShowAllToolbarButton}"
 icon="/images/show_all.gif"
 action="show_all"/>
 <jia:navigatorItem name="createNew"
 label="#{bundle.CreateNewToolbarButton}"
 icon="/images/create.gif"
 action="#{createProjectBean.create}"
 disabled="#{!authenticationBean.
 createNewAuthorized}"/>
 <jia:navigatorItem name="logout"
 label="#{bundle.LogoutToolbarButton}"
 icon="/images/logout.gif"
 action="#{authenticationBean.logout}"/>
 </jia:navigatorToolbar>

 <h:panelGroup>
 <h:outputLabel for="languageSelect">
 <h:outputText value="#{bundle.LanguageCaption}:"
 styleClass="language-select"/>
 </h:outputLabel>
 <h:selectOneListbox id="languageSelect" size="1"
 styleClass="language-select"
 value="#{visit.locale}">
 <f:selectItems value="#{visit.supportedtLocaleItems}"/>
 </h:selectOneListbox>
 <h:commandButton value="#{bundle.LanguageButton}"
 styleClass="language-select-button"/>
 </h:panelGroup>

 <h:outputText value="(#{visit.user.login})"
 styleClass="user-name"/>
 </h:panelGrid>
 </h:form>
</f:subview>

This page will look exactly the same as it did before, except that now any display
text will be changed in ptrackResources.properties instead of in header.jsp.

 All of the other ProjectTrack pages can be internationalized in exactly the
same way. However, in order for them to display another language, we need to

localize the application for that language as well.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

402 CHAPTER 10
Integrating application functionality

10.10.3 Localizing for Russian

In section 10.10.1, we created an English resource bundle. Note that the name—
ptrackResources.properties—doesn’t contain a locale or country code. We could
have used ptrackResources_en.properties to specify English; leaving out the suf-
fix means that this bundle is the default—the text that will be seen if all else fails.
That’s fine, because our default language really is English. It’s time to make
another resource bundle, however, for Russian—the other language that Project-
Track must support. After we’ve created this resource and configured the applica-
tion, we’ll get the lovely browser output shown in figure 10.4.

 The first step is to copy ptrackResources.properties into a new file called
ptrackResources_ru.properties. The suffix “ru” means that the bundle supports
Russian. Note that this is generic Russian, rather than the Russian spoken in a
particular country. (See appendix E for a list of language and country codes).
Next, we change all of the values to Russian (the keys remain the same). The
result is shown in listing 10.18.

Standard messages
javax.faces.component.UIInput.REQUIRED=
 íåîáõîäèìîå ïîëå
javax.faces.component.UIInput.REQUIRED_detail=
 Ïîæàëóéñòà, çàïîëíèòå ïîëå
javax.faces.validator.LengthValidator.MAXIMUM=
 Ïîëå äîëæíî áûòü êîðî÷å, ÷åì {0} çíàê[à/îâ]
javax.faces.validator.LengthValidator.MINIMUM=
 Ïîëå äîëæíî áûòü íå êîðî÷å, ÷åì {0} çíàê[à/îâ]

Login
LoginCaption=Ââåäèòå èìÿ ïîëüçîâàòåëÿ
PasswordCaption=Ïàðîëü
SubmitButtonTitle=îòïðàâèò
SubmitButtonImage=/images/submit_ru.gif
SubmitButtonOverImage=/images/submit_over_ru.gif

Header
AppNameHeader=ÏðîåêòÒðýê
InboxToolbarButton=Âõîäÿùèå ñîîáùåíèÿ
ShowAllToolbarButton=Ïîêàçàòü âñå

Listing 10.18 ptrackResources_ru.properties: All strings translated to Russian

Figure 10.4 The header localized for Russian.
CreateNewToolbarButton=Ñîçäàòü íîâûé
LogoutToolbarButton=Âûõîä

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Internationalizing and localizing the UI 403

LanguageCaption=ßçûê
LanguageButton=Ïóñê

Inbox
InboxHeader=Ïîäòâåðäèòü èëè îòìåíèòü ïðîåêòû

Show All
ShowAllHeader=Ïîêàçàòü âñå ïðîåêòû
ProjectWaitingForHeader=Îæèäàíèå

Inbox and Show All
ProjectNameHeader=Íàçâàíèå ïðîåêòà
ProjectTypeHeader=Òèï
ProjectStatusHeader=Ñòàòóñ

Create a Project
CreateProjectHeader=Ñîçäàòü ïðîåêò

Approve a Project
ApproveProjectHeader=Ïîäòâåðäèòü ïðîåêò

Reject a Project
RejectProjectHeader=Îòìåíèòü ïðîåêò

Project Details
ProjectDetailsHeader=Äåòàëè ïðîåêòà
ProjectHistoryHeader=Èñòîðèÿ
ProjectHistoryCommentsCaption=Êîììåíòàðèè

Create a Project, Approve a Project,
Reject a Project, Project Details

ProjectNameCaption=Íàçâàíèå
ProjectTypeCaption=Òèï
ProjectInitiatedByCaption=Êåì ñîçäàíî
ProjectReqContactCaption=Çàïðîñ êîíòàêòà
ProjectReqContactEmailCaption=Çàïðîñ àäðåñà ýëåêòðîííîé ïî÷òû
ProjectArtifactsCaption=Çàâåðøåíèå àðòåôàêòà
ProjectComments=Âàøè êîììåíòàðèè
...

This file is exactly the same as the one in listing 10.16 except for the Russian text,
and a different image file name for the Submit button.

NOTE After you have created a localized properties file (with whatever charac-
ter coding is appropriate for that language), you must convert it to use
Unicode characters. This can be done with the native2ascii tool included
with the Java Development Kit (JDK). See the API docs for Property-
ResourceBundle for more information.
The last step is to update faces-config.xml.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

404 CHAPTER 10
Integrating application functionality

Updating faces-config.xml
In order for JSF to support a new locale, it must be configured in faces-config.xml
under the <application> node. By default, JSF chooses the default locale of the
current Java Virtual Machine (JVM). We’d like ProjectTrack to support English (as
the default) and Russian as well. We’re interested in the locales only (no country
codes are required). This boils down to the addition to faces-config.xml shown in
listing 10.19.

...
<application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>en</supported-locale>
 <supported-locale>ru</supported-locale>
 </locale-config>
 <message-bundle>ptrackResources</message-bundle>
</application>
...

As you can see, all we’ve added is the <local-config> element, specifying sup-
port for both en and ru, with en being the default.

 That’s it—we’ve walked through turning a simple prototype into a fully inter-
nationalized, integrated application localized for both English and Russian.

10.11 Summary

Once you’ve built an eye-catching set of screens with JSF components, it’s fairly
easy to integrate them with back-end objects. First, you need to understand the
application’s environment—the specific backing beans, event listeners, and model
objects that make it tick. What’s most important is that you know what properties
are exposed, and how the different objects relate to one another and the event lis-
teners. For ProjectTrack, UI components interact with backing beans that expose
properties, model objects, and event listeners. You don’t need to know the entire
object model before you can start integrating—you only need to know the objects
that are necessary to make a particular page interactive.

 After you understand the application’s environment, integrating each page is
mostly a matter of hooking up UI components to backing beans with value-binding

Listing 10.19 faces-config.xml: Adding language support
expressions. Command components often need to be associated with actions via

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 405

method-binding expressions as well. Sometimes, you’ll encounter situations
where the dynamic nature of the data may require changing components (for
instance, changing from an HtmlPanelGrid to an HtmlDataTable) or using a con-
verter to format a date or a number.

 In this chapter, we applied these techniques to ProjectTrack and walked
through integrating each prototypical page developed in the previous two chap-
ters. The end result is a fully integrated version of the application, which, amaz-
ingly enough, looks almost exactly like the prototype (that’s why we left out the
screen shots). We also added an error page and localized the application for Rus-
sian. In the next part, we move from front-end development to the back-end, and
explore the Java classes that make JSF tick. In the process, we’ll peer into the
black boxes that make up the application’s environment and explain how to write
the actual Java code for ProjectTrack.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Part 3

Developing application logic

Part 2 examined how to build a user interface using JSF components, and
how to integrate those components with back-end logic. In part 3, we show you
how to build that back-end logic. We start with an overview of the Faces API,
and then move on to build backing beans and other objects that were used in
part 2. Finally, we show you how to integrate JSF with Struts and other frame-
works. This part of the book is primarily intended for application developers.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The JSF environment

This chapter covers
■ Evaluating JSF EL expressions in code
■ The FacesContext class
■ Events and event listener classes
■ Key UI component classes
■ Other core classes in the JSF API
409

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

410 CHAPTER 11
The JSF environment

Whenever you’re writing an application that runs within a particular framework,
there is a set of classes that you use on a daily basis. These classes form the API to the
environment—the world in which your application runs. In this chapter, we discuss
the classes that you’ll encounter in day-to-day JavaServer Faces development, and
take a close look at its component model.

11.1 From servlets to JSF

If you’ve done servlet programming before, you’re probably familiar with the
basic servlet classes like HttpServlet, HttpSession, HttpRequest, HttpResponse, and
ServletContext. (The Portlet API, which you can also use with JSF, has extremely
similar classes that are based on the Servlet API.) HttpServlet has the primary
servlet entry point—the service method.1 This is where you actually process the
user’s request. It has two parameters: an HttpServletRequest instance for input,
and an HttpServletResponse object for output. You can store attributes in those
two objects, as well as in the HttpSession object (which represents the same user
between requests).

 Application-wide attributes and methods are available via the ServletContext.
The user’s response is dependent on how you process the HttpServletResponse
object; you can write to an output stream directly, but usually you delegate to a
display technology like JSP or Velocity [ASF, Velocity] after you’ve grabbed param-
eters from the HttpServletRequest object and processed them accordingly.

 The servlet model is pretty tightly coupled with HTTP, and consequently low
level by nature. In other words, it’s tedious. With frameworks like Struts [ASF,
Struts], things are easier—instead of worrying about subclassing HttpServlet, you
subclass Action classes, which process specific requests. Actions access (or contain)
your application logic, and usually forward to another resource, such as a JSP or a
template (resources are managed externally, like JSF). You still have to use the
other servlet classes, though, because the framework doesn’t shield you from the
Servlet API.

 JSF has its own set of classes that you’ll encounter when building applications,
and they provide a more high-level, event-oriented view of the world. The frame-
work as a whole has quite a few classes; here we focus only on the ones necessary

1 This is an oversimplification. Technically, the default service method dispatches to doGet, doPost,

doPut, or doTrace, depending on the type of HTTP request (GET, POST, PUT, or TRACE). Usually
the real code goes in doGet and doPost.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

From servlets to JSF 411

for application development. Of course, you can still get a handle to the servlet or
portlet environment, but in many cases, you won’t need to.

 From an application development perspective, JSF’s classes can be organized
into four main categories: application, context, event handling, and UI compo-
nents. Application classes are split into two areas. First, there is the Application
class. Conceptually, this class is similar to ServletContext because it represents
the web application as a whole. In practice, it provides access to many JSF-specific
features, such as JSF EL evaluation and factory methods for JSF objects. This
group also includes your application logic, organized into backing beans. Since
backing beans don’t require a superclass and manage data and events, they are
sort of a hybrid of Struts’ Action classes and ActionForms. Backing bean proper-
ties and methods are made accessible through the JSF EL.

 Context-related classes provide access to current request data, a handle to the
outside environment, and entry to objects in other categories. In many ways,
classes in this category replace HttpServletRequest. However, they represent a
larger concept—the state of the application while it’s processing a set of user-
generated events.

 Event-handling classes are responsible for processing user gestures, such as
clicking on a button or changing the value of an input field. In servlets, the
request is the event. In JSF, request parameters are translated into event objects,
and you can write listeners for processing those events.

 As we’ve discussed, views in JSF are entirely composed of UI components,
which can be manipulated with Java code. Because neither servlets nor Struts
have a full-fledged component model, they have no true equivalent.

 Figure 11.1 is a high-level class diagram that shows the primary classes in each
of these areas. In the group of application-related classes, the Application class
provides access to supported locales, factory methods for UI components, and
access to the default message resource bundle. It’s also responsible for creating
ValueBinding and MethodBinding instances, which can be used to evaluate JSF EL
expressions in code. These expressions usually reference properties and methods
in your backing beans.

 The context-related classes center around the venerable FacesContext class,
which provides access to FacesMessages, FacesEvents, and the ExternalContext.
The event-handling classes provide three sets of event/listener pairs—one for
action events, one for value-change events, and one for phase events. In addition,
there’s a default ActionListener that delegates to action methods. (There is tech-

nically no concrete class defined for the default ActionListener, but it does have
required behavior.)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

412 CHAPTER 11
The JSF environment

All UI components extend the UIComponent abstract class. Views are implemented
by the UIViewRoot class, which is the container for all of the UIComponent instances
on a page, and can be retrieved from the FacesContext. However, because com-
ponents often have child-parent relationships, any UIComponent instance can con-
tain other UIComponents.

 In the following sections, we’ll survey the classes in each of these categories
and show you the key methods of their interfaces. We won’t explain every method in
detail—that’s why they invented JavaDocs—but we will give you a sense of what the
methods do and where you might use them. If you haven’t looked at chapter 2 in
a while, we recommend that you review the section “The Request Processing Life-
cycle” on page 57 before reading this chapter. If you’re not interested in surveying

Figure 11.1 A high-level class diagram of JSF’s application-related classes. These classes can be
categorized into four general areas: event handling (for processing user input), component management
(for manipulating components on a page), application (for factory methods and configuration
information), and context (for handling the current request and accessing other resources).
each of these classes individually right now, skip ahead to chapter 12 to see how
they’re used in a real application. You can always refer back to this chapter later.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The application foundation 413

You may have noticed that there’s no mention of renderers in this sec-
tion. That’s because they’re largely transparent to your application code.
If you want to learn more about them, see chapter 15.

11.2 The application foundation

Every JSF application is made up of quite a few sets of objects: UI components,
backing beans, converters, validators, events, listeners, and so on. In order to
make sense of this world, there must be some classes that help tie them together.
These are the application-related classes. At the core is the Application instance
itself; on the periphery are classes that evaluate JSF EL expressions, which associ-
ate different objects in an application: ValueBinding and MethodBinding. These
three classes are summarized in table 11.1.

In the following sections, we cover these classes.

11.2.1 Application

If you’ve done client-server development with Borland Delphi or Microsoft .NET,
the notion of an Application class should seem familiar to you. In those environ-
ments, a single Application instance runs the main Windows message loop and

BY THE
WAY

Table 11.1 The Application instance provides access to global resources.

Class or Interface Package Where to Get a Reference Description

Application javax.faces.
application

FacesContext.
getApplication()

Provides access to
supported locales, default
render kit, and factory
methods for creating UI
components, converters,
validators, and
value-binding expressions

ValueBinding javax.faces.el Application.
createValueBinding(),
UIComponent.
getValueBinding()

Represents a value-bind-
ing expression, and pro-
vides the ability to set or
evaluate that expression

MethodBinding javax.faces.el Application.
createMethodBinding()

Represents a method-
binding expression, and
provides the ability to set
or evaluate that expression
provides a number of utility methods for such tasks as managing threads and
accessing the startup directory.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

414 CHAPTER 11
The JSF environment

 In JSF applications, there is no message loop, and a lot of the user-oriented
types of methods are available via the FacesContext or the ExternalContext (cov-
ered later in this chapter). The JSF Application class (located in the javax.faces.
application package), does, however, serve two important purposes. First, it pro-
vides access to configured parameters, like the set of supported locales, and the
application’s message bundle. Second, it provides factory methods for creating
ValueBindings, MethodBindings, UIComponents, Validators, Converters, and so on.

 You can retrieve a new Application instance from the FacesContext:

Application app = facesContext.getApplication();

In many cases, your code will have a reference to the current FacesContext instance,
and if not, there is a static method that will return it for you (see section 11.3.1).

 Let’s start with the supportedLocales property, which keeps track of all the
locales that the application currently supports:

public Iterator getSupportedLocales();

Support for locales is configured in a JSF configuration file; you cannot guaran-
tee that your application will support any locale that hasn’t been configured to
support. The supportedLocales property has some interesting possibilities, like
dynamically populating an item list and allowing users to select their current
locale—see chapter 12 for such an example.

 As we’ve discussed, you can also configure an application-wide resource bun-
dle that can be used for messages and other strings. You can retrieve the name of
this bundle with the messageBundle property:

public String getMessageBundle();

JSF uses this bundle internally to override default validation and conversion
messages. You can also use it to create your own messages or localize other
strings through this bundle. To do this, however, you’ll need to create a new
java.util.ResourceBundle instance yourself, since getMessageBundle just returns
the base name:

String bundleName = application.getMessageBundle();
ResourceBundle bundle =
 ResourceBundle.getBundle(bundleName, locale);

In most cases, it’s practical to create utility methods for working with resource
bundles and creating messages; we show this technique in chapter 13.

 Every JSF application has a default render kit whose identifier is exposed

through the renderKitId property:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The application foundation 415

public String getDefaultRenderKitId();
public void setDefaultRenderKitId(String renderKitId);

This value is configured in a JSF configuration file, and the default is “HTML_
BASIC” (which is represented by the RenderKitFactory.HTML_BASIC_RENDER_KIT
constant). You normally won’t need to reference this property, but it can be useful
in cases where you’re not sure what the default render kit is.

WARNING If you’re using the JSF RI [Sun, JSF RI] 1.0 or 1.1, do not call set-
DefaultRenderKit after JSF has processed its first request because the
implementation cannot support multiple render kits at the same time.
We hope this will change in a future release.

One of JSF’s most powerful features is the ability to manipulate JSF EL expres-
sions in code. The Application class has utility methods to facilitate this process,
which you will often use:

public ValueBinding createValueBinding(String ref)
 throws ReferenceSyntaxException;
public MethodBinding createMethodBinding(String ref, Class[] params)
 throws ReferenceSyntaxException;

Value-binding expressions are encapsulated by the ValueBinding class, and
method-binding expressions are encapsulated by the MethodBinding class. Any
time you need to evaluate either one, you can call one of these factory methods to
retrieve an instance. Once you have retrieved it, you can access its value, set its
value, and find out more about it. See section 11.1.2 for more information about
these classes.

 The Application class also has factory methods for creating several other
types of objects, including UI components:

public UIComponent createComponent(String componentType)
 throws FacesException;
public UIComponent createComponent(
 ValueBinding componentBinding,
 FacesContext context,
 String componentType)
 throws FacesException;

The first method is simple—it just creates a new UI component based on its type.
What is its type? Basically, it’s an identifier the component was given in a JSF
configuration file; you can map this identifier to a specific class name. For exam-
ple, you could register the class name com.my.SillyComponent with the type “Silly-

Component”. Subsequent calls to getComponent with that type would return a

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

416 CHAPTER 11
The JSF environment

new instance of your class. All of the standard components are registered this
way, and they expose their type through a constant called COMPONENT_TYPE. Here’s
an example:

HtmlOutputText outputText = application.createComponent(
 HtmlOutputText.COMPONENT_TYPE);

JSF uses similar conventions for validators and converters as well. This means
that you can register your own classes as well as override the defaults; regardless,
these factory methods will work the same.

 The second createComponent method gives a backing bean the opportunity to
create and initialize a new UI component instance. The componentBinding param-
eter should point to a backing bean property that returns the proper UI compo-
nent instance. If the property returns null, this method creates a new instance
based on the component’s type and uses it to set the backing bean property. This
is how JSF handles component bindings internally, but you may want to call this
method in rare cases when you need such factory-like functionality in code. See
chapter 12 for more information about component binding properties.

 The following method creates new Validator instances:

public Validator createValidator(String validatorId)
 throws FacesException;

A validator class’s identifier is made available through the VALIDATOR_ID constant.
You may want to create a new Validator instance if you’re initializing a UI com-
ponent in code. Validators can only be registered on components that implement
the EditableValueHolder interface; see section 11.5.4 for more information.

 The following two methods can be used to create new Converter instances:

public Converter createConverter(String converterId);
public Converter createConverter(Class targetClass);

You may remember from chapter 6 that converters can be registered by identifier
or by type (Integer, Date, boolean, and so on). The first method creates a new Con-
verter based on its identifier, and the latter creates a new instance based on its
type. More often than not, you’ll use the first method because JSF handles the sec-
ond case for you automatically. Converter classes usually have a CONVERTER_ID con-
stant that equals their identifier. They can only be used with UI components that
implement the ValueHolder interface; see section 11.5.3 for more information.

 Whenever you need to create a new instance of these classes, you should use
these methods rather than create the objects manually. If you declare your user

interface with a display technology, as shown in this book with JSP, you usually

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The application foundation 417

won’t need to create Converter, Validator, and UIComponent instances in Java code
unless you’re initializing a new UI component through a component binding
property, or modifying a view based on user input.

We’ve only scratched the surface of the Application class’s functionality
because this discussion is constrained to possible everyday application
development usage. In many ways, it’s the programmatic interface to
your application’s configuration. It contains mappings between identifi-
ers and classes for all of JSF’s core objects. It also exposes a lot of the
framework’s pluggable functionality, such as the default ActdionLis-
tener as well as classes that are used for navigation, creating views, and
so on. See appendix C for more information about JSF’s internals and
some of its advanced customization opportunities.

Throughout the rest of this book, you’ll see many references to the Application
class, primarily for its factory methods. The following sections elaborate on two of
the classes returned by those methods—ValueBinding and MethodBinding.

11.2.2 Evaluation expressions

Most of our discussions about JSF’s EL have centered around the syntax and
semantics, as well as use within JSP. As it turns out, you can programmatically cre-
ate and evaluate expressions using the same APIs that JSF uses internally. The
ValueBinding class represents value-binding exceptions, and the MethodBinding
class represents method binding expressions.

ValueBinding and MethodBinding use other classes to perform their
actual work. These classes are pluggable, so you can swap in different im-
plementations, and you can also add additional functionality, such as
your own implicit variables. See appendix C for more information about
the classes behind the EL.

ValueBinding
ValueBinding is a class in the javax.faces.el package that represents a specific
value-binding expression. It has five methods:

public String getExpressionString();
public Object getValue(FacesContext facesContext)
 throws PropertyNotFoundException;
public void setValue(FacesContext facesContext,

BY THE
WAY

BY THE
WAY
 Object object)
 throws PropertyNotFoundException;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

418 CHAPTER 11
The JSF environment

public boolean isReadOnly(FacesContext facesContext)
 throws PropertyNotFoundException;
public Class getType(FacesContext facesContext)
 throws PropertyNotFoundException;

With these methods, you can determine the value or type of the object to which
the expression evaluates, as well as set the object and find out if the expression is
read-only. Also, you can retrieve the original expression using the expression-
String property.

 Usually, you’ll just use getValue to retrieve the referenced object:

User user = (User)app.createValueBinding("#{sessionScope.user}").
 getValue(facesContext);

or setValue to set it:

app.createValueBinding("#{sessionScope.user}").
 setValue(facesContext, user);

PropertyNotFoundException is a runtime exception; you’re not forced to catch it.
 This is generally how you retrieve or set an object in one of the application’s

scopes rather than using servlet methods because the ValueBinding instance
automatically uses the Managed Bean Creation facility, which creates managed
beans that are defined in a JSF configuration file (if they don’t already exist).

 When you write custom components, you will tend to work with ValueBinding
instances more often.

MethodBinding
Method-binding expressions in the JSF EL are represented by the MethodBinding
class, also located in the javax.faces.el package. MethodBinding has three methods:

public String getExpressionString();
public Object invoke(FacesContext context,
 Object[] params)
 throws EvaluationException,
 MethodNotFoundException;
public Class getType(FacesContext context)
 throws MethodNotFoundException;

The getType method returns the class of the method’s return type.
 When you’re developing applications, your use of MethodBinding will be some-

what limited. You may, however, use it to set an action listener method, value-
change listener method, or validator method on a specific UI component that
you are manipulating in code:
MethodBinding mBinding =
 app.createMethodBinding("#{myBean.myActionListener}",

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s all in the context 419

 new Class[] { ActionEvent.class });
myUICommand.setActionListener(mBinding);

This snippet creates a new MethodBinding instance for the myActionListener
method of the backing bean myBean, and then uses it to set a UICommand instance’s
actionListener property. This registers the myActionListener method to handle
any action events UICommand may fire, and is equivalent to the following JSP:

<h:commandButton ...
 valueChangeListener="#{myBean.myActionListener"}/>

This is the most common use case for MethodBinding during ordinary application
development. If you develop custom components, however, you may wish to
expose event listener properties that are of type MethodBinding, and consequently
you’ll work with them more heavily. See chapter 15 for details.

 The Application class, ValueBinding, and MethodBinding are the backdrop of
the JSF environment. FacesContext, however, is the gateway.

11.3 It’s all in the context

Context is a popular term in modern APIs. It’s all over the place in Java—EJBCon-

text, ServletContext, NamingContext, and so on. If you go to Dictionary.com and
look up context, you’ll find this definition: “The circumstances in which an event
occurs; a setting.” In the world of JavaServer Faces, that event is something the
user does with the UI like clicking on a hyperlink or expanding a node in a tree
control. Once event processing has begun, you have access to the application’s
setting, or state. This state is encapsulated in the FacesContext class, from which
you can access messages and the external context (which is provided by the serv-
let or portlet container). This state is fleeting; it exists only while events are being
processed.

 Table 11.2 lists all of the context-related classes.

Table 11.2 Context-related JSF classes represent the application’s current user-related state.

Class or
Interface

Package
Where to Get a

Reference
Description

FacesContext javax.faces.
context

Either passed in, or via
FacesContext.
getCurrent-
Instance()

Represents the state of the current
request. You can get access to the
current view, add a new message,
control the lifecycle, and so on. This is
the main entry point into the JSF API
when you’re developing an application.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

420 CHAPTER 11
The JSF environment

We cover all of these classes in the following sections.

11.3.1 FacesContext

The window into the soul of a JSF application is the FacesContext. Technically, it
represents the state of the current HTTP request. Conceptually, you can think of it
as the class that has all the stuff you need to interact with the UI and the rest of the
JSF environment. The JSF implementation will either create a new instance for
each request or choose one from a pool of available instances. Either way, there will
be an instance available to you any time your application is interacting with a user.

WARNING Do not access FacesContext from any thread other than the one servic-
ing the request. In other words, don’t spawn a new thread and try to use
a FacesContext instance—this behavior is not supported.

FacesContext is a class in the javax.faces.context package. In action methods
and other places in your code, you may not have access to the current instance. If
that’s the case, there’s a static method you can use to access it:

public static FacesContext getCurrentInstance();

This method returns the FacesContext instance for the current thread.
 While an event is being processed, this class manages a list of the messages

relating that event. These are typically validation error messages, converter error

Table 11.2 Context-related JSF classes represent the application’s current user-related
state. (continued)

Class or
Interface

Package
Where to Get a

Reference
Description

FacesMessage javax.faces.
application

FacesContext.
getMessages()

Represents a message for the current
request (normally used to report
errors). FacesContext keeps a list
of messages. Messages can be dis-
played with an HtmlMessage or
HtmlMessages component.

External-
Context

javax.faces.
context

FacesContext.
getExternal-
Context()

Provides access to the hosting envi-
ronment, which is either a servlet or
portlet container. From here, you can
get access to the underlying session,
request, response objects, and so on.
messages, and any messages your event listeners generate. Five methods are
available for working with these messages:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s all in the context 421

public FacesMessage.Severity getMaximumSeverity();
public Iterator getClientIdsWithMessages();
public Iterator getMessages();
public Iterator getMessages(String clientId);
public void addMessage(String clientId, FacesMessage message);

These methods manipulate the current list of FacesMessage instances; the list is
cleared after the response has been sent back to the user. Messages are used for
both errors and information, so each one has a severity level. By using getMaxi-
mumSeverity, you can see if there are any serious errors. Messages can be regis-
tered for a specific component (as is usually the case with validation or conversion
errors), or for the whole page.

 Components are identified by their client identifier, which is the identifier
rendered in the view (see chapter 2). Specifying null as the first parameter to
addMessage tells JSF that the message relates to the entire view. Using null also
works when you’re retrieving messages with getMessages. If no messages are
available, you’ll get an empty Iterator. If you want to determine which compo-
nents have messages waiting for them, call getClientIdsWithMessages. See the
next section for more information about messages.

 Each JSF view is represented by a tree of components. You can use the Faces-
Context to access the view with these methods:

public UIViewRoot getViewRoot();
public void setTree(UIViewRoot tree);

Use getViewRoot to access or remove existing components on the current page,
or add new components. Use setViewRoot to tell JSF to display an entirely differ-
ent page altogether. We cover UIViewRoot and related classes in section 11.4.

 You can control the JSF Request Processing Lifecycle with these methods:

public void renderResponse();
public void responseComplete();

Use renderResponse to jump to the Render Response phase, which displays the
currently selected view back to the user. This effectively skips all further event
processing and all phases in between the current phase and the Render Response
phase. Use responseComplete if you’ve already sent an entire response back to the
user; it skips all subsequent event processing and phases, including the Render
Response phase.

 JSF application code usually doesn’t send output directly to the user; after all,
that’s the whole point of display technologies like JSP as well as component ren-

derers. However, two methods are available that provide access to the underlying
output stream:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

422 CHAPTER 11
The JSF environment

public ResponseStream getResponseStream();
public ResponseWriter getResponseWriter();

These methods are useful if you need to return binary data (like an image file) or
add direct output to the beginning of a response. Use getResponseStream for out-
putting binary data and getResponseWriter for character data (ResponseWriter
has some useful methods for outputting markup). You have to use either one or
the other; you can’t output both binary and character data.2 If you use these
methods to generate the entire response, then you also need to call responseCom-
plete so that JSF won’t attempt to send a response as well.

 You can access the Servlet API you know and love (or hate), as well as the Port-
let API, with the getExternalContext method:

public ExternalContext getExternalContext();

The ExternalContext provides a wrapper for just about every Servlet or Portlet
API method you can think of, and direct access to specific objects (like Http-
Request) if necessary. Most of the time, you won’t need to use the ExternalContext,
but it’s particularly handy for migrating existing applications to JSF, and for per-
forming tasks that the JSF APIs can’t handle, such as invalidating the session. We
cover this class in section 11.3.3.

 Those are all of the essential FacesContext methods for application develop-
ment. Typically you’ll find that retrieving the FacesContext is the first thing your
event-handling code will do. From there, you’ll typically retrieve objects from it,
or add messages to it. Now, let’s examine the message-related classes.

11.3.2 FacesMessage
Whenever you need to report an application error or another type of message
back to the UI, you can do so by adding a FacesMessage instance to the current
FacesContext.

 FacesMessage is a class in the javax.faces.application package. It has three
properties: summary, detail, and severity:

public String getDetail();
public void setDetail(String detail);

public String getSummary();
public void setSummary(String summary);

public FacesMessage.Severity getSeverity();
public void setSeverity(FacesMessage.Severity severity);
2 This is due to a limitation in the Servlet API 2.3.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s all in the context 423

The summary property is a short version of the message, like “This value is out of
range”; the detail property is a longer message like “The value you entered is
greater than the maximum value of 5.” The severity property provides an addi-
tional level of information about the message. It returns an instance of FacesMes-
sage.Severity, which is a type-safe enumeration. The possible values are shown
in table 11.3. In application code, you may want to check the severity level of any
current messages, and then act accordingly if something is wrong. You can even
get the maximum security level at any given time with the FacesContext.get-
MaximumSeverity method.

Note that these constants map to the strings "info", "warn", "error", and "fatal"
that are used by the HtmlMessage and HtmlMessages components to display mes-
sages back to the user (see chapter 4).

 You can create FacesMessage instances directly using one of four constructors:

public FacesMessage();
public FacesMessage(String summary);
public FacesMessage(String summary, String detail);
public FacesMessage(FacesMessage.Severity severity,
 String summary, String detail);

Here’s an example of creating a new FacesMessage instance and adding to the
FacesContext:

FacesContext facesContext = FacesContet.getCurrentInstance();
facesContext.addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_WARN,
 "This project no longer exists.",
 "The project is not in the data store."));

This adds a new FacesMessage instance to the current message list. When the page

Table 11.3 Every FacesMessage instance has a severity property, which is equal to one of
these values.

Severity Level Constant Description

FacesMessage.SEVERITY_INFO
Represents text you’d like to send back to the user that
isn’t an error. Recommended for validation messages.

FacesMessage.SEVERITY_WARN Indicates that an error may have occurred.

FacesMessage.SECURITY_ERROR Indicates a definite error.

FacesMessage.SECURITY_FATAL Indicates a serious error.
is redisplayed, this message can be displayed with an HtmlMessages component.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

424 CHAPTER 11
The JSF environment

In this case, the first parameter of addMessage is null, so the message isn’t assigned
to a component identifier, and it can be displayed only by an HtmlMessages com-
ponent (which can display all errors for the view). If we had associated it with a
client identifier, it could be displayed either by HtmlMessages or HtmlMessage
(which displays only one message for a specific UI component).

 The example code previously discussedis fine if you’re not internationalizing
your application. As we discussed back in chapter 6, JSF can create messages from
resource bundles, and you can even override the default messages. However,
there is no standard API for creating FacesMessage instances from resource bun-
dles, so you’ll either have to use nonstandard solutions provided by your JSF ven-
dor or roll your own. We show how to do this in chapter 13 (you’ll find other
examples of using this class in that chapter as well).

 Those are the basics of message handling in JSF. Next, we examine the gate-
way to the container in which JSF applications live: the ExternalContext.

11.3.3 ExternalContext

The ExternalContext provides access to the world outside of JSF—its external
environment. Usually, this is a web or portlet container. You won’t need to worry
about this class unless you have to do something that the JSF API doesn’t support
(such as accessing resource paths), or you’re integrating with non-JSF content
or applications.

 ExternalContext is a class in the javax.faces.context package; its interface is
somewhat generic because it supports both servlets and portlets. Using this class
usually requires some knowledge of the Servlet or Portlet API innards.

 The main point of ExternalContext is to provide convenience wrappers around
the typical methods you may want to use, whether they’re related to the application
as a whole, to the current request, or to the current response. In most cases where
attributes are available (session, request, and application), the class provides a
Map to make things easier. For example, in addition to providing a getSession
method to return the user’s session, there is a getSessionMap method, which is used
just for adding, retrieving, and removing objects from the session scope. This is
handy because most of the time that’s what people do with the session anyway.

 The following methods are related to the application as a whole:

public Map getApplicationMap();
public Set getResourcePaths(String path);
public InputStream getResourceAsStream(String path);
public String getInitParameter(String name);

public Map getInitParameterMap();
public URL getResource(String path) throws MalformedURLException

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s all in the context 425

These methods wrap the corresponding ServletContext or PortletContext meth-
ods. You can get a reference to the context itself via the following method:

public Object getContext();

Using this method requires a cast to the appropriate context object—either Serv-
letContext or PortletContext. Consequently, it’s usually best to use the wrapper
methods if you want your JSF application to work in both environments without a
lot of unnecessary instanceof calls.

 You can use the following methods to access the HttpSession or PortletSes-
sion object and its attributes:

public Object getSession(boolean create);
public Map getSessionMap();

Retrieving the session directly is useful if you need to invalidate it:

HttpSession session = (HttpSession)facesContext.getExternalContext().
 getSession(false);
if (session != null)
{
 session.invalidate();
}

In this snippet, we simply grab the ExternalContext from the FacesContext, call
getSession, and then call HttpSession.invalidate. Note that getSession, like
getContext, requires a cast to the appropriate object.

 The ExternalContext also provides several useful methods for handling the
request directly:

public Object getRequest();
public Map getRequestMap();
public Map getRequestParameterMap();
public Map getRequestParameterValuesMap();
public Iterator getRequestParameterNames();
public Map getRequestHeaderMap();
public Map getRequestHeaderValuesMap();
public Map getRequestCookieMap();
public Locale getRequestLocale();
public Iterator getRequestLocales();
public String getRequestPathInfo();
public String getRequestContextPath();
public Cookie[] getRequestCookies();

These are wrappers for standard servlet and portlet methods, so we won’t cover
them in detail here. It’s worthwhile to note, however, that there are often JSF-specific
ways of performing the same functions as these methods. For example, UIView-

Root.getLocale can be used instead of getRequestLocale. Also, you can retrieve

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

426 CHAPTER 11
The JSF environment

HTTP request headers, parameters, and cookies using value-binding expressions
instead of these methods. So this call:

String agent = (String)externalContext.getRequestHeaderMap().
 get("User-Agent");

is equivalent to this call:

String agent = (String)application.
 getValueBinding("#{header['User-Agent']}").
 getValue(facesContext);

The same holds true for most of the methods listed earlier—see chapter 2 for more
about implicit value-binding expression variables.

 Even though you can access these attributes via value-binding expressions, it’s
convenient to have access to specific methods with compile-time checking, espe-
cially if most of your application is already using these methods (as is the case if
you’re migrating an existing application to JSF). However, if you’re accessing
managed objects, using value-binding expressions is the only way to hook into
the Managed Bean Creation facility.

 ExternalContext also wraps the servlet and portlet authentication methods,
which are usually found in their request objects:

public String getAuthType();
public String getRemoteUser();
public Principal getUserPrincipal();
public boolean isUserInRole(String role);

The getAuthType method returns the current authentication scheme, which is one
of these constants: ExternalContext.BASIC_AUTH, ExternalContext.CLIENT_CERT_
AUTH, ExternalContext.DIGEST_AUTH, or ExternalContext.FORM_AUTH. Note that
these are the same constant names you’ll find in the HttpServletRequest class;
you should, however, use the ExternalContext versions instead. (We discuss the
different authentications schemes briefly in chapter 13.) The other methods let
you check to see who the current user is and if they have a specific role, just as
they do in servlet and portlet environments.

 Unlike the multitude of methods for obtaining information about the request,
there’s a single method for retrieving the response:

public Object getResponse();

This returns a ServletResponse or PortletResponse object, depending on which
environment you’re using. If all you need to do is access an output stream, use the

FacesContext.getResponseStream or FacesContext.getResponseWriter instead.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

It’s all in the context 427

And, if you’ve finished outputting the entire response, don’t forget to call Faces-
Context.responseComplete.

 If you want to redirect the user to another URL, you can use this method:

public void redirect(String url) throws IOException;

This method will send an HTTP redirect to your user for the given URL (which
can be either absolute or relative), and then call FacesContext.responseComplete.
This is one of the few ExternalContext methods that does something in addition
to calling the external environment’s API.

 To forward control of the request to a URI in the external environment,
use dispatch:

 public void dispatch(String requestURI)
 throws IOException, FacesException;

For servlets, this is equivalent to RequestDispatcher.forward. For portlets, it uses
the RequestDispatcher.include method instead. It makes sense to use dispatch
when you’re integrating with non-JSF resources in the same web application. If
you want to forward to another JSF view, use FacesContext.setViewRoot instead.

 ExternalContext also provides some methods for encoding URLs, which means
rewriting them so they’ll work properly within servlet or portlet environments:

public String encodeActionURL(String url);
public String encodeResourceURL(String url));
public String encodeURL(String url);

public String encodeNamespace(String aValue);

You generally won’t need to use these for application development because encod-
ing is handled automatically by components or their renderers. (They’re quite
useful for developing components and renderers, however.) If you’re outputting
markup directly, however, they’re a necessity. Use encodeActionURL anytime you’re
outputting a URL for an action, encodeResourceURL for other links within a page
(like an image), and encodeURL for any other URLs. Most of time, these methods
just call HttpServletResponse.encodeURL, but their general purpose is to make
sure that the web container and portlet container properly understand the URL.

 Last but not least, ExternalContext wraps the container’s logging methods
as well:

public void log(String message);
public void log(String message, Throwable exception);
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

428 CHAPTER 11
The JSF environment

These methods can be used whenever you want to log a message or an error,
and you would like to use the logging facilities of the container, which are usu-
ally configurable.

TIP You may have noticed that the methods in this class, unlike FacesCon-
text, are tied much more closely to HTTP. This is because the underly-
ing Servlet and Portlet APIs are built that way. Because JSF is intended to
promote higher-level programming, it’s generally better to use methods
on the FacesContext class if possible.

Also, if you need to store objects in one of the application scopes, it’s
generally better to use a ValueBinding (which can be retrieved from the
Application class) instead of accessing the maps directly from the Ex-
ternalContext. This is because the ValueBinding class is hooked into
the Managed Bean Creation facility, unlike the vanilla Maps you can re-
trieve from the ExternalContext.

This concludes our tour of the context-related JSF classes. As you begin develop-
ing real-world JSF applications, these classes will become second nature. Usually
you’ll access them inside event listeners, which we cover next.

11.4 Event handling

We’ve been saying throughout this book that JSF is event driven, like Swing and
other Rapid Application Development (RAD) environments. All this means is that
interaction with the user interface is represented as event objects that know what
event occurred and which component sent it. This happens during the decoding
process—during the Apply Request Values phase of the Request Processing Life-
cycle, components (or their renderers) may create events and add them to the cur-
rent FacesContext instance. This saves you the trouble of reading request para-
meters to attempt to decipher what the user did. The two standard UI events are
action events, which represent user commands, and value-change events, which rep-
resent a change in a component’s value. (It’s nice when names make sense, isn’t it?)

 JSF has two other event types that are not related to the UI: phase events, which
are generated during the Request Processing Lifecycle, and data model events,
which are generated by DataModel objects. (DataModel objects are used by Html-
DataTable components internally.) We won’t cover data model events here, since
they’re not likely to be used in everyday application development.

 Events are handled by event listeners. All UI event listeners extend the

javax.faces.event.FacesListener interface, which in turn extends the java.
util.EventListener interface. EventListener is a marker interface [Grand], so it

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Event handling 429

defines no methods of its own, and neither does FacesListener (although sub-
classes must have a no-argument constructor). Other non-UI listeners extend
EventListener directly.

 The event and listener features of JSF are based on the JavaBeans naming pat-
terns. So, a kaplow event would have an event class named KaplowEvent and a lis-
tener class named KaplowListener. Any UIComponent that wants to support this
event would have addKaplowListener(KaplowListener listener) and removeKaplow-
Listener (KaplowListener listener) methods for registering and unregistering
listeners, respectively.

 In addition to the concrete listener classes, some components support method
bindings to associate event listeners with a single method in an arbitrary object
(usually a backing bean). This is the preferred method for developing application-
related event listeners.

 These event classes and their listeners are summarized in table 11.4.

Table 11.4 Common event classes and listener interfaces.

Class or Interface Method Binding Signature Description

FacesEvent N/A Base class for UI-oriented events.

ActionEvent N/A Represents a user-initiated action, sent
from an ActionSource.

ActionListener public void myListener
(ActionEvent e)

Handles action events. A single
ActionListener instance is
registered for the application, but you
can also register your own on
components that fire them, like a
UICommand.

Any (normally a backing
bean; no superclass
required)

public String
myAction()

Primary application-level event listeners.
The default ActionListener instance
calls action methods based on the
action property of the Action-
Source that fires action events.

ValueChangeEvent N/A Represents a change in an input
control’s value.

ValueChangeListener
public void myListener
(ValueChangeEvent e)

Handles value-change events. Must be
registered for any input controls whose
state you’d like to monitor.

PhaseEvent N/A
Represents execution of a particular
phase in the Request Processing
Lifecycle.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

430 CHAPTER 11
The JSF environment

You or third parties can, of course, define new event/listener pairs as well; this
would typically be done in conjunction with developing custom components.

 We cover the standard events and listeners in the following sections. For exam-
ples of registering listeners in JSP, see chapter 5.

11.4.1 FacesEvent

In JSF, all UI events are represented by subclasses of the class javax.faces.
event.FacesEvent, which, in turn subclasses the same java.util.EventObject
class that is used for Swing events. FacesEvent has a type-safe version of Event-
Object’s sender property:

public UIComponent getComponent();

This simply returns the UIComponent that fired the event.
 Events also control when they should execute:

public PhaseId getPhaseId();
public void setPhaseId(PhaseId phaseId)

Each PhaseId instance is a type-safe enumeration that maps to a particular phase
in the Request Processing Lifecycle. An event is always broadcast after the phase
has been completed. The possible values are shown in table 11.5. If a particular
phase is skipped (by calling FacesContext.responseComplete, for instance), an
event registered for that phase won’t be broadcast.

PhaseListener N/A
Handles phase events—has methods
that are executed before and after a
given phase.

Table 11.4 Common event classes and listener interfaces. (continued)

Class or Interface Method Binding Signature Description

Table 11.5 The possible PhaseId values. FacesEvent instances are executed after a particular
phase.

PhaseId Value Event Will Be Broadcast...

PhaseId.ANY_PHASE
Whenever the event type is fired on the registered
component, regardless of the phase.

PhaseId.RESTORE_VIEW

After the Restore View phase has completed. This is
particularly useful if you want to bypass application of request
values (or change the request values before they’re applied
to components).
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Event handling 431

Events are fired from specific components, and they’re broadcast to listeners
that are registered for the component that fires the event. So, if you had a single
HtmlCommandButton instance, you might register a listener in JSP like so:

<h:commandButton value="Go!" action="go">
 <f:actionListener type="foo.bar.GoListener"/>
</h:commandButton>

This registers an ActionListener that will consume any action events generated
by the component.

 FacesEvent has a method that ensures it is processed by a particular listener:

public void processListener(FacesListener listener);

This would typically be used by a component to process events for a particular lis-
tener, as opposed to within application code.

 You can also check to see if an event can be consumed by a particular listener
instance:

public boolean isAppropriateListener(FacesListener listener)

And, to register an event for later broadcasting, you can call the queue method:

public void queue()

These last three methods are used more often during UI component development.
 Next, let’s look at action events and listeners.

PhaseId.APPLY_REQUEST_VALUES
After the Apply Request Values phase has completed. This is
useful for adding additional validators or skipping validation
altogether.

PhaseId.PROCESS_VALIDATIONS After the Process Validations phase has completed.

PhaseId.UPDATE_MODEL_VALUES After the Update Model Values phase has completed.

PhaseId.INVOKE_APPLICATION
After the Invoke Application phase has completed. Action lis-
teners are typically executed during this phase.

PhaseId.RENDER_RESPONSE
After the Render Response phase has completed. This is a
good place to clean up objects associated with a specific view.

Table 11.5 The possible PhaseId values. FacesEvent instances are executed after a particular
phase. (continued)

PhaseId Value Event Will Be Broadcast...
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

432 CHAPTER 11
The JSF environment

11.4.2 Handling action events
A user command is represented via an instance of the ActionEvent class. UICompo-
nents that implement the ActionSource interface (covered in section 11.5.2) fire
an ActionEvent when the user interacts with them, usually by clicking a button or
a hyperlink. HtmlCommandButton and HtmlCommandLink are the only standard com-
ponents that fire ActionEvents, but that doesn’t mean you or third parties can’t
write ones that fire them as well. The ActionEvent class is located in the javax.
faces.event package and subclasses the FacesEvent class, but it doesn’t add any
new properties or methods.

Action listeners
ActionEvents are consumed by implementations of the javax.faces.event.Action-
Listener interface. This interface extends FacesListener and adds a single
method:

public void processAction(ActionEvent event)
 throws AbortProcessingException;

This method is the entry point into an ActionListener instance—it’s where you
put logic for handling the action event. Because action listeners aren’t associated
with JSF’s navigation handler, they’re typically used to execute logic that affects
what the user sees, such as manipulating a data set or changing the state of UI
components in the view. You can, however, combine them with action methods
(which do affect navigation).

 The ActionEvent parameter can be inspected to see which component sent the
event through the ActionEvent.getComponent method. If you need to get a handle
to the FacesContext, use the static method FacesContext.getInstance. Throwing
an AbortProcessingException stops JSF from processing this particular event; it
doesn’t affect the Request Processing Lifecycle as a whole. Using this exception
is a somewhat greedy act—it prevents any other listeners from consuming the
current event.

 You can achieve the same functionality as an ActionListener with an action
listener method on any backing bean. Action listener methods don’t require a par-
ticular class or interface—they just need to be available via method-binding
expressions. For example, suppose you had a class called Foo:

public class Foo
{
 public void nextPage(ActionEvent actionEvent)
 {
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Event handling 433

 // go to next page
 }
}

As long as an instance of Foo is available as a scoped variable, you could register
the nextPage method as an action listener for any action source. Action listener
methods can throw AbortProcessingExceptions as well—it’s a runtime exception,
so it does not have to be declared.

 ActionListener classes are arguably more useful for component development
than application development, because most of your application logic will be in
backing beans, which can easily expose action listener methods. However, you
can register only one action listener method with an action source, and you can
register any number of ActionListener instances. ActionListener instances are
also easier to reuse across completely different applications, so they’re good for
operations like logging.

 Applications will typically have several action sources, so manually registering
an ActionListener with all of them would be a bit tedious. Consequently, JSF has
a single ActionListener instance registered with the Application that is automat-
ically registered for UICommand components. This instance is executed during the
Invoke Application phase regardless of how many other ActionListeners you
have registered.

Action methods
The default ActionListener instance invokes action methods based on the action
property of the UI component firing the event. Remember, the action property
can be a method-binding expression that refers to a method in any bean living in
one of the application scopes.

 Once the ActionListener finds the correct action method, it invokes that
method, and then sends the action method’s outcome to the navigation handler.
If the action property of the source component is a literal value instead of a
method-binding expression, that value is used as the outcome. The navigation
handler uses the outcome to set the proper page for JSF to display next (by
default, this is based on the navigation rules defined in a JSF configuration file).

 Action methods are where you place any logic that affects navigation, and they
are typically located in backing beans that collect values from a form (or a set of
forms). This means they can access the bean’s properties easily.

 Any class can have an action method, as long as it has this signature (you can
substitute any name you like for myAction):
public String myAction();

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

434 CHAPTER 11
The JSF environment

The signature doesn’t include a reference to a FacesContext instance, so if you
need a reference to the FacesContext, use FacesContext.getInstance. The String
returned from this method should be the logical outcome of the work performed—
something like "success" or "failure". This outcome can then be mapped to a
specific page with a navigation case defined in a JSF configuration file.

 Most of the application logic in ProjectTrack is written using action methods
and action listener methods, and this will be true of your applications as well.

 Now that we’ve covered action events and their listeners, let’s look at value-
change events and their listeners.

11.4.3 Handling value-change events

When the local value of an input component changes and passes all validations, it
fires an instance of the javax.faces.event.ValueChangeEvent. This occurs before
any model objects have been updated, but after conversion and validation have
taken place. UIComponents that implement the ValueHolder interface (covered in
section 11.5.3) are responsible for firing these events, although third-party or
custom components or renderers can fire them as well.

 Unlike action events, a single view could generate several value-change
events—one for every UI component whose value changes. (Action events are
usually generated by a single UI component in a view.)

 ValueChangeEvent implements FacesEvent and adds two new properties:

public Object getOldValue();
public Object getNewValue();

You can use these two read-only properties to determine what the value of the
component was before, and what the current (new) value is.

Value-change listeners
ValueChangeListeners consume ValueChangeEvent objects. You typically write a
ValueChangeListener whenever you want to perform some action based on the
altered state of the UI. ValueChangeListener, which is located in the javax.faces.
event package, implements the FacesListener interface and adds a single method:

public void processValueChange(ValueChangeEvent event)
 throws AbortProcessingException;

This method is where you place any logic for handling a value-change event. You
can use the event parameter to find the component that fired the event. If you
need to get a handle to the FacesContext, use the static method FacesContext.

getInstance. As with any FacesListener, throwing an AbortProcessingException

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Event handling 435

aborts processing of the event but doesn’t affect the Request Processing Lifecycle
as a whole. Use this exception sparingly, since it prevents any other listeners from
consuming the event.

 Instead of implementing the ValueChangeListener interface, you can write a
value-change listener method in any backing bean. The method must have the
same signature as the interface’s method (sans the exception):

public class Foo
{
 ...
 public void valueChange(ValueChangeEvent event)
 {
 // logic here
 }
 ...
}

This method can still throw an AbortProcessingException, since it is a runtime
exception (and consequently doesn’t have to be declared). In the course of appli-
cation development, value-change listener methods are preferable, because they
give you access to bean properties and don’t require implementing a specific inter-
face. However, you can register only one value-change listener method with a Value-
Holder component, and you can register multiple ValueChangeListener instances.

TIP Write a ValueChangeListener when a component’s value affects the
state of the UI or indicates that some operation should occur. If you want
to fire an event when the value of a model property changes, then your
model objects should have their own events and listeners that don’t know
anything about the UI. That way, your design will continue to separate
the presentation layer from the application layer.

Action and value-change events are the only standard UI events; however, you
may find yourself working with phase events as well.

11.4.4 Handling phase events

Phase events are generated during each phase of the Request Processing Lifecy-
cle. On a daily basis, you won’t need to worry about them. However, in situations
where you want processing to occur before a view is displayed, or manipulate the
lifecycle in some other way, handling them can be useful.

 Phase events are represented by the javax.faces.event.PhaseEvent class,

which subclasses java.util.EventObject directly (as opposed to FacesEvent). It
has two properties:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

436 CHAPTER 11
The JSF environment

public FacesContext getFacesContext();
public PhaseId getPhaseId();

The facesContext property is a type-safe alias for EventObject’s source property.
The phaseId property returns the phase this event is for, just as it does for Faces-
Event instances. PhaseId is a type-safe enumeration of the different phases; its
values are listed in table 11.5.

Phase listeners
You handle phase events with implementations of the javax.faces.event.Phase-
Listener class, which extends the java.util.EventListener interface (as opposed to
FacesListener) and the java.io.Serializable interface. PhaseListeners indicate
which phase they’re interested in by exposing a phaseId property:

public PhaseId getPhaseId();

Processing can be performed before and after the phase executes with these
methods:

public void afterPhase(PhaseEvent event);
public void beforePhase(PhaseEvent event);

Implementations of these methods can use the facesContext property of the event
parameter to manipulate the lifecycle directly, or access the view, if necessary.

 You register PhaseListener instances with the java.faces.lifecycle.Lifecycle
instance, which is responsible for actually executing each phase. This class has
three methods for handling phase listeners:

public void addPhaseListener(PhaseListener listener);
public void removePhaseListener(PhaseListener listener);
public PhaseListener[] getPhaseListeners();

You can retrieve the current Lifecycle instance from the LifecycleFactory:

LifecycleFactory factory = (LifecycleFactory)
 FactoryFinder.getFactory(FactoryFinder.LIFECYCLE_FACTORY);
Lifecycle = factory.getLifecycle(
 LifecycleFactory.DEFAULT_LIFECYCLE);

FactoryFinder is a convenience class for finding factory classes, which is necessary
because JSF allows you to plug in different factory implementations (see appen-
dix C for details).

 Phase listeners can be useful for initializing objects that you want to make
available for a particular view. This can be done in a backing bean like so:
public class MyBean()
{

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Event handling 437

 public MyBean()
 {
 LifecycleFactory lifecycleFactory = (LifecycleFactory)
 FactoryFinder.getFactory(FactoryFinder.LIFECYCLE_FACTORY);
 Lifecycle lifecycle = lifecycleFactory.getLifecycle(
 LifecycleFactory.DEFAULT_LIFECYCLE);
 lifecycle.addPhaseListener(
 new PhaseListener()
 {
 public void beforePhase(PhaseEvent event)
 {
 refreshList();
 }

 public void afterPhase(PhaseEvent event)
 {
 }

 public PhaseId getPhaseId()
 {
 return PhaseId.RENDER_RESPONSE;
 }
 });
 }

 protected void refreshList()
 {
 ...
 }
...
}

This code registers a new PhaseListener instance (implemented as an anonymous
inner class) for the Render Response phase that will execute the refreshList
method before the phase begins. Presumably, refreshList performs some sort of
processing that will update properties of MyBean that views use. This effectively
saying “execute refreshList before a view is rendered.”

 You can use this approach to register event listeners on behalf of any backing
beans for any phase you like; it is effectively equivalent to event handlers available
in ASP.NET WebForms [Microsoft, ASP.NET]. If you need to register global phase lis-
teners before JSF begins displaying views, you can use do so within a ServletCon-
textListener, which is executed when the web application is loaded. Servlet-
ContextListeners are part of the Servlet API.

 This isn’t the only way you can use PhaseListeners. They are useful any time
you want to manipulate the lifecycle—you can even terminate processing or out-

put the response directly.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

438 CHAPTER 11
The JSF environment

 That’s all we’re going to say about events and listeners for now; you’ll see more
examples as we build our case study in the next couple of chapters. Now it’s time
to take a closer look at UI components.

11.5 Components revisited

One of JSF’s primary benefits is the ability to manipulate the components in a view
with code, like Swing and other desktop-based UI component frameworks. Even
though JSF user interfaces are usually declared with templates such as JSPs, some-
times you may need to retrieve or change the state of a component or add new
components to the page altogether. Some JSF implementations, such as the open-
source Smile project [Smile], even allow you to construct all of your views in code
(see appendix A for an example).

 Throughout this book, we’ve been talking about concrete HTML compo-
nents—HtmlInputText, HtmlSelectMany, HtmlDataTable, and so on. These are the
components that the standard JSP component tags create, and they’re also easy to
explain. As it turns out, the HTML components are subclasses of more generic
classes, which are really the backbone of JSF’s component hierarchy, and can be
used for clients other than HTML browsers. They all implement specific inter-
faces as well, which are shown in table 11.6.

Your application code may come into contact with UI components that imple-
ment the ActionSource interface (which fires action events), the ValueHolder
interface (which contains a value), or the EditableValueHolder interface (which

Table 11.6 Interfaces used by UI components. All of them are in the javax.faces.component
package.

Interface Description

StateHolder
Indicates that state should be saved in between requests. Implemented
by all standard components, validators, and converters.

NamingContainer
Indicates that a component is responsible for naming its children. (See
chapter 3 for more information on naming containers.)

ActionSource Represents a UI component that sends action events.

ValueHolder Represents a UI component that has a value.

EditableValueHolder
Represents a UI component that has a value that can be changed.
Sends value-change events.
contains an editable value and sends value-change events). In practice, the other

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Components revisited 439

two interfaces, StateHolder and NamingContainer, are mostly used for compo-
nent development.

 In chapter 4, we introduced component families and said that they grouped
similar components together. This grouping is particularly useful for renderers,
because it allows them to treat components of the same family in similar ways.
Families also happen to map directly to the base UI component classes. Table 11.7
lists all of these classes with their family names and HTML-specific subclasses.

Table 11.7 The base UI component classes, and their HTML subclasses. All of them are in the javax.
faces.component package.

Class Familya HTML Subclasses Description

UIComponent N/A N/A The abstract base abstract class for
all components.

UIComponentBase N/A N/A Abstract base class with basic imple-
mentations of almost all
UIComponent methods.

UIColumn Column N/A A table column. Used to configure
template columns for the parent
UIData component.

UICommand Command HtmlCommandButton,
HtmlCommandLink

A user command.

UIData Data HtmlDataTable Represents a data-aware compo-
nent that cycles through rows in the
underlying data source and exposed
individual rows to child components.
Requires child UIColumn
components.

UIForm Form HtmlForm An input form; must enclose all
input components.

UIGraphic Image HtmlGraphicImage Displays an image based on its URL.

UIInput Input HtmlInputHidden,
HtmlInputSecret,
HtmlInputText,
HtmlInputTextarea

A component that displays its output
and collects input.

UIMessage Message HtmlMessage Displays messages for a specific
component.

UIMessages Messages HtmlMessages Displays all messages (component-
related and/or application-related).
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

440 CHAPTER 11
The JSF environment

Note that the component hierarchy starts with UIComponent, which is the abstract
base class for all UI components, and UIComponentBase, which provides default
implementations of UIComponent methods.

 You may have noticed that this table is similar to table 4.1 back in chapter 4,
which lists all of the HTML component classes. Some of the components that are
listed, like UIViewRoot, don’t have an HTML equivalent, so the listing in this table

UIOutput Output HtmlOutputFormat,
HtmlOutputLabel,
HtmlOutputLink,
HtmlOutputText

Holds a read-only value and displays
it to the user.

UIParameter Parameter N/A Represents a parameter for a parent
component.

UIPanel Panel HtmlPanelGrid,
HtmlPanelGroup

Groups together a set of child com-
ponents.

UISelectBoolean Checkbox HtmlSelectBoolean-
Checkbox

Collects and displays a single bool-
ean value.

UISelectItem SelectItem N/A Represents a single item or item
group. Usually used with UISe-
lectMany or UISelectOne.

UISelectItems SelectItems N/A Represents multiple items or item
groups. Usually used with
UISelectMany or UISelectOne.

UISelectMany SelectMany HtmlSelectMany-
Checkbox,
HtmlSelectMa-
nyListbox,
HtmlSelectManyMenu

Displays a set of items, and allows
the user to select zero or more of
them.

UISelectOne SelectOne HtmlSelectOneRadio
HtmlSelectOneList-
box
HtmlSelectOneMenu

Displays a set of items, and allows
the user to select only one of them.

UIViewRoot ViewRoot N/A Represents entire view; contains all
components on the page.

a The standard family names technically have the prefix javax.faces.

Table 11.7 The base UI component classes, and their HTML subclasses. All of them are in the javax.
faces.component package. (continued)

Class Familya HTML Subclasses Description
is pretty much the same. For the others, there is a key difference: the description.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Components revisited 441

The descriptions are more generic, and don’t specify how the component is dis-
played or other types of HTML-specific behavior. This is because the base UI com-
ponents don’t know anything about HTML at all.

 So, what do the HTML components add to the superclasses? To answer this
question, we need to discuss one feature provided by the UIComponent: attributes.
Attributes are arbitrary name/value pairs registered for a UIComponent instance
that can be used by renderers, converters, and validators when they interact with
UI components. Renderers use render-dependent attributes to help them do
their work. For example, the standard HTML renderers use attributes such as
cellpadding, title, border, and so on.

 But when you’re working with a UI component in code, attributes are cumber-
some to manipulate, and they’re not type-safe.

myUIPanel.getAttributes().put("cellpadding", "0");

This is fine, as long as you happen to know all of the attributes and you never mis-
spell anything. The concrete HTML components are the solution; they expose
renderer-dependent attributes as strongly typed properties:

myHtmlPanelGrid.setCellpadding("0");

That’s it—that’s the only difference.
 When you’re writing backing beans that manipulate UI components in code,

it’s helpful to know about the base classes. This will allow you to write backing
beans that are more flexible—for example, a component binding property of type
UISelectOne can be associated with an HtmlSelectOneListbox, HtmlSelectOneMenu,
or HtmlSelectOneRadio component, which is useful if the front-end developer
changes the component tag.

 The same principal applies to event listener code as well. If your event listener
expects an HtmlDataTable but your application also supports WML (via a third-
party WmlDataTable), you had better use the superclass, UIData. Some IDEs do,
however, encourage you to work with the HTML components.

 Figure 11.2 shows how all of the base UI component classes and interfaces
are related.

 Throughout the rest of this book, we’ll often refer to the base component class
in our discussions, rather than concrete HTML subclasses. You are free, however,
to use whichever one fits your needs, and in many cases, the HTML component
classes are sufficient. Regardless of which route you choose, there are some key
interfaces and classes, like UIComponent, with which you will interact. We cover

these in the following sections.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

442 CHAPTER 11
The JSF environment

11.5.1 UIComponent

All UI components must extend the abstract class javax.faces.component.UICom-
ponent. Like any base class, UIComponent has several useful properties in methods,
including ones for finding child components, identifiers, facet management, and
so on. Let’s start our tour with the component identifier, which is accessible
through the id property:

public String getId();
public void setId(String id);

This identifier is specified when the component is created (either in code or

Figure 11.2 A class diagram of the base UI component classes. All components descend from
UIComponent (which implements the StateHolder interface). UIOutput components
implement the ValueHolder interface, and UIInput components implement the
EditableValueHolder interface. Also, UIData and UIForm implement the NamingContainer
interface. (UINamingContainer is a convenience class that implements the interface.)
declaratively). If no id is specified when the component is created, JSF generates

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Components revisited 443

one automatically. Usually the only time you have to specify an identifier is if the
component must be referenced by other components or validators, or your code
is looking for a specific component it knows about beforehand. For more on com-
ponent identifiers, see chapter 2.

 In addition to an identifier, every component has a type, which is a unique
string that represents the component’s specific set of functionality. The compo-
nent’s type isn’t a property, but it is used to register a specific class name with JSF.
This registration is performed in a JSF configuration file, which means that you
can change the implementation for a particular UI component type (see appen-
dix D). From an application development perspective, the type is useful for cre-
ating a component instance using a factory method of the Application class:

projectSelectOne = (HtmlSelectOneMenu)getApplication().
 createComponent(HtmlSelectOneMenu.COMPONENT_TYPE);

As you can see, HtmlSelectOneMenu returns its type through a constant field called
COMPONENT_TYPE—this is the same for all UI components.

 A component’s attributes can be accessed with this single method:

public Map getAttributes();

You can manipulate this Map normally, but you can’t add a null key, and all keys
must be Strings. You can use it to retrieve a specific attribute, set an attribute, or
retrieve all of the attributes for the current component.

 Attributes are used by converters, renderers, and validators when they need
configuration values that are associated with a specific component. This is useful
because unlike UIComponent instances, other objects may be stateless, which means
that they need a place to store component-related information necessary to per-
form their work. You can also use attributes to store any application-specific objects
that you’d like to associate with a given component. If you do so, however, the
objects must implement the java.io.Serializable interface if you have client-side
state saving enabled.

 All component properties can also be accessed through this Map. So, for exam-
ple, the id property can also be retrieved with getAttributes.get("id"). If you’re
accessing a property through this Map, however, there are some additional restric-
tions: you can’t call remove, and containsKey always returns false. Also, get and put
wrap the getters and setters for the property (respectively), and will throw an excep-
tion if the corresponding method doesn’t exist. Note that the containsKey rule
implies that a call to getAttributes().getKeySet returns only keys for attributes,

excluding property names.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

444 CHAPTER 11
The JSF environment

 You can associate or retrieve a value-binding expression for any attribute or
property with these methods:

public void setValueBinding(String name,
 ValueBinding binding);
public ValueBinding getValueBinding(String name);

The following snippet sets the value-binding expressions for the value and title
properties of an HtmlInputText component:

userNameInputText.setValueBinding("value",
 application.createValueBinding("#{myBean.userName}"));
userNameInputText.setValueBinding("title",
 application.createValueBinding("#{myBundle.userNameTitle}"));

This is equivalent to the following JSP snippet:

<h:inputText value="#{myBean.userName}"
 title="#{myBundle.userNameTitle}"/>

Any property or attribute that supports value-binding expressions is called value-
binding enabled. All of the properties and attributes of the standard UI compo-
nents are value-binding enabled, and this will be the case for most third-party
components you encounter. (We show how to do this in your own components in
chapter 15.) Whenever you retrieve a property or attribute, the component will
first check for a normal value (set with a mutator or through the attributes prop-
erty); if the value is null, it will then check for a ValueBinding instance and eval-
uate it (if found). In other words, value-binding expressions are evaluated only if
the property’s or attribute’s value is null.

 The rendered property indicates whether a component is currently visible:

public boolean isRendered();
public void setRendered(boolean rendered);

This property is handy when you want to hide a part of the screen based on user
input or access level. If you hide a component that’s a container for others, its
children will be hidden as well. By default, this property is set to true.

SOAPBOX I find “rendered” to be sort of a strange property name. Whatever hap-
pened to “visible”?

A view’s structure is implemented using the Composite design pattern [GoF],
which basically means that the view is a tree where every node is implemented
using the same interface, and each node provides navigation capabilities. This is

why UIViewRoot is a UIComponent, even though the user can’t directly interact with it.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Components revisited 445

 JSF component trees don’t have any true leaves; any UIComponent instance can
have children. However, the component or its renderer may ignore them, so
check the component or renderer documentation to be sure children are recog-
nized before you add them.

 UIComponent has several methods for accessing and manipulating its children,
accessing its parent, and finding child components::

public UIComponent getParent();
public UIComponent getChild(int index);
public List getChildren();
public UIComponent findComponent(String expr);

These methods allow you to find components in the view as well as add or
remove ones from it. Note that if you add or remove a UIComponent from the List
returned by getChildren, the parentId property will be set automatically by the
List (a UIComponent cannot be the child of more than one component). Also, you
cannot add any object to the List that is not a UIComponent instance.

NOTE If you’re going to be adding new components to the tree, use the Appli-
cation.createComponent method instead of creating the UIComponent
manually.

At first glance, it may seem like findComponent is the optimal way to find the
component on a page—you could simply retrieve a UIViewRoot instance from the
facesContext and then search for the desired component. However, it’s often eas-
ier to associate a component to your backing bean with a component binding;
this way, you have direct access to the necessary component, and you don’t have
to know its identifier (see chapter 12 for examples).

 Every UIComponent can have facets, which are special, named subordinate compo-
nents such as header and footer. Because they aren’t technically children of the com-
ponent, there is a separate set of methods for accessing and manipulating them:

public Map getFacets();
public UIComponent getFacet(String name);
public Iterator getFacetsAndChildren();

Often, facets are components that contain children, like a UIPanel; however, you
shouldn’t make that assumption—it could be a single component, such as UIOutput.
The Map returned by getFacets works just like the one returned by getChildren.
Just as with child components, you probably won’t need to add or remove facets
programmatically—usually you’ll just need to find and update existing ones.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

446 CHAPTER 11
The JSF environment

Also, remember that most components don’t support facets, even though they
don’t restrict you from adding them.3

 These are all of the UIComponent methods and properties we think you may
encounter during everyday application development. However, the interface has
quite a few more that are necessary for component development—see chapter 15
for details.

 UIComponent does a lot, but sometimes you’ll still need to cast to the appropri-
ate subclass and work with that class’s or interface’s own properties and methods.
In the next sections, we cover a few common interfaces and classes that you will
encounter. For overviews of all of the standard components (including coverage
of supported facets), see chapters 4 and 5.

11.5.2 UIViewRoot

The components in a JSF view are organized into a tree structure with an instance
of the javax.faces.component.UIViewRoot class at the root. There are basically
three things you can do with a UIViewRoot: set or retrieve the current render kit,
set or retrieve the view’s locale, and set or retrieve its viewId property. Also, because
UIViewRoot implements UIComponent, you can access all the child components in
the current view using ordinary UIComponent methods like getChildren.

 You can retrieve the current UIViewRoot with the facesContext.getViewRoot
method. Once you have a handle to the current instance, you can access the view’s
identifier with the viewId property:

public String getViewId();

If JSP is being used for the view, the viewId is the extra path information of the
request, which is the part of the URI after the servlet name but before any request
parameters. So, for the request http://www.something-funny.com/faces/kindafunny.
jsp, the viewId is /kindafunny.jsp. If the request was http://www.something-funny.com/
faces/really_funny/hysterical.jsp, the viewId would be /really_funny/hysterical.jsp.

 You can use a view identifier to create a new UIViewRoot instance. Creating a
new view isn’t a common application development activity, but you may need to
do it in cases when you want to bypass the navigation system and control the next
page that will be displayed:

String myViewId = "/foobar.jsp";
UIViewRoot view = (UIViewRoot)app.getViewHandler().

3
 Technically, displaying facets is up to the renderer. This is why you can arbitrarily add them to a
UIComponent—a component doesn’t know what facets its renderer supports.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Components revisited 447

 createView(facesContext, myViewId);
facesContext.setViewRoot(view);

This snippet of code ensures that JSF will display foobar.jsp next, and the newly
created UIViewRoot instance’s viewId will be /foobar.jsp.

The ViewHandler class is used internally by JSF to create new UIView-
Root instances. This class is pluggable, so you can either decorate it or
write an entirely new implementation—this is how JSF can support dis-
play technologies other than JSP. See appendix C for more information.

You can set or retrieve the view’s locale with the getLocale and setLocale methods:

public Locale getLocale();
public void setLocale(Locale locale);

JSF handles most of the localization duties for you (see chapter 6), so you nor-
mally won’t need to use these methods directly unless you’re setting your users’
locale based on their input, or you need to make a decision programmatically
based on their language or country. ProjectTrack, for instance, lets users change
their locale:

public void setLocale(String locale)
{
 FacesContext.getCurrentInstance().getViewRoot().
 setLocale(new Locale(locale));
}

This property is bound to the value of an HtmlSelectOneListbox component. JSF
carries over the locale property from the previous view, so once you set it for the
current view, you don’t need to set it again (unless you want to change it again).

 The two methods for handling the current render kit are

 public String getRenderKitId();
 public void setRenderKitId(String string);

These methods let you retrieve or change the current render kit. Each render kit
has its own unique identifier, which is usually specified in a JSF configuration file
(the identifier for the standard render kit is stored in the RenderKitFactory.

HTML_BASIC_RENDER_KIT constant). For basic HTML applications, you normally
won’t need to change it—the standard render kit will be enough. However, if you
have multiple render kits available—perhaps an additional kit for a mobile device
and one for enhanced JavaScript and DHTML—you can change the render kit

BY THE
WAY
depending on the user’s preference (or client type).

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

448 CHAPTER 11
The JSF environment

WARNING The JSF RI [Sun, JSF RI] versions 1.0 and 1.1 cannot dynamically chang-
ing the render kit, so use of setRenderKitId is not recommended. We
hope this will be addressed in a future release, but other JSF implemen-
tations may support this capability sooner.

Most of your interaction with the UIViewRoot class will probably involve finding,
and/or modifying, UIComponent instances in the page, and perhaps adding new
UIComponent instances to the page.

 Now, let’s move on to a core interface for interacting with users—ActionSource.

ActionSource
Any component that fires an ActionEvent implements the ActionSource interface.
The only standard component that implements this interface is UICommand (and
its subclasses HtmlCommandButton and HtmlCommandLink), but it’s not uncommon to
develop a custom component that implements this interface as well (UINavigator,
covered in online extension chapter 19, is such a component).

 The most familiar feature of the ActionSource interface is the action property,
which is used by the default ActionListener instance to determine the next page
to display:

public MethodBinding getAction();
public void setAction(MethodBinding methodbinding);

The method referenced by this MethodBinding instance must be an action method.
You can create a new instance through the Application instance:

MethodBinding mBinding =
 app.createMethodBinding("myBean.processClaims", new Class[] {});
myUICommand.setAction(mBinding);

Here, we create a new MethodBinding instance for the processClaims action method
of myBean, and set the action property of a UICommand (which implements Action-
Source).

 When a user executes an action event through an ActionSource instance, the
event is normally processed during the Invoke Application phase. You can force
JSF to execute the event in the Apply Request Values phase, before validation
even takes place, with the immediate property:

public boolean isImmediate();
public void setImmediate(boolean immediate);

Usually this is used for things like Cancel or Previous buttons on a form. This

property is usually initialized to false.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Components revisited 449

 ActionSources are associated with ActionListener instances. (UICommand auto-
matically adds the application’s default ActionListener instance.) In order to sup-
port ActionListener instances, the ActionSource interface exposes three methods:

public void addActionListener(ActionListener listener);
public ActionListener[] getActionListeners();
public void removeActionListener(ActionListener listener);

This allows you to add or remove ActionListener instances in code:

UICommand command = (UICommand)application.
 createComponent(UICommand.COMPONENT_TYPE);
command.addActionListener(
 new ActionListener()
 {
 public void processAction(ActionEvent event)
 throws AbortProcessingException
 {
 FacesContext.getCurrentInstance().getExternalContext().
 log("User fired action for component id " +
 event.getComponent());
 }
 });

This should look pretty familiar to you if you’ve ever worked with Swing. First, we
create a new UICommand using the Application instance, and then we add an Action-
Listener instance (implemented as an anonymous inner class). This simple
ActionListener just writes to the container’s log file—kind of a poor man’s way to
audit what a user does.

 ActionSource also supports an actionListener property, which allows a com-
ponent to specify a method binding expression for handling action events:

public MethodBinding getActionListener();
public void setActionListener(
 MethodBinding methodbinding);

You can use this property just like the action property, except the referenced
method must be an action listener method.

 That’s all you need to know about ActionSource. Next, let’s examine Value-
Holder.

11.5.3 ValueHolder
Any UIComponent that has a value implements the ValueHolder interface, located
in the javax.faces.component package. Components that implement this inter-
face include UIOutput, and its subclasses: UIInput, UISelectOne, UISelectMany, and

UISelectBoolean. In other words, any component that displays or collects data
implements ValueHolder.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

450 CHAPTER 11
The JSF environment

 You can retrieve and update the component’s value with these methods:

public Object getValue();
public void setValue(Object value);

In section 11.5.1 we talked about how all of the standard component properties
are value-binding enabled. The value property is handled just like any other—if
it has been set by setValue, getValue will return that value. Otherwise, getValue
will check for an associated ValueBinding instance and return the result of its eval-
uation if found, and null otherwise.

 If you don’t want the component to check for a ValueBinding instance, you can
use getLocalValue instead:

public Object getLocalValue();

This method always returns the value that has been set for this component with-
out looking for ValueBinding instances.

 In order to support type conversion, every ValueHolder instance can be asso-
ciated with a single converter, whose job is to translate the component’s value
property to and from a String value, and optionally provide formatting or local-
ization. Usually the converter is set declaratively in the page template, but the fol-
lowing methods allow you to retrieve or set the converter in code:

public Converter getConverter();
public void setConverter(Converter converter);

You can create a Converter instance from the Application class using a converter
identifier, which is configured in a JSF configuration file. Each Converter class has
a constant with its identifier:

myUISelectOne.setConverter(application.createConverter(
 DateTimeConverter.CONVERTER_ID));

This registers a new DateTimeConverter instance with a UISelectOne component.
This is equivalent to the following JSP:

<h:selectOneListbox>
 <f:convertDateTime/>
</h:selectOneListbox>

The standard converters are covered in chapter 6. To learn how to write custom
converters, see chapters 12 and 15.

 As you can see, ValueHolder adds a few necessary methods for handling com-
ponent values. EditableValueHolder builds on this base to provide capabilities for

manipulating those values.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Components revisited 451

11.5.4 EditableValueHolder

The EditableValueHolder interface, located in the javax.faces.component package,
adds support for validation and value-change events. As figure 11.2 shows, it extends
ValueHolder and is implemented by UIInput (and consequently all input controls).

 An EditableValueHolder can have one or more Validator instances, which are
managed by these methods:

public void addValidator(Validator validator);
public Validator[] getValidators();
public void removeValidator(Validator validator);

As with Converters, you can create new Validator instances through the Applica-
tion class:

LongRangeValidator myValidator = (LongRangeValidator)
 application.createValidator(LongRangeValidator.VALIDATOR_ID);
myValidator.setMinimum(0);
myValidator.setMaximum(555);
myUIInput.addValidator(myValidator);

This registers a LongRange converter with a UIInput control, and is equivalent to
the following JSP component tag declaration:

<h:inputText ...>
 <f:validateLongRange minimum="0" maximum="555"/>
</h:inputText>

For details about the standard validators, see chapter 6. To learn how to write
your own validators, see part 4.

 Support for validator methods in backing beans is provided by the validator
property, which is of type MethodBinding:

public MethodBinding getValidator();
public void setValidator(MethodBinding validatorBinding);

An EditableValueHolder instance can be associated with only one validator
method, which must have the following signature:

public void myValidatorMethod(FacesContext facesContext,
 UIComponent component,
 Object objectToValidate)
 throws ValidatorException

We show an example of implementing a validator method in chapter 13.
 EditableValueHolder components also have a required property, which is a

simple type of validation:
public boolean isRequired();
public void setRequired(boolean required);

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

452 CHAPTER 11
The JSF environment

If this property is true, empty input for this control will not be valid.
 This interface is also a source of value-change events, and support is imple-

mented with these methods:

public void addValueChangeListener(ValueChangeListener listener);
public ValueChangeListener[] getValueChangeListeners();
public void removeValueChangeListener(ValueChangeListener listener);

Note that these methods are quite similar to those used for ActionSource to han-
dle ActionListener instances.

 If you want to register a single backing bean method instead of a whole class,
you can use the valueChangeListener property:

public MethodBinding getValueChangeListener();
public void setValueChangeListener(MethodBinding valueChangeMethod);

The method referenced by this MethodBinding instance must be a value-change
listener method. Most of the time, you’ll set the valueChangeListener property
instead of implementing the ActionListener interface, because backing bean
methods have direct access to form values.

 A component’s value is only valid once all converters and validators have com-
pleted successfully. You can check the validity with the valid property:

public boolean isValid();

If you access this property in an event listener, be cognizant of the phase for which
your event listener is registered. If it executes before the end of the Process Vali-
dations phase, the valid property could be further manipulated by later phases.
(Remember, even action methods and action listeners can run during the Apply
Request Values phase if the ActionSource’s immediate property is set to true.)

 EditableValueHolders also have an immediate property, which forces conver-
sion and validation to take place during the Apply Request Values phase:

public boolean isImmediate();
public void setImmediate(boolean immediate);

This property is usually initialized to false. You may want to set it to true if you
need to access the value of a component even if validation of other controls in the
same form fails.

 We have now completed our whirlwind tour of the most common component
interfaces and classes you’ll interact with during day-to-day development. Next,
let’s examine a few classes that some components may use internally.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Components revisited 453

11.5.5 SelectItem and SelectItemGroup model beans

In chapter 5, we discussed item lists and how they are used to populate UISelect-
One and UISelectMany components. Item lists are configured with UISelectItem
and UISelectItems components, which are basically wrappers for SelectItem
model objects. UISelectItem will either create a SelectItem instance itself based
on its own properties, or retrieve it from an associated value-binding expression.
UISelectItems must be associated with a value-binding expression that points to a
SelectItem instance or an array, List, or Collection of SelectItem instances.
(UISelectItems can also be associated with a Map, which is subsequently converted
into SelectItem instances.)

 SelectItem is a simple class in the javax.faces.model package with label,
value, description, and disabled properties:

public String getLabel();
public void setLabel(String label);
public Object getValue();
public void setValue(Object value);
public String getDescription();
public void setDescription(String description);
public boolean isDisabled();
public void setDisabled(boolean disabled);

The label property is what users see in the item list, and the value property is
what your application actually cares about. The value property requires a con-
verter so that the user's selection(s) can be translated to and from the proper type.
If you stick to standard Java data types, JSF will automatically use one of the stan-
dard converters. However, if you use your own class, you will need to write your
own converter (see chapter 12 for an example).

 The description property should be a more detailed version of the label, but it isn’t
displayed by the standard renderers. The disabled property determines whether
or not a user can currently select this item; it is often grayed out when displayed.

 SelectItem also has several constructors:

public SelectItem();
public SelectItem(Object value);
public SelectItem(Object value, String label);
public SelectItem(Object value, String label, String description);
public SelectItem(Object value, String label, String description,
 boolean disabled);

So, to create a single item, you can use one of these constructors:

SelectItem chameleons = new SelectItem("30", "chameleons");

myUISelectItem.setValue(chameleons);

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

454 CHAPTER 11
The JSF environment

Here, we create a new SelectItem instance and set it as the value of a UISelect-
Item component.

 To create a list of several items, we can use an array, List, or Collection:

SelectItem[] items = new SelectItem[2];
items[0] = new SelectItem("30", "chameleons");
items[1] = new SelectItem("40", "geckos");
myUISelectItems.setValue(items);

This creates a list of two items, and sets it as the value of a UISelectItems component.
 You can represent subgroups with an item group. Item groups are represented

by the SelectItemGroup class, which is a subclass of SelectItem. SelectItemGroup
adds a single property:

public SelectItem[] getSelectItems();
public void setSelectItems(SelectItem[] selectItems);

The selectItems property is an array of additional SelectItem instances. Techni-
cally, the objects in the array can also be SelectItemGroups, but the standard compo-
nents cannot display nested groups (due to limitations of HTML). In addition, the
value property of a SelectItemGroup instance is usually ignored during rendering.

 This class also adds some additional constructors:

public SelectItemGroup(String label)
public SelectItemGroup(String label, String description,
 boolean disabled, SelectItem[] selectItems);

Using these constructors, we could create a group using the array defined in the
previous snippet:

SelectItemGroup lizardGroup =
 new SelectItemGroup("lizards", null, false, items);

This creates a new SelectItemGroup with the label “lizard” that includes all of the
SelectItem instances in the array items.

 Most of the time, you’ll create one or more SelectItem instances in code and
expose them as a backing bean property, intended to be bound to the value of a
UISelectItem or UISelectItems component (we show how to do this in chapter 12).
Sometimes these values will be hardcoded, but you can also create SelectItem
instances with values retrieved from a database. See chapter 6 for more information
about these components (as well as UISelectOne and UISelectMany subclasses).
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 455

11.6 Summary

Whenever you’re building an application with a framework, there is always a core
set of classes that you need to understand in order to get any work done. For JSF
applications, those classes can be grouped into four primary areas: application,
context, event handling, and UI components.

 Application-related classes include your backing beans, and classes that evalu-
ate JSF EL expressions. They also include the Application class, which provides
access to configuration information like the locale, and factory methods for cre-
ating new components, validators, and renderers, and so on.

 Context-related classes provide access to the current state of interaction with a
user, which is available while processing events. This state is encapsulated in the
FacesContext class, which provides access to messages, events, and a wide variety
of additional data. Messages are used to convey information to the user, and you
can retrieve localized Messages through the MessageResources class. The External-
Context provides access to the hosting servlet or portlet environment.

 Event-handling classes manage the interaction between the user interface and
the rest of the application. When a user interacts with a JSF application, one or
more events will be fired from the component with which the user interacts.
Events are consumed by listener classes. There are two standard event types:
ActionEvents, which are consumed by ActionListeners, and ValueChangeEvents,
which are consumed by ValueChangeListeners. In addition, there is a default
ActionListener instance that delegates work to specific action methods. Usually,
your true application logic will be written in action methods. In addition to UI-
related events, there are also phase events, which are executed during different
stages of the Request Processing Lifecycle.

 UI component classes allow you to manipulate the individual controls on a
page. All components extend the UIComponent class. You can access an entire view
through the UIViewRoot class, and there are also interfaces for sending action
events and working with values.

 Now that you have an understanding of the classes you need to build an appli-
cation, in the next chapter let’s take a look at the steps involved in building a real-
world JSF application.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Building an
application: design issues

and foundation classes
This chapter covers
■ How to build layered applications
■ Writing bean properties
■ Adapting business objects
■ Writing a base backing bean class
456

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Layers of the pie 457

In the first two parts of this book, we covered all of the basic JSF building blocks
and examined what it’s like to build the front-end of our case study, ProjectTrack,
using JSP. In chapter 11, we surveyed the JSF environment from an application
developer’s perspective to help you understand JSF’s coding model. Now it’s time
to look at what Java code is necessary to make ProjectTrack a fully functional appli-
cation using the concepts, techniques, and knowledge presented in the earlier
portions of this book. (If you haven’t looked at the previous three chapters, we sug-
gest you do so now; some of the configuration for this application takes place in
chapter 10.)

 First, we’ll examine how to design applications using a layered approach, and
how ProjectTrack’s classes fit into different layers. Next, we’ll take a look at the
requirements for developing objects that interact with JSF components. Once
we’ve finished examining the design possibilities, we’ll inspect the system’s busi-
ness layer, and then begin writing backing beans and other classes, examining
how they integrate with faces-config.xml and JSPs every step of the way.

12.1 Layers of the pie

In chapter 10, we discussed different development approaches for JSF applica-
tions from the front-end perspective. We said that there were two primary options:
form-based development, and object-based development. From an application
development perspective, we can look at these options in terms of layers.

 Layered architectures are a key aspect of well-designed web applications
[Husted], and that’s why they are enforced by most web frameworks, including
Struts and JSF. The idea is that you divide your application into different distinct
layers, and each layer can interact only with adjacent layers. So, by keeping dis-
tinct parts of your applications separated and dependencies limited, you ensure
that your applications will be more maintainable and less brittle. When you start
building JSF applications, it’s important to understand what the layers are, and
where to use them.

 In the simplest case, there are only two layers: the UI layer, which consists of
JSF views, and an application layer, which talks directly to the data store, as shown
in figure 12.1. JSF is responsible for separating these two layers. In this scenario,
your backing beans would contain business logic and data store access logic
(using APIs such as Java Database Connectivity, or JDBC). When you develop JSF
applications this way, the front-end is developed using the form-based approach
we discussed in chapter 10. There are no business-specific objects in your system;
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

458 CHAPTER 12
Design issues and foundation classes

UI components and backing beans interact directly with data service objects, like
JDBC RowSets.

 This approach can work for small applications, especially if there is little or no
business logic. However, it can become messy fast. Intermixing application, busi-
ness, and data access logic is usually a scary proposition, because it’s hard to sep-
arate the different concerns. If you can’t separate the concerns, then it’s fragile
and difficult to read and test. Technically, this isn’t much of a layered approach—
all of your code is muddled together in one layer.

 A better approach is to split up your application into different layers that con-
centrate on specific tasks. In addition to the UI layer, there is still an application
layer, which consists of backing beans and other objects that interoperate with JSF.
However, the application layer doesn’t know much about the business, or the data
store. Instead, it counts on the business layer to deal with those things. The busi-
ness layer doesn’t know much about the application layer, but it does know a lot
about the business. As a matter of fact, it has objects that model the business
(called model or business objects), so in the case of ProjectTrack, it includes User
and Project objects. The business layer can be implemented using plain old Java
objects (POJOs), Enterprise JavaBeans (EJBs), or web services.

 The business layer, however, doesn’t know anything about the database—it lets
the integration layer handle that work. The integration layer is responsible for
accessing databases like Oracle or SQL Server, but it can also access other ser-
vices, such as EJB servers or web services. This design approach (see figure 12.1)
is much more powerful, and is generally easier to maintain and test.

Figure 12.1
A simple JSF application only has two layers: a UI layer,
which consists of JSF views, and an application layer,
which consists of backing beans that have both business
logic, and data-access code.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Layers of the pie 459

NOTE Even though figure 12.2 implies that JSF would never interact with the
business layer, this isn’t necessarily true. You may have a business object,
like a User, that has a property (like name) that you want to synchronize
with a UI component. The application layer is then responsible for ex-
posing the business object to the UI component and invoking the busi-
ness layer to process the updated object. If this sounds anti-MVC,
remember that JSF is acting as a controller, mediating between the UI
and the business objects.

Of course, the real world isn’t always so cut and dry. You may have an application
that uses both approaches. For example, your application layer may have a cou-
ple of business objects, but still interact directly with data service objects. Those
data service objects could also even be retrieved from an integration layer. And,
in ProjectTrack, backing beans talk to the integration layer to retrieve business
objects. The key is consistency—the more inconsistent your application’s archi-
tecture is, the harder it will be to maintain.

 ProjectTrack uses multiple layers, and that is what we recommend for most
applications. In this chapter and the next, we’ll place great emphasis on the
application layer, since it interacts with JSF. However, the layered design will be
evident in the way the application layer is written. For example, action methods
delegate most of their work to the business layer. If you’re interested in the sim-
pler approach, don’t worry—we show how to integrate UI components with a
JDBC ResultSet in chapter 13.

Figure 12.2
A better approach is to separate your application into different
layers. The UI layer consists of JSF views, the application layer
has backing beans, the business layer has business objects, and

the integration layer talks to the data store.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

460 CHAPTER 12
Design issues and foundation classes

Now that you know about the layered design of a JSF application, let’s take a look
at the design requirements for classes that interact with the framework.

12.2 Roasting the beans

Any object you develop that you want to integrate with JSF should expose Java-
Bean properties. This not only includes backing beans that interact directly with a
view, but also any business objects, like a Report, that you’d like to wire up to JSF
components. We’re not saying that you should design your classes around JSF.
There are, however, some things that make it easier for JSF to interact with them.

 If you’re working with existing business objects that aren’t JavaBeans, you can
always create adapters [GoF]—JavaBeans that delegate behavior to the original
business object. If you don’t have a full-fledged business domain model and
you’re wiring up UI components directly to data service objects (like a JSP Stan-
dard Tag Library, or JSTL, Result), this discussion is only relevant for properties
that your backing beans expose.

 Technically, a JavaBean simply requires a no-argument constructor (it can
have other constructors as well). However, they usually publish properties in a
specific manner, as we will discuss shortly. A no-argument constructor allows JSF
to create a bean automatically with the Managed Bean Creation facility. If your
object isn’t going to be created in that way, a no-argument constructor isn’t nec-
essary. You may not want one in cases where you want more control over how the
object is initialized. Objects without a no-argument constructor aren’t officially
JavaBeans, but as long as they publish properties properly, JSF can still interact
with them.

 If business objects and backing beans are both JavaBeans, what’s different
about them? Remember, business objects represent concepts and operations in
the business domain, which have nothing to do with JSF. Backing beans, on the
other hand, are designed to work with JSF forms, and can contain action listener
or value-change listener methods, as well as action methods. They may even
manipulate UI component instances in a view, and they usually have code that
accesses the JSF API. Often, tools will generate backing beans for you when you
create a new view. You can think of backing beans as adapters between the world
of JSF and your business objects.

 In the following sections we cover the basic information you need to write
backing beans and business objects for JSF applications. We’ll elaborate on these
concepts as we discuss ProjectTrack’s application layer.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Roasting the beans 461

TIP When you’re designing the application layer, think of the front-end de-
veloper as an end user (even if you are the front-end developer). Pick
property, class, and managed bean names that make sense to the person
or people responsible for integrating the UI with your code.

12.2.1 The importance of toString

One of the handy features of JSF is its support for type conversion. When display-
ing the value of a bean property to the user, JSF will automatically convert it to a
String for display. If no converter is registered on the UI component associated
with the property, JSF will use the converter that is registered for that type. For
example, Integers are usually converted using the IntegerConverter class. JSF
has converters for all of the standard Java types (see chapter 6 for details).

 For your own objects, you can write a custom converter, which can be regis-
tered by type (so that it’s called automatically) or by name (so that it can be explic-
itly registered with UI components). However, there’s an easier way—just use
Java’s standard String conversion feature: the toString method. If JSF can’t find
a converter for your object, it will call this method.

 If toString isn’t overridden, the default toString method on the Object class
will be used. For example, let’s look at a property of the Project class:

public ProjectType getType()
{
 return type;
}

This returns the project’s type property, which is a ProjectType object. Here’s a
reference to this property on the Project Details JSP from chapter 10:

<h:outputText value="#{project.type}"/>

This converts the type property to a String and displays it. If ProjectType didn’t
override the toString property, it would look something like this: “org.jia.ptrack.
domain.ProjectType@2f6684.” This may be useful for debugging, but it sure isn’t
pretty. Fortunately, EnumeratedType, ProjectType’s super class, overrides the
toString method:

private String description;
...
public String toString()
{
 return description;
}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

462 CHAPTER 12
Design issues and foundation classes

This just returns the ProjectType instance’s description property, which is
already a String. So, instead of the ugly output without the toString method, we
get something a little more palatable, like “Internal Web Application.” Of course,
we could have referenced the description property directly:

<h:outputText value="#{project.type.description}"/>

This would have worked fine. But normally all anyone cares about is the descrip-
tion property, so why require the extra work? In a sense, toString can be used as
the default property for beans.

 This technique is useful for just about any object you expect to be referenced
by the UI. Every ProjectTrack business object has a basic toString method, includ-
ing Project. For Project, this returns the name property. Returning the name is
useful for front-end development because simple value-binding expressions such
as this work:

<h:outputText value="#{project}"/>

This displays the project’s name, like “Inventory Manager 2.0,” which is pretty
intuitive.

 Of course, this approach won’t work in cases where you’re dealing with exist-
ing beans that already use toString in a different way, when you want to add
parameterized formatting or localization during the conversion process, or if you
need to update a property with an input control. That’s when you need to write a
custom converter; we show how to do this in section 12.4.4, and cover the process
thoroughly in chapter 15.

12.2.2 Serialization for breakfast

ProjectTrack’s beans implement the java.io.Serializable interface. This is
required for any objects you want to be shared across application server instances
or persisted to disk when the server shuts down (in other words, objects that are
stored in session scope). This usually applies to business objects like User or
Project, but also to any other objects you might be using to manage state, like a
ShoppingCart object or a RegistrationWizard object. In short, make sure both
your business objects and backing beans are serializable.

12.2.3 It’s all in the properties

As we’ve mentioned before, JSF expects all objects accessed through value-binding
expressions to expose their properties using the JavaBeans patterns. If you’ve
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Roasting the beans 463

developed applications with Struts or other bean-based frameworks, this should
seem familiar to you.

 JavaBeans properties are accessed through getters (also called accessors) and set-
ters (also called mutators). Here’s an example from ProjectTrack’s Authentication-
Bean class:

public class AuthenticationBean implements Serializable
{
 private String loginName;
 private String password;

 public AuthenticationBean()
 {
 }

 public void setLoginName(String loginName)
 {
 this.loginName = loginName;
 }

 public String getLoginName()
 {
 return loginName;
 }

...

}

This snippet has a single no-argument constructor, and exposes a single property
called loginName. If the bean is stored under the key authenticationBean in some
application scope, this property can be referenced easily with the value-binding
expression "#{authenticationBean.loginName}". Here’s a declaration of an Html-
InputText component that uses this property:

<h:inputText value="#{authenticationBean.loginName}"/>

This associates the value property of the HtmlInputText component to with the
loginName property of an AuthenticationBean instance. Any changes made by the
user through the input control will update the property, and vice versa.

 The same property can also be accessed in Java code:

FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
String loginName =
 (String)app.createValueBinding("#{authenticationBean.loginName}").

 getValue(context);

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

464 CHAPTER 12
Design issues and foundation classes

Boolean properties, which are required by UISelectBoolean, can have an is method
instead of a get method. Here’s another AuthenticationBean method that returns
true if a user cannot access the Inbox:

public boolean isInboxAuthorized()
{
 return getVisit().getUser().
 getRole().equals(RoleType.UPPER_MANAGER);
}

This property is used in the header JSP like so:

<jia:navigatorItem name="inbox" label="#{bundle.InboxToolbarButton}"
 icon="/images/inbox.gif"
 action="inbox"
 disabled="#{!authenticationBean.inboxAuthorized}"/>

Here, we disable the Inbox toolbar button if the user is not authorized to access it. In
this case, we’re referencing the property as part of a JSF EL expression used for a UI
component property other than value. If you’re associating a property with an input
component’s value, as in the first example, it must be a read/write property. Read/
write properties have both an accessor and mutator, like our loginName property.

 If you want a property to be read-only, just don’t write an accessor, as shown with
the inboxAuthorized property. Keep in mind, however, that read-only properties
can’t be used as the value of input controls because their values can’t be updated.

 If you write a property that’s intended to be associated with a UI component’s
value, you also have to make sure it’s the proper type; otherwise, the component
won’t know how to handle it. So far, we’ve looked at just String and boolean prop-
erties. For most UI components, such as UIInput, UIOutput, and their subclasses,
just about any type of object will do, as long as it can aesthetically be converted to
a String, either with a converter or via the object’s toString method.

 Table 12.1 lists all of the standard components and the types they accept for
the value property. Note that we’re listing the renderer-independent super-
classes; the same rules apply to the subclasses, like HtmlOutputText.

Table 12.1 Each component knows how to handle specific data types. In many cases, you can
count on converters (either standard or custom) to handle differences for you.

UI Component Accepted Types for value Property

UIInput, UIOutput, UISelectOne Any basic or primitive types that have converters, or
custom types (often with custom converters).

continued on next page
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Roasting the beans 465

As the table shows, the rules are pretty simple: in some cases, the component
expects only specific types, and in other cases, any type with a valid converter (or
toString method) will do. You’ll see examples of bean properties that work with
most of these components, and a situation that requires a custom converter, as we
discuss ProjectTrack in detail.

 What’s a little tricky, though, is dealing with the SelectOne and SelectMany
components, and UISelectItem and UISelectItems. It’s tricky because these are
the only components that require specific JSF model objects—javax.faces.model.

SelectItem and its subclass, javax.faces.model.SelectItemGroup. (UIData uses a
DataModel object internally, but you can associate it with several other types.)

Working with SelectMany and SelectOne components
As we discussed in chapter 5, SelectMany components (represented by the UISe-
lectMany superclass) are responsible for selecting one or more items from a list.
SelectOne components (represented by the UISelectOne superclass) are responsi-
ble for selecting a single item from a list. So far, so good. Those lists, however, are
specified with UISelectItem and UISelectItems components, which are essen-
tially wrappers for SelectItem model objects (for an overview of SelectItem,
see chapter 11).

 The list of items can be configured statically in the UI, as we did in chapter 5.

UIData An array of beans, a List of beans, a single bean,
java.sql.ResultSet, javax.servlet.jsp.
jstl.Result, or javax.faces.model.
DataModel.

UISelectBoolean A boolean or Boolean.

UISelectItem A single SelectItem instance.

UISelectItems A single SelectItem instance, an array of
SelectItems, a Collection of SelectItems,
or a Map whose key/value pairs (converted to
Strings) will be used as the label and value of
SelectItem instances.

UISelectMany An array of any basic or custom type with a converter,
or a List of Strings.

Table 12.1 Each component knows how to handle specific data types. In many cases, you can
count on converters (either standard or custom) to handle differences for you. (continued)

UI Component Accepted Types for value Property
But if you plan to dynamically configure the list, you must wite a property that

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

466 CHAPTER 12
Design issues and foundation classes

returns a collection of SelectItem instances, and make sure that the property that
the component updates has the same type as the itemValue property of the
SelectItem instances. (Instead of SelectItem instances, your property can return
a Map whose key/value pairs will be converted into SelectItem instances.)

NOTE Your business objects should never contain properties that return
SelectItem instances (or any other JSF-specific object, for that matter).
If you need to expose objects from the business tier in an item list, write
an adapter method in a backing bean, as shown in section 12.4.4.

Let’s look at a simple example. ProjectTrack’s header has a drop-down listbox
that allows the user to select his or her current locale from a list, as shown in
figure 12.3. (In the real application, there are only two supported locales, and
the JSP is slighlty different, but we’ve modified things for this example.)

 This listbox, which is an HtmlSelectOneListbox component, references the
visit.locale property, which represents the user’s selected locale:

<h:selectOneListbox id="languageSelect" size="1"
 styleClass="language-select"
 value="#{visit.locale}">
 <f:selectItems value="#{visit.supportedLocaleItems}"/>
 <f:selectItem value="#{visit.extraLocaleItem}"/>
</h:selectOneListbox>

The locale property is defined as a follows (the implementation isn’t relevant to
our discussion):

public String getLocale(){ ... }
public void setLocale(String locale) { ... }

The listbox has a child UISelectItems component that references the supported-
LocaleItems property, which is defined like so:

public SelectItem[] getSupportedLocaleItems()
{
 SelectItem[] localeItems = new SelectItem[2];
 localeItems[0] = new SelectItem("en", "English");
 localeItems[1] = new SelectItem("ru", "Russian");

Figure 12.3
ProjectTrack’s header has an
HtmlSelectOneListbox
component for different locales.
 return localeItems;
}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Roasting the beans 467

This method was designed to be referenced by UISelectItems components, so it
returns an array of SelectItem instances. The first parameter of the constructor
is the item’s value, which is the value passed into the setLocale method when the
HtmlSelectOneListbox updates the locale property.

 The extraLocaleItem property returns a single SelectItem instance:

public SelectItem getExtraLocaleItem()
{
 return new SelectItem("es", "Spanish");
}

Because this method returns a single SelectItem instance, it can be used as the
value for either a UISelectItem component (as in this example) or a UISelect-
Items component.

 The important point is that the value of the SelectItem instances are designed
to work with the property referenced by the listbox, which is the locale property
in this case. The setLocale method understands the values “en”, “ru”, and “es”.

Hardcoding a list of locales isn’t the best way to do things. The real ap-
plication creates SelectItem instances dynamically based on the locales
the application supports. See section 12.5 for details.

Things get slightly more complicated when you’re not using Strings. If the
locale property were defined as an Integer, the value of the SelectItem objects
would have to be an Integer as well. Suppose that the locale property was
defined like this:

public Integer getLocale(){ ... }
public void setLocale(Integer locale) { ... }

Our previous versions of getSupportedLocaleItems and getExtraLocaleItem would
have to be updated, because the values “en”, “ru”, and “es” can’t be converted to
an Integer:

public SelectItem[] getSupportedLocaleItems()
{
 SelectItem[] localeItems = new SelectItem[2];
 localeItems[0] = new SelectItem(new Integer(0), "English");
 localeItems[1] = new SelectItem(new Integer(1), "Russian");
 return localeItems;
}

public SelectItem getExtraLocaleItem()
{

BY THE
WAY
 return new SelectItem(new Integer(3), "Spanish");
}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

468 CHAPTER 12
Design issues and foundation classes

The bottom line is that the value of SelectItem instances must be the same type as
the property being set by the HtmlSelectOneListbox component.

 The same rule applies to SelectMany components, except for the fact that they
can accept several selected values from a user. Properties associated with Select-
Many component values must return an array of primitives or objects instead of a
single object. They can also return a List, but the List can only contain Strings.

 As an example, consider the list of artifacts shown in several project pages
(figure 12.4).

 Here’s the declaration of this HtmlSelectManyCheckbox component:

<h:selectManyCheckbox id="artifactSelect" layout="pageDirection"
 styleClass="project-input"
 value="#{visit.currentProject.artifacts}">
 <f:selectItems value="#{selectItems.artifacts}"/>
</h:selectManyCheckbox>

The HtmlSelectManyCheckbox updates the artifacts property of the current
project, which looks like this:

public void setArtifacts(ArtifactType[] artifacts) {...}
public ArtifactType[] getArtifacts() {...}

As you can see, it accepts an array of ArtifactType objects. The selectItems bean
returns a List of SelectItem instances for the list of artifacts. Here’s a simplified
version of the accessor:

public List getArtifacts ()
{
 List artifacts = new ArrayList();
 artifacts.add(
 new SelectItem(ArtifactType.DEPLOYMENT,
 ArtifactType.DEPLOYMENT.getDescription()));
...
 artifacts.add(

Figure 12.4
Several ProjectTrack views allow the user to
select one or more artifacts from a list with an
HtmlSelectManyCheckbox component.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Roasting the beans 469

 new SelectItem(ArtifactType.PROJECT_PLAN,
 ArtifactType.PROJECT_PLAN.getDescription()));
 return artifacts;
}

The static fields DEPLOYMENT and PROJECT_PLAN return ArtifactType instances, and
the getDescription method returns a String. So, once again, the value of the
SelectItem instances is the same type as the property the items will be updating.
The only difference is that the property is an array instead of a single value.

 We did leave out one piece of this puzzle. Because ArtifactType isn’t supported
by the standard JSF converters, we need a custom converter. Fortunately, the
SelectMany components are smart enough to use the converter for all of the ele-
ments in the array. All that’s necessary is to associate the proper converter with
the UI component. (We develop this converter in section 12.4.4.) This isn’t neces-
sary for types that JSF converts automatically (see chapter 6).

 Next, let’s see how to write properties that are bound directly to a compo-
nent instance.

Using component bindings
We’ve touched on the ability to bind a UI component instance to a backing bean.
This is different than binding a UI component’s value property to a backing
bean. A component binding gives a backing bean access to an instance of the UI
component. This can be useful in cases where you need to dynamically create or
manipulate controls in the view, as we did in the Hello, world! application. You
can also use component bindings to influence the logic of action methods, or to
initialize a UI component. Using component bindings and binding a property to
the component’s value aren’t mutually exclusive endeavors; sometimes you may
use both approaches with the same UI component.

 ProjectTrack’s SelectProjectBean has a property that is bound to the UIData
component in the associated view:

import javax.faces.component.UIData;
...
private UIData projectTable;
...
public UIData getProjectTable()
{
 return projectTable;
}
public void setProjectTable(javax.faces.component.UIData projectTable)
{
 this.projectTable = projectTable;

}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

470 CHAPTER 12
Design issues and foundation classes

Because this class doesn’t manipulate any HTML-specific properties, we use the
superclass for data table components, UIData, rather than its HTML-specific sub-
class, HtmlDataTable. This bean is exposed as a request-scoped variable named
inboxBean, and is referenced in the Inbox view like so:

<h:dataTable styleClass="table-background"
 rowClasses="table-odd-row,table-even-row" cellpadding="3"
 value="#{inboxBean.inboxProjects}"
 var="project"
 binding="#{inboxBean.projectTable}">
...
</h:dataTable>
...
<h:commandLink action="#{inboxBean.approve}">
 <h:outputText value="Approve"/>
</h:commandLink>

This declaration binds a UIData component to the inboxBean’s projectTable
property. This view also references an action method, which uses the UIData
instance to help perform its work:

public String approve()
{
 ...
 Project project = (Project)projectTable.getRowData();
 ...
}

This line retrieves the currently selected row of the UIData component, which is a
Project instance. This is an example of binding to a UI component solely to assist
with performing application-level processing. In this case, JSF created the actual
instance of the component.

 Instead of letting JSF do your dirty work, you can create and initialize a UI
component in the property’s accessor. For example, the Create a Project page uses
the CreateProjectBean to initialize the HtmlSelectOneListbox for project types:

<h:selectOneMenu binding="#{createProjectBean.projectSelectOne}">

In CreateProjectBean, the htmlProjectSelectOne property is defined like this:

import javax.faces.component.html.HtmlSelectOneListbox;
...
private HtmlSelectOneListbox projectSelectOne;
...
public HtmlSelectOneListbox getProjectSelectOne()
{

 if (projectSelectOne == null)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Roasting the beans 471

 projectSelectOne = (HtmlSelectOneListbox)getApplication().
 createComponent(HtmlSelectOneListbox.COMPONENT_TYPE);

 projectSelectOne.setId("typeSelectOne");
 projectSelectOne.setTitle("Select the project type");
 projectSelectOne.setRequired(true);
 projectSelectOne.setValueBinding("value", getApplication().
 createValueBinding("#{visit.currentProject.type}"));
 projectSelectOne.setConverter(getApplication().
 createConverter(ProjectTypeConverter.CONVERTER_TYPE));
 }

 return projectSelectOne;
}

Here, we create a new HtmlSelectOneListbox instance using the Application
class’s factory method. Next, we set a few properties and create a ValueBinding
instance for its value property. We also register a new custom converter instance
for the component. This is equivalent to the following declaration in JSP:

<h:selectOneMenu id="typeSelectOne" title="Select the project type"
 required="true"
 value="#{visit.currentProject.type}">
 converter="ProjectType"/>

The JSP is decidedly more terse, which is the appeal of creating the UI declara-
tively. However, in some cases, you may want to initialize UI component proper-
ties this way, especially if you’re building a graph of components dynamically.

 In this example, the projectSelectOne property is a concrete HTML compo-
nent class, which is ideal if you’re going to be manipulating a lot of HTML-specific
properties. However, if you’re not, we recommend you use the component’s
superclass as in the previous example. Using the superclass has the added benefit
of allowing the view to change the JSP tag without affecting the code. So, if this
property had been declared as a UISelectOne instead, the Create a Project page
could use the <h:selectOneListbox>, <h:selectOneMenu>, or <h:selectOneRadio>
JSP component tags. The HTML-specific property title, which is used by all three
renderers, could be initialized like so:

projectSelectOne.getAttributes().put("title",
 "Select the project type");

This works because the different tags use separate renderers, and all of the ren-
derers understand the title attribute.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

472 CHAPTER 12
Design issues and foundation classes

12.2.4 Exposing beans

By now, the guidelines for JavaBeans used in JSF applications should be clear.
Once you’ve written the beans, the last step is to make sure your application can
access them. All you have to do is expose the bean as a scoped variable, and JSF EL
expressions will be able to find them.

 Because the Managed Bean Creation facility handles this for you automatically,
the typical pattern is to configure backing beans as managed beans, and expose
any business objects through those backing beans. The business objects them-
selves may or may not be managed beans, depending on your application. Remem-
ber, the facility is great for initializing object properties, so you could use it to
create instances of business objects and set them as properties of backing beans.
Here’s an example of registering the SelectProjectBean, which is responsible for
selecting a single project from a list, with the Managed Bean Creation facility:

<managed-bean>
 <description>Loads a Project from the ProjectCoordinator.
 </description>
 <managed-bean-name>inboxBean</managed-bean-name>
 <managed-bean-class>org.jia.ptrack.web.SelectProjectBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>visit</property-name>
 <value>#{sessionScope.visit}</value>
 </managed-property>
 <managed-property>
 <property-name>projectCoordinator</property-name>
 <value>#{applicationScope.projectCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>statusCoordinator</property-name>
 <value>#{applicationScope.statusCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>userCoordinator</property-name>
 <value>#{applicationScope.userCoordinator}</value>
 </managed-property>
</managed-bean>

Here, we declare an instance of org.jia.ptrack.web.SelectProjectBean as a request-
scoped variable with the name inboxBean. We also specify four properties to ini-
tialize when the bean is created. Note that each property is initialized with a value-
binding expression that refers to an existing scoped variable. The expressions

marked in bold reference business objects; the other expression, "#{sessionScope.
visit}", refers to a backing bean that manages session information for a user.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Exploring the business layer and data layers 473

Value-binding expressions aren’t required; you can also initialize properties to
static values. (See chapter 3 for a detailed discussion of managed beans.)

 This bean can now be referenced with the expression "#{inboxBean}". Here’s
an example from inbox.jsp:

<h:dataTable styleClass="table-background"
 rowClasses="table-odd-row,table-even-row" cellpadding="3"
 value="#{inboxBean.inboxProjects}"
 var="project">
...
</h:dataTable>

This binds the value property of this dataTable with the SelectProjectBean.
inboxProjects property, which returns a List of Project objects. Project is a
business object, and SelectProjectBean internally uses its projectCoordinator
property, set with the Managed Bean Creation facility, to retrieve that list.

 You can also expose beans using the ValueBinding objects in code. Here’s an
example from the AuthenticationBean’s login method:

Visit visit = new Visit();
...
visit.setUser(newUser);
visit.setAuthenticationBean(this);
...
application.createValueBinding("#{sessionScope.visit}").
 setValue(facesContext, visit);

Here, we create a new Visit object, set some properties, and then create and set a
new value-binding expression. Now, our newly created object will be available as a
session-scoped variable under the key visit. The header references this object
like so:

<h:outputText value="(#{visit.user.login})" styleClass="user-name"/>

This HtmlOutputText component displays the user’s login name, retrieving the
current user from the Visit object.

 Now that we’re clear on how to write beans, let’s take a step back and look at
the objects that make up ProjectTrack’s business layer.

12.3 Exploring the business layer and data layers

Before we start writing the application layer, let’s briefly examine ProjectTrack’s
business layer. Rather than build each class here, we’ll take a high-level tour and
assume that the work has already been completed and unit-tested independently.

(We don’t cover the unit tests here, but they’re included with the downloadable

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

474 CHAPTER 12
Design issues and foundation classes

source to ProjectTrack, available at http://www.manning.com/mann.) Remember—
these classes concentrate on business logic and data access, and don’t know any-
thing about JSF, or even the Web, for that matter.

TIP Business objects aren’t aware of the JSF environment, so they’re easy to
unit-test. The online code for ProjectTrack includes JUnit test cases for
the classes mentioned here.

Figure 12.5 A class diagram of ProjectTrack’s business layer.
In chapter 7, we talked about ProjectTrack’s conceptual model, which includes
entities like Project and User, and their relationships. To recap, the application

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Exploring the business layer and data layers 475

centers on a Project. Projects have a status, like “Proposal” or “Deployment.” They
have a type, such as “Internal Web Application” or “External Desktop Application.”
They have artifacts, like “Project plan” and “Architectural document.” They’re also
created by Users.

 Users have different roles, like “Project Manager” and “Development Man-
ager.” A Project’s status is associated with a specific role. Users in that role can
promote or demote Projects to a different status, as shown in figure 7.1. Each
time a user does this, it’s called an Operation. From this conceptual model, we
can derive ProjectTrack’s object model, which is shown in figure 12.5. All of the
business objects we mentioned—Project, ProjectType, ArtifactType, IStatus,
User, RoleType, and Operation are depicted. There’s also a second set of objects
that are responsible for loading these objects from a data store.
The business objects represent the main entities that make up the system; these
are the ones that JSF components will directly display and modify. Most of them
are simple JavaBeans—they have a no-argument constructor, and expose all of
their properties via getter and setter methods, as we described in section 12.2.3.
This is key, because JavaBean properties are accessible via JSF value-bindings.
The User object represents a user during his or her interaction with the system.
It has login, name, password, and role properties. The role property, represented
as a RoleType object, is used to help decide which Projects a user can modify.
The Project class is the center of the ProjectTrack universe. It has a ton of simple
properties, like name, description, initiatedBy, and requirementsContact. It also
has a status property, which represents its current state, and can be manipulated
with the changeStatus method. A Project’s history property is a collection of
Operation objects; new Operations are added via by the changeStatus method, as
well. Artifacts are maintained as a collection of ArtifactType objects, and there
is a single type property, which is represented by a ProjectType object.
The Project class’s status property is represented by the IStatus interface. An
IStatus has simple id and name properties. It is associated with a single RoleType
instance via the role property—only Users with that RoleType should be able to
manipulate a Project. The approvalStatus property returns the next IStatus
instance in the project workflow; the rejectionStatus property returns the previ-
ous IStatus instance. You can think of an IStatus instance as a node in a doubly
linked list. If it’s the first object in the list, the isInitialState property is set to
true; if it’s the last, the isFinalState property is set to true.
An Operation represents the act of changing from one status to another. Each
Operation is initiated by a User, and has timestamp and comment properties. The

 b

 c

 d

 e

 f
previous and current status are represented by the fromStatus and toStatus
properties, which are IStatus instances.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

476 CHAPTER 12
Design issues and foundation classes

Like many Java developers, I have my own version of an enumerated type class,
with the terribly uncreative name EnumeratedType.1 All of the Type classes in the
system—ArtifactType, ProjectType, and RoleType, descend from this class. Each
class has several public static instances (with private constructors) and handy
methods for dealing with them. For example, the ArtifactType class has instances
whose names match the different artifact types: PROPOSAL, ARCHITECTURE, and so on.
The objects in the integration layer are responsible for retrieving objects from a
data store. They aren’t accessed directly from UI components, although they will
often be accessed via event listeners. All of them are singletons—there’s only one
instance per application.

 You may have noticed that we’ve left out the concrete classes that implement
these interfaces. Since ProjectTrack is a small sample application, these are POJOs
that talk to some data store (there are also memory-only implementations, which
we use here). However, they could delegate their work to EJBs if the requirements
demanded it. Since the interfaces would remain the same regardless of the data
store, the concrete classes were omitted for simplicity.
IStatusCoordinator is responsible for managing IStatus instances. In practice,
it acts as a factory for the first IStatus via its initialStatus property.
IProjectCoordinator is responsible for managing Project objects. It has basic
database operations like add, remove, removeAll, and get.
User objects are managed by the UserCoordinator. Because you can’t add users in
ProjectTrack currently, it has one important method: getUser.

ProjectTrack’s integration layer also defines a simple exception hierarchy with
three classes: BaseException, DataStoreException (which subclasses BaseException),
and ObjectNotFoundException (which subclasses DataStoreException). You’ll see
backing beans catch these exceptions, log the error, and generate JSF messages
when necessary.

 This concludes our tour of the business layer. As we build the rest of the appli-
cation, you’ll see how event listeners delegates all business logic calls to this layer.
Without further ado, let’s introduce the application layer.

12.4 Developing the application layer

Now that we’ve covered the classes that make up the JSF environment, discussed how
to write backing beans, and examined the business objects that provide ProjectTrack’s

1

 g

 h

 i

 j

1)
You have no idea how long I’ve been waiting for enumerated types to be added to Java—thankfully,
JDK 1.5 adds this feature.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing the application layer 477

core functionality, we can build the application layer. The bulk of the code will be
backing beans that expose properties and action methods. These will be the meat
of the application, and they’re the classes that we’ll be hooking up to UI components.

 There are two other categories of classes—utility and adapter classes. Utility
classes provide helper methods and constants, initialize business layer objects,
and help out with authentication and authorization. Adapter classes expose busi-
ness object properties in a way that makes sense to UI components.

 All of ProjectTrack’s application layer classes are listed in table 12.2.

Table 12.2 ProjectTrack’s application model includes several classes.

Class Category Description

Constants Utility Static class that contains Strings for keys and
outcomes.

Utils Utility Static class with simple utility methods for logging and
retrieving values.

Initializer Utility ServletContextListener that initializes singletons.

Authentication-
Filter

Utility Filter used for custom authentication.

EnumItemAdapter Adapter Wraps business layer enumerated types with Faces
SelectItem instances.

ArtifactType-
Converter

Adapter Converts an ArtifactType to and from a String.

ProjectType-
Converter

Adapter Converts a ProjectType to and from a String.

Visit Application logic Holds references to session-related objects like the
current User and the current Project. Also used to
change the user’s current locale.

BaseBean Application logic Superclass for most backing beans.

AuthenticationBean Application logic Handles login, logout, and simple authorization duties.

SelectProjectBean Application logic Selects and loads a Project instance.

UpdateProjectBean Application logic Updates the current Project instance.

CreateProjectBean Application logic Creates and saves a new Project instance.

ShowHistoryBean Application logic Scrolls through Projects history.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

478 CHAPTER 12
Design issues and foundation classes

Now, let’s take a detailed look at each of these classes, and see how they cooperate
to make ProjectTrack work. For each class, we’ll discuss how it’s implemented and
show what JSF APIs and business layer APIs it uses. We’ll also show any related
configuration code (in places like web.xml or faces-config.xml), and give you a
sense of how it relates to other ProjectTrack classes.

12.4.1 Handling constants

Web application frameworks often use strings for things like keys and navigation.
Action methods sometimes need to store or retrieve an object—like a User—that’s
hanging out in some application scope. These objects are stored using a key that
is also used to find them by means of value-binding expressions or the External-
Context. Such keys are essential for accessing objects with non-JSF classes like fil-
ters or servlet event listeners. Action methods also return an outcome String
that’s used by the navigation handler to choose the next view to display.

 Whenever you’re building an application that relies on Strings to get the job
done, it makes sense to store those Strings as constants somewhere and use the
constant instead of the literal string. If you’ve developed applications with web
frameworks like Struts, you may have seen this approach before. It provides these
major benefits:

■ Your code is more readable because a constant can say what the String
means, as opposed to what it is. For example, the literal string “ptrack-
Resources” isn’t as meaningful to someone reading your code as Con-
stants.BUNDLE_BASENAME.

■ Another advantage is compile-time safety—for example, if you mistype
“Constants.BUNDLE_BASENAME”, the Java compiler will complain. If you
mistype “ptrackResources”, you’re bound to waste time trying to figure out
why your code is retrieving null instead of an actual value.

■ You can use code-assist features in an IDE to get a list of possible values,
which is good for those of us with poor memory.

■ If the value changes, you have update it in only one place.

Generally, it’s best to put all of these constants in one place so that they’re easy to
find—ProjectTrack places them all in a class called Constants. Usually constants
are added as you build the application—for example, if you’re writing a new
action method that needs to return "success", it’s time to add a new constant
called SUCCESS_OUTCOME. However, to avoid mucking up our other discussions with

constant-talk, we’ll just add them all right now—see listing 12.1.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing the application layer 479

package org.jia.ptrack.web;

public class Constants
{
 // Backing bean keys
 public final static String VISIT_KEY_SCOPE = "sessionScope.";
 public final static String VISIT_KEY = "visit";

 // Business object keys
 public final static String CURRENT_PROJECT_SCOPE =
 "sessionScope.";
 public final static String CURRENT_PROJECT_KEY =
 "currentProjectAdapter";

 public final static String PROJECT_COORDINATOR_SCOPE =
 "applicationScope.";
 public final static String PROJECT_COORDINATOR_KEY =
 "projectCoordinator";

 public final static String STATUS_COORDINATOR_SCOPE =
 "applicationScope.";
 public final static String STATUS_COORDINATOR_KEY =
 "statusCoordinator";

 public final static String USER_COORDINATOR_SCOPE =
 "applicationScope.";
 public final static String USER_COORDINATOR_KEY =
 "userCoordinator";

 // Authorization
 public final static String ORIGINAL_VIEW_SCOPE = "sessionScope.";
 public final static String ORIGINAL_VIEW_KEY = "originalTreeId";
 public final static String PROTECTED_DIR = "protected";
 public final static String EDIT_DIR = "protected/edit";
 public final static String LOGIN_VIEW = "/faces/login.jsp";

 // Action outcomes
 public final static String SUCCESS_READONLY_OUTCOME =
 "success_readonly";
 public final static String SUCCESS_READWRITE_OUTCOME =
 "success_readwrite";
 public final static String SUCCESS_OUTCOME = "success";

 public final static String CANCEL_READONLY_OUTCOME =
 "cancel_readonly";
 public final static String CANCEL_READWRITE_OUTCOME =
 "cancel_readwrite";

Listing 12.1 Constants.java: Stores all application-wide strings
 public final static String CANCEL_OUTCOME = "cancel";

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

480 CHAPTER 12
Design issues and foundation classes

 public final static String FAILURE_OUTCOME = "failure";
 public final static String ERROR_OUTCOME = "error";

 // Resource bundle keys
 public final static String BUNDLE_BASENAME = "ptrackResources";
}

We won’t cover every constant here, but you can see that there are five groups:
backing bean keys, model object keys, authentication keys, action method out-
comes, and resource bundle keys. There’s only one backing bean key, which is for
the Visit object (we’ll discuss that later). This key is used to check for the object’s
existence and store it for use by other backing beans. The business object keys are
used to store a few essential objects after they’ve been initialized.

 Note that each of these beans have two constants—the scope and the key itself.
When you’re dealing directly with a servlet object like an HttpSession, you’ll use
just the key. If you’re using ValueBindings, which are part of the JSF API, you may
need both. You’ll see some examples of this as we discuss other aspects of the system.

 Authentication keys are for objects that are also stored in some application
scope, but they’re used only for authentication and authorization—they’re not
referenced by UI components or backing beans at all. These keys are specific to
the way ProjectTrack implements security. (In a real application, some of these
constants would be configurable as servlet initialization parameters.) Action out-
comes are returned by action methods. And finally, resource bundle keys are used
for loading the resource bundle in code.

 This class doesn’t have a constant for every single model object key or naviga-
tion outcome that ProjectTrack uses—only the ones referenced in code. As a mat-
ter of fact, all of these keys and scopes must map to keys and scopes defined in the
JSF configuration file (either as managed beans, referenced beans, or navigation
rules). You can think of the configuration file as the map of all possible beans and
outcomes; Constants is like a filter of that map that’s restricted to the ones neces-
sary for writing Java code. As we examine the different parts of the system, we’ll
show the relevant pieces of configuration.

12.4.2 Organizing utility methods

Most real applications require a set of useful, stateless methods that don’t fit into
a specific class hierarchy. These methods are perfect candidates for static meth-
ods in a utility class. In JSF applications, methods for things like getting or setting

model object references and logging are good candidates. Like the constants in

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing the application layer 481

the previous section, you would generally refactor repetitive code into these
methods during the course of development. In order to save time, let’s look at the
whole class—it’s shown in listing 12.2.

package org.jia.ptrack.web;

import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.servlet.ServletContext;

public class Utils
{
 public static void log(FacesContext facesContext, String message)
 {
 facesContext.getExternalContext().log(message);
 }

 public static void log(FacesContext facesContext, String message,
 Exception exception)
 {
 facesContext.getExternalContext().log(message, exception);
 }

 public static void reportError(FacesContext facesContext,
 String message,
 String detail,
 Exception exception)
 {
 facesContext.addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_ERROR,
 message, detail));
 if (exception != null)
 {
 facesContext.getExternalContext().log(message, exception);
 }
 }

 public static void log(ServletContext servletContext, String message)
 {
 servletContext.log(message);
 }

 protected static void addInvalidStateChangeMessage(
 FacesContext context, boolean approve)
 {
 String message;

Listing 12.2 Utils.java: Houses utility methods for logging and other operations
 if (approve)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

482 CHAPTER 12
Design issues and foundation classes

 message = "You cannot approve a project with this status.";
 }
 else
 {
 message = "You cannot reject a project with this status.";
 }
 context.addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_WARN,
 message, ""));
 }

}

You can see from the listing that the primary point of these methods is to simplify
fairly long statements that are used often. Also, the implementation of these
methods can be changed without breaking any existing code.

 The log methods simply delegate to the log method of the ServletContext,
(which is wrapped by the log method of ExternalContext). The reportError
method has the added benefit of adding a new FacesMessage instance to the Fac-
esContext. Of course, if you’re using a logging framework, you may not need all of
these methods.

 The addInvalidStateChangeMessage just adds one of two possible messages to
the FacesContext’s error list. This is used by both the SelectProjectBean and
UpdateProjectBean, which need to complain when a user tries to move a Project
to an invalid state.

12.4.3 Initializing singletons

Most of the objects in an application can be created using JSF’s handy Managed
Bean Creation facility. This is true for all of ProjectTrack’s objects, except for sin-
gletons [GoF] that must live for the lifetime of the application. The Managed
Bean Creation facility creates objects when they are requested, which is fine for
simple JavaBeans. But if object creation requires initializing external resources
like databases or EJB connections, it can be time-consuming. Such operations
should be performed at start-up so that users aren’t forced to wait for them to
occur in the middle of their experience.

NOTE Singletons are often implemented as static properties of a class. We don’t
use that approach here because the action methods work with interfaces
(and consequently shouldn’t know the concrete class), and these classes

may need configuration information from the ServletContext.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing the application layer 483

In web applications, start-up code can be written with a ServletContextListener.
These are event listeners that are executed after the web application is first initial-
ized (before it processes requests), and right before it is destroyed. ProjectTrack
has a single ServletContextListener called Initializer that creates instances of
the IProjectCoordinator, IStatusCoordinator, and IUserCoordinator interfaces.
These are integration layer objects, so they may establish connections to other
systems when they are initialized. The code is shown in listing 12.3.

package org.ptrack.web;

import org.ptrack.domain.MemoryProjectCoordinator;
import org.ptrack.domain.MemoryStatusCoordinator;
import org.ptrack.domain.MemoryUserCoordinator;

import javax.servlet.ServletContext;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

public class Initializer implements ServletContextListener
{

 public Initializer()
 {
 }

 public void contextInitialized(ServletContextEvent event)
 {
 ServletContext servletContext = event.getServletContext();
 Utils.log(servletContext, "Initializing ProjectTrack...");

 servletContext.setAttribute(
 Constants.PROJECT_COORDINATOR_KEY,
 new MemoryProjectCoordinator());

 servletContext.setAttribute(
 Constants.STATUS_COORDINATOR_KEY,
 new MemoryStatusCoordinator());

 servletContext.setAttribute(
 Constants.USER_COORDINATOR_KEY,
 new MemoryUserCoordinator());

 Utils.log(servletContext, "Initialization complete...");
 }

Listing 12.3 Initializer.java: A ServletContextListener for initializing singletons

Save in
application
scope

 b
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

484 CHAPTER 12
Design issues and foundation classes

 public void contextDestroyed(ServletContextEvent sce)
 {
 }
}

The contextInitialized method is executed once, when the web application is
initialized. First, we get a handle to the ServletContext instance, which repre-
sents the web application. MemoryProjectCoordinator, MemoryStatusCoordinator,
and MemoryUserCoordinator are memory-only implementations of the IProject-
Coordinator, IStatusCoordinator, and IUserCoordinator interfaces. We call the
ServletContext instance’s setAttribute method for each coordinator object,
storing each one in application scope using the specified key.

 So, the line of code referenced by b saves a new MemoryProjectCoordinator
instance in application scope under the key Constants.PROJECT_COORDINATOR_KEY.
This means that the instance can be found with the simple JSF EL expression
"projectCoordinator", since that’s the value of Constants.PROJECT_COORDINATOR_
KEY. The other coordinators are stored in the same way.

 Once this method has executed, all of the classes in the integration layer will
be available to the rest of the web application. If you’re wondering why we’re
using the ServletContext explicitly instead of getting a ValueBinding from the
JSF Application object, it’s because the getValueBinding method requires a Faces-
Context instance. Because JSF hasn’t started servicing requests yet, no FacesContext
instance is available.

TIP For all managed beans, it’s best to use ValueBindings to get and set val-
ues. Only use the objects of the Servlet API or ExternalContext directly
if you don’t have a handle to the FacesContext, or if you need to re-
move an object (which you can’t do with a ValueBinding).

12.4.4 Adapting business objects

In section 12.2.3, we discussed how to write objects so that they work properly
with the standard JSF components. Sometimes you’ll get to write your objects
from scratch, so it’ll be easy to follow these guidelines. However, you may have to
work with existing objects that don’t follow these rules, and can’t necessarily be
changed by you or your group in the allotted time frame. Also, there are some
objects—particularly business objects that shouldn’t have to return JSF-specific
objects like SelectItem instances.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing the application layer 485

 In these cases, it makes sense to use the Adapter pattern [GoF] to develop
classes that provide access to your object’s properties using the types that JSF
components expect. This way the original classes remain unmodified, but your UI
components can happily interact with the adapter class which translates between
the object’s properties and the properties expected by the components. Project-
Track is a new application, so the need is purely based on the desire to keep JSF
out of the business layer. This will make it easier to reuse business objects in non-
JSF applications.

 In addition to writing adapter classes that return SelectItem instances or
other component-friendly property types, you may also need to write converters
for your business objects. Let’s examine both scenarios.

Returning SelectItem instances
The only UI components that require special types for their value-binding prop-
erties are UISelectItems and UISelectItem, which are used by SelectMany and
SelectOne components. These controls are used on the Approve a Project, Reject
a Project, and Create a Project pages. All three pages use a UISelectMany to choose
an artifact, and the Create a Project page also uses a UISelectOne to select the
project type.

 Using these components requires two value-binding expressions—one that
points to the list of items (for UISelectItems), and another that points to the
property that needs to be updated (for UISelectMany and UISelectOne). We can
get a list of all of the possible items from the ArtifactType and ProjectType
classes in ProjectTrack business layer. The business object to update is, of course,
a Project instance. Unfortunately, these classes don’t know anything about
SelectItem instances, which is what the UI select components require. We can
combat this by developing an adapter class. (This uses a more sophisticated
approach than we showed in section 12.2.3.)

 ArtifactType and ProjectType both inherit from an EnumeratedType class, so it
makes sense to just develop a single adapter class that can return a list of Selec-
tItem instances for either class. There is a third EnumeratedType subclass, RoleType,
which we might as well add to this adapter as well, even though it’s not currently
used in the user interface. The class, EnumItemAdapter, is shown in listing 12.4.

package org.ptrack.web;

Listing 12.4 EnumItemAdapter.java: Translates EnumeratedType values to
SelectItem instances
import org.ptrack.domain.ArtifactType;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

486 CHAPTER 12
Design issues and foundation classes

import org.ptrack.domain.EnumeratedType;
import org.ptrack.domain.ProjectType;
import org.ptrack.domain.RoleType;

import javax.faces.component.SelectItem;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

public class EnumItemAdapter
{
 private Map itemLists = new HashMap();

 public EnumItemAdapter()
 {
 addType(ProjectType.class, ProjectType.getEnumManager());
 addType(ArtifactType.class, ArtifactType.getEnumManager());
 addType(RoleType.class, RoleType.getEnumManager());
 }

 protected void addType(Class clazz,
 EnumeratedType.EnumManager enumManager)
 {
 Iterator types = enumManager.getInstances().iterator();
 List selectItems = new ArrayList();
 while (types.hasNext())
 {
 EnumeratedType type = (EnumeratedType)types.next();
 SelectItem item = new SelectItem(type,
 type.getDescription(),
 type.getDescription());
 selectItems.add(item);
 }
 itemLists.put(clazz, selectItems);
 }

 public List getArtifacts()
 {
 return (List)itemLists.get(ArtifactType.class);
 }

 public List getRoles()
 {
 return (List)itemLists.get(RoleType.class);
 }

 b

 c

 d

 e
 public List getProjectTypes()
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing the application layer 487

 return (List)itemLists.get(ProjectType.class);
 }
}

EnumItemAdapter manages a Map of SelectItem Lists (b), keyed by the Enumerat-
edType subclass. In the constructor, the addType method is called for each Enumer-
atedType subclass (c). Each EnumeratedType subclass has an EnumManager that
returns all of the instances for the class.

 For example, the ProjectType class has public final static instances of itself with
the names EXTERNAL_WEB, INTERNAL_WEB, INTERNAL_DB, and so on. Its EnumManager
will return a list of all of these instances. The addType method (d) simply gets this
list and creates a new SelectItem instance for each EnumeratedType instance. It’s
really doing all of the adaptation work up-front and storing a List of SelectItem
instances for later reference. It’s okay to do the work up-front because the Enumer-
atedTypes don’t change dynamically.

 All of the properties declared in e are the ones that will be wired to UISelect-
Items components on the JSP pages. They simply return the proper List of
SelectItem instances for the desired EnumeratedType subclass—ArtifactType,
RoleType, or ProjectType. So, after we’ve completed the adaptation work, the prop-
erties return the proper types that SelectMany and SelectOne components require.

TIP Even if you don’t need an adapter, it still might make sense to have a sin-
gle object (or small number of objects) responsible for populating lookup
lists for SelectMany or SelectOne components. An alternative approach
is to expose these properties on the beans that are used for collecting in-
put. This is a little less flexible, however, because two different pages may
need to display the same list of items even if they’re associated with dif-
ferent beans. (The Visit class, which we discuss in section 12.5, uses the
latter approach).

This class, like the data layer classes, is a singleton [GoF]. However, since initial-
ization isn’t expensive, we can register it with the Managed Bean Creation facility
as an application-scoped object instead of using a ServletContextListener. The
configuration file entry is shown in listing 12.5.

<managed-bean>

Listing 12.5 faces-config.xml: Managed bean configuration for EnumItemAdatper

 e
 <managed-bean-name>selectItems</managed-bean-name>
 <managed-bean-class>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

488 CHAPTER 12
Design issues and foundation classes

 org.jia.ptrack.web.EnumItemAdapter
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

Note that the name for the managed bean is selectItems, which is quite different
than the class name EnumItemAdapter. This is what we mean when we say you
should think in terms of the front-end developer. The word “selectItems” is much
more intuitive when you’re integrating the UI than “EnumItemAdapter.”

 Writing this adapter is one piece of the puzzle; the other piece is translating
user input into custom types, which is the purpose of converters.

Writing a custom converter
In section 12.2.3, we discussed how the Project object’s artifacts property
required a custom converter. Recall that this property returns an array of Artifact-
Type instances:

public void setArtifacts(ArtifactType[] artifacts) {...}
public ArtifactType[] getArtifacts() {...}

In order for JSF to properly convert the user’s input to this array, we need to
develop a converter for ArtifactType, called ArtifactTypeConverter. All this
class does is convert an ArtifactType instance to and from a String. Listing 12.6
shows the source.

package org.jia.ptrack.web;

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.convert.ConverterException;

import org.jia.ptrack.domain.ArtifactType;

public class ArtifactTypeConverter
 implements Converter
{
 public final static String CONVERTER_ID = "jia.ArtifactType";

 public ArtifactTypeConverter()

Listing 12.6 ArtifactTypeConverter.java: Converts an ArtifactType to and
from a String

Implement Converter
interface

 b

Declare
standard
identifier

 c
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing the application layer 489

 }

 public Object getAsObject(FacesContext context,
 UIComponent component, String value)
 {
 if (value == null)
 {
 return null;
 }
 try
 {
 int artifactValue =
 Integer.parseInt(value);
 return ArtifactType.getEnumManager().
 getInstance(artifactValue);
 }
 catch (NumberFormatException ne)
 {
 Utils.log(context,
 "Can't convert to an ArtifactType; value (" +
 value + ") is not an integer.");
 throw new ConverterException(
 "Can't convert to an ArtifactType; value (" +
 value + ") is not an integer.", ne);
 }
 catch (IllegalArgumentException e)
 {
 Utils.log(context,
 "Can't convert ArtifactType; unknown value: " +
 value);
 throw new ConverterException(
 "Can't convert ArtifactType; unknown value: " +
 value, e);
 }
 }

 public String getAsString(FacesContext context,
 UIComponent component, Object value)
 {
 if (value == null)
 {
 return null;
 }
 if (value instanceof ArtifactType)
 {
 ArtifactType artifact = (ArtifactType)value;
 return String.valueOf(artifact.getValue());
 }
 else

Actual
conversion to
ArtifactType

 d

Actual
conversion
to String

 e
 {
 Utils.log(context,

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

490 CHAPTER 12
Design issues and foundation classes

 "Incorrect type (" + value.getClass() + "; value = " +
 value + "); value must be an ArtifactType instance");
 throw new ConverterException(
 "Incorrect type (" + value.getClass() +
 "; value = " + value +
 "); value must be an ArtifactType instance");
 }
 }
}

We start by implementing the Converter interface (b). Next, we declare a
constant for this converter’s standard identifier (c). This is the same identifier
we’ll use in a JSF configuration file, and it can also be used to create a new Artifact-
TypeConverter instance through the Application class.

 Note that we’re converting the ArtifactType to and from its numeric value
property (which every EnumeratedType has), rather than its description property,
which is a readable string. The actual work of converting a String to an Artifact-
Type involves only the few lines shown in d. If the String can’t be converted to an
int, a NumberFormatException will be thrown. If the EnumManager can’t find an
ArtifactType instance for the int value, an IllegalArgumentException will be
thrown. The rest of the work in the getAsObject method is simply logging these
exceptions and throwing a new ConverterException (which will be translated into
a FacesMessage by JSF).

 The getAsString method is the inverse of getAsObject, and also only has a few
real lines of work (e). Here, we just check to make sure the object is of the correct
type, and if so, we return the int value as a String. If it’s not the correct type, we
throw an exception.

 That’s all there is to writing the actual class. Next, we need to register the con-
verter with JSF, as shown in listing 12.7.

<converter>
 <converter-id>ArtifactType</converter-id>
 <converter-class>
 org.jia.ptrack.web.ArtifactTypeConverter
 </converter-class>
</converter>

Listing 12.7 faces-config.xml: Registering the ArtifactType converter
All we’re doing here is giving is giving the converter an identifier that JSF knows about.
This identifier (which is the value of the ArtifactType.CONVERTER_ID constant) can

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing a visit object for session state 491

now be used to register the converter with any UI components that are associated
with an ArtifactType property. This work was performed for the project_artifacts.jsp
file in chapter 10:

<h:selectManyCheckbox id="artifactSelect" layout="pageDirection"
 styleClass="project-input"
 value="#{visit.currentProject.artifacts}"
 converter="ArtifactType">
 <f:selectItems value="#{selectItems.artifacts}"/>
</h:selectManyCheckbox>

Voilà! We’ve adapted our business object to work with JSF.

We could also have registered this converter by type instead of by its
identifier. This would have avoided the need to explicitly register the
converter for a UI component, because JSF would find the converter
based on its type. However, in this case, registration by type would not
have worked, because ArtifactTypeConverter converts an Artifact-
Type into an integer, which isn’t always the desired effect (sometimes
we’d prefer conversion to a descriptive String).

ProjectTrack also uses another converter, ProjectTypeConverter, similarly in the
Create a Project page. Since ProjectType is also an EnumeratedType, the imple-
mentation doesn’t reveal anything new, so we’ll spare you the details.

 This is often how you’ll develop simple custom converters for your applica-
tion. More powerful converters, like the standard JSF converters, require addi-
tional work. We examine converter development thoroughly in chapter 15.

12.5 Writing a visit object for session state

Web applications need to keep track of information for the current user. This is
the whole motivation between the “session” concept; in a sense, it represents the
user’s current visit to your application. The typical place to store this information
is the servlet session. The problem, however, is that the session doesn’t know any-
thing about your application; it just stores name/value pairs. So, if you have sev-
eral objects to keep track of, you have to remember the key for each object, and
then retrieve that object from the session.

 This whole process is simpler if you maintain a single Visit object that has
access to all of the properties your application needs for the current session. You then
only have to worry about storing and retrieving the Visit object from the session.

BY THE
WAY
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

492 CHAPTER 12
Design issues and foundation classes

 ProjectTrack’s Visit class keeps track of the current User and the current
Project the user is viewing, and also provides methods for manipulating the
user’s locale. It’s shown in listing 12.8.

package org.jia.ptrack.web;

import javax.faces.context.FacesContext;
import java.util.Locale;
import javax.faces.model.SelectItem;
import javax.faces.application.Application;
import java.util.*;
import org.jia.ptrack.domain.*;

public class Visit implements Serializable
{
 private User user;
 private Project currentProject;
 private List localeItems;
 private AuthenticationBean authenticationBean;

 public Visit()
 {
 }

 public User getUser()
 {
 return user;
 }

 public void setUser(User user)
 {
 this.user = user;
 }

 public Project getCurrentProject()
 {
 return currentProject;
 }

 public void setCurrentProject(Project currentProject)
 {
 this.currentProject = currentProject;
 }

 public AuthenticationBean getAuthenticationBean()
 {

Listing 12.8 Visit.java: Contains properties for the current user’s state
 return authenticationBean;
 }

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing a visit object for session state 493

 public void setAuthenticationBean(
 AuthenticationBean authenticationBean)
 {
 this.authenticationBean = authenticationBean;
 }

 public List getSupportedtLocaleItems()
 {
 if (localeItems == null)
 {
 localeItems = new ArrayList();
 Application app = FacesContext.getCurrentInstance().
 getApplication();
 for (Iterator i = app.getSupportedLocales(); i.hasNext();)
 {
 Locale locale = (Locale)i.next();
 SelectItem item = new SelectItem(locale.toString(),
 locale.getDisplayName());
 localeItems.add(item);
 }
 if (localeItems.size() == 0)
 {
 Locale defaultLocale = app.getDefaultLocale();
 localeItems.add(
 new SelectItem(defaultLocale.toString(),
 defaultLocale.getDisplayName()));
 }
 }
 return localeItems;
 }

 public String getLocale()
 {
 return FacesContext.getCurrentInstance().
 getViewRoot().
 getLocale().toString();
 }

 public void setLocale(String locale)
 {
 FacesContext.getCurrentInstance().getViewRoot().
 setLocale(new Locale(locale));
 }
}

This class exposes four properties that are related to the user’s current visit: user,
currentProject, AuthenticationBean, and locale (AuthenticationBean is a backing

Returns list of
SelectItem instances
for locales

 b

 c Includes
property for
setting locale
bean that performs login and simple access checking; we discuss it in chapter 13).

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

494 CHAPTER 12
Design issues and foundation classes

 Visit also contains methods for setting the user’s current locale. The get-
SupportedLocaleItems method (b) returns a List of SelectItem instances gener-
ated dynamically from the list of supported locales returned by the Application.
These locales come from faces-config.xml; support for both English and Russian
were configured in chapter 10. If no locales have been configured, it simply
returns a SelectItem with the default locale.

 The SelectItem instances returned by getSupportedLocaleItems are used in
conjunction with the locale property defined in c. Note that all setLocale does is
set the locale for the current view. Once the locale has been set for one view, JSF
will always use that locale until it is changed for another view. We examined how
this property was integrated with the header in section 12.2.3.

 A Visit instance’s properties aren’t initialized with the Managed Bean
Creation facility. Instead, a new Visit instance is created and initialized by
AuthenticationBean’s login method (that snippet is shown in section 12.2.4).
So, when a user logs in, a new Visit instance is created, initialized, and stored
in the session. Several different UI components in ProjectTrack access proper-
ties of the current Visit instance using value-binding expressions.

 Since the Visit instance is accessed often, every backing bean has a reference
to it. This reference is initialized with the Managed Bean Creation facility, so that
the backing beans don’t have to worry about what scope it’s stored in, or what its
key is. Since this functionality is common, it’s part of a base backing bean class,
which we discuss next.

12.6 Developing a base backing bean class

One of the most powerful features of JSF is the ability to combine backing beans
with the Managed Bean Creation facility. You can use the two together not only to
make your beans dynamically available, but also to avoid the necessity of looking
up beans you’ve stored as scoped variables. Instead of looking up these variables,
you can define backing bean properties and set them with the Managed Bean
Creation facility. This makes development easier because your code isn’t bogged
down with statements that retrieve a variable, and you can easily change a prop-
erty’s value in a JSF configuration file. This means that if you change the name of
a scoped variable, you can change it in a configuration file instead of in Java code.

 In order to facilitate this approach, we’ll develop a base class that includes
common properties that our backing beans will need. These properties can then
be initialized when a bean is created by the Managed Bean Creation facility. Plac-

ing common properties in a base class give subclasses a sense of what objects they

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a base backing bean class 495

need to carry out their work, and keeps you from defining the same property in
multiple backing beans. Listing 12.9 shows the source for the BaseBean class.

package org.jia.ptrack.web;

import java.io.Serializable;
import javax.faces.context.FacesContext;

import org.jia.ptrack.domain.*;

public class BaseBean implements Serializable
{
 private Visit visit;
 private IProjectCoordinator projectCoordinator;
 private IStatusCoordinator statusCoordinator;
 private IUserCoordinator userCoordinator;

 public BaseBean()
 {
 }

 // Faces objects

 public FacesContext getFacesContext()
 {
 return FacesContext.getCurrentInstance();
 }

 public javax.faces.application.Application getApplication()
 {
 return getFacesContext().getApplication();
 }

 // Application objects

 public Visit getVisit()
 {
 return visit;
 }

 public void setVisit(Visit visit)
 {
 this.visit = visit;
 }

 // Accessors for business objects

Listing 12.9 BaseBean.java: Base class for all ProjectTrack backing beans

 b

 c

 d
 public IProjectCoordinator getProjectCoordinator()

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

496 CHAPTER 12
Design issues and foundation classes

 {
 return projectCoordinator;
 }

 public void setProjectCoordinator(
 IProjectCoordinator projectCoordinator)
 {
 this.projectCoordinator = projectCoordinator;
 }

 public IStatusCoordinator getStatusCoordinator()
 {
 return statusCoordinator;
 }

 public void setStatusCoordinator(
 IStatusCoordinator statusCoordinator)
 {
 this.statusCoordinator = statusCoordinator;
 }

 public IUserCoordinator getUserCoordinator()
 {
 return userCoordinator;
 }

 public void setUserCoordinator(IUserCoordinator userCoordinator)
 {
 this.userCoordinator = userCoordinator;
 }

 // Common action methods

 public String cancel()
 {
 if (getVisit().getAuthenticationBean().isReadOnly())
 {
 return Constants.CANCEL_READONLY_OUTCOME;
 }
 else
 {
 return Constants.CANCEL_READWRITE_OUTCOME;
 }
 }

}

 e
As listing 12.9 shows, this class has several common properties and a couple of
common methods. First and foremost, it has properties for a couple of JSF objects

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a base backing bean class 497

(b)—FacesContext and Application. These are really convenience methods, but
since just accessing these two objects is so common, it makes sense to have them
has properties in a base class (they’re also good candidates for the Utils class).

 This class also has a property for the current Visit object (c). This object (dis-
cussed in the previous section) is session-scoped, and contains everything a back-
ing bean needs to know about the current user’s visit. There are also several
properties for application-scoped integration layer objects (d) that were initial-
ized with a ServletContextListener in section 12.4.3. Note that for all of the prop-
erties defined in c and d, we didn’t retrieve the objects from a particular scope
using ValueBinding instances or the ExternalContext. Instead, we’ll leave that
configuration to the Managed Bean Creation facility. Any bean that subclasses
BaseBean will need to use the facility to initialize these properties as follows:

<managed-bean>
...
 <managed-property>
 <property-name>visit</property-name>
 <value>#{sessionScope.visit}</value>
 </managed-property>
 <managed-property>
 <property-name>projectCoordinator</property-name>
 <value>#{applicationScope.projectCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>statusCoordinator</property-name>
 <value>#{applicationScope.statusCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>userCoordinator</property-name>
 <value>#{applicationScope.userCoordinator}</value>
 </managed-property>
...
</managed-bean>

Initializing the properties this way keeps your code from worrying about how to
retrieve an object, and makes it easy to change the association later without
recompiling code. This is the benefit of the Setter Injection [Fowler, Dependency
Injection] pattern that the Managed Bean Creation facility implements. (If you’re
worried about repeating this bit of XML throughout your configuration file,
remember that you could use XML entities to avoid repetition.) We could have
initialized the facesContext property this way, but since the facility only initializes
properties when the object is created, this wouldn’t work for beans that live
between requests.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

498 CHAPTER 12
Design issues and foundation classes

 Finally, this class contains a common action method (e). This is useful, since
outcomes in ProjectTrack can differ based on the user’s role.

Tools will often create their own backing bean base classes that have
convenience properties that access the FacesContext, Application, and
other JSF constructs. For examples, see appendix B.

12.7 Summary

In this chapter, we began examining the process of building a JSF application.
Our application takes a layered design approach, separating code into applica-
tion, business, and integration layers. The business layer includes backing beans,
utility methods, and other objects; the business layer contains objects that repre-
sent business concepts or perform business functions, like Project and Project-
Coordinator; the integration layer is responsible for integrating with the data store.

 Objects in the application layer and business layer may need to interact with
UI components. Any objects that are must interact with JSF components should
expose public properties using JavaBeans conventions. In addition, components
in the SelectMany and SelectOne families require that properties are written in a
certain way.

 Using these guidelines we began building ProjectTrack. We started with classes
for constants and utility methods. We then developed a ServletContextListener
to initialize singleton objects. Next, we adapted business objects so that they
exposed properties compatible with JSF components, and wrote a custom con-
verter during this process. We also developed a Visit object to represent the
user’s current state, and a base backing bean class.

 Now that we’ve laid the foundation, it’s time to move forward with the rest of
the application.

BY THE
WAY
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Building an application:
backing beans, security,

and internationalization
This chapter covers
■ Developing backing beans
■ Working with UIData and other components
■ Working with JDBC ResultSets
■ Implementing application security
■ Internationalizing and localizing text from
499

Java code

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

500 CHAPTER 13
Backing beans, security, and internationalization

In the previous chapter, we laid the foundation for a JSF application. We began with
design considerations and examined the business layer. Then, we started building
the foundation with utility classes, a business layer adapter, custom converters, a
Visit bean, and a base backing bean class. In this chapter, we build on top of this
foundation. We start with the meat of the application: the concrete backing bean
classes and event listeners. Then, we round out the chapter with discussions about
security, internationalization, and alternative design choices.

13.1 Writing backing beans

Now that we’ve laid the groundwork, it’s time to develop ProjectTrack’s backing
beans. Each bean will handle a particular application function, like authentica-
tion or loading of a project. Each of these classes will be a JavaBean with proper-
ties like loginName or comments that can be wired to UI components. Each bean
will also have event listener methods that use these properties and call the busi-
ness layer.

 For example, AuthenticationBean has two properties: loginName and pass-
word. It has two action methods, login and logout, that use these properties to
invoke the UserCoordinator data layer object to retrieve a new User instance and
invalidate the user’s session, respectively. (It also has a few other properties that
are used for authorization.)

 This is the beauty of backing beans: a single class can encapsulate the data and
logic necessary to perform a specific set of functionality. This contrasts with
frameworks like Struts [ASF, Struts], where the form (ActionForm) is separate from
the event handler (Action). Using backing beans this way is, however, similar to
developing ASP.NET Web Forms [Microsoft, ASP.NET],1 except that you can attach
a backing bean to a single view, part of a view, or several different views.

 In the following sections, we describe each bean, its managed bean configura-
tion, and snippets of JSP code that reference the bean’s properties and methods
with JSF EL expressions. For more information, including the full JSP source, nav-
igation rules, and integration in general, see chapter 10.

1 Even though a backing bean can be used in a way that’s similar to an ASP.NET web form, they’re pretty
different under the hood. Whereas backing beans are objects that are used by a view, Web forms are

the view—each web form holds all of the UI controls for the page, in addition to implementing event
handlers.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 501

TIP When designing your applications, try to reduce dependencies between
different sets of objects and action methods. This is the benefit of pack-
aging action methods as properties of a backing bean—the action meth-
ods operate on properties of the bean, which are usually collected from a
form in the view. This doesn’t mean that other backing beans can’t be re-
lated to the same view—you may have a backing bean that’s related to a
search form, and another that’s related to the primary form in the view.
However, in each scenario, the backing bean’s action methods handle
data that the bean collects. Designing applications this way makes front-
end development more about composing different objects—a particular
page may have a several different backing beans. If a component exe-
cutes an action method for one backing bean, it won’t use properties
from another.

Before we get into ProjectTrack’s specific classes, it’s worthwhile to discuss com-
mon development issues you’ll face—thread safety and error handling.

13.1.1 Thread safety
Most backing beans will be declared in the request scope, so they’ll be created and
executed once. However, in some cases, you may want to declare a bean in session
or application scope. In these cases, your beans can be accessed by more than one
client request at the same time, so they must be thread-safe. If you’re used to
developing action methods in Struts [ASF, Struts], this should sound familiar—
Struts Actions must be thread-safe as well.

 The most common possibility for a threading conflict is if a user executes action
methods in the same bean repeatedly (for instance, clicking a button several
times). As long as there aren’t any side effects that occur if this happens, there’s no
need to synchronize the code. Often, this is the case, because the action methods
are simply calling business layer classes. This is certainly the case with Project-
Track—the backing beans themselves don’t have to worry about synchronization;
it’s all handled by the coordinator classes themselves. However, if there are cases
where you are working with a property that could be changed by another thread,
you need to use synchronization.

13.1.2 Handling errors
Way back in chapter 2, we said that there are two classes of errors: input errors
and application errors. Input errors occur when a user enters the wrong data, and
these are the types of errors JSF validators normally handle. Application errors

occur when something goes wrong—an object can’t be found, or even worse, a
request to a database or application server times out.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

502 CHAPTER 13
Backing beans, security, and internationalization

 We’ve discussed the method signatures required for JSF event listeners. You
may have noticed that they don’t throw any exceptions. There’s a good reason for
this—it forces you to catch exceptions and handle them. When you catch the
exception, you have two possible choices: create an error message and possibly
return a different outcome, or rethrow the exception as a FacesException. The
benefit of the first approach is that the page the user sees is defined in the JSF
navigation rules, and you can display an error message and have the user fill out
a form again. Throwing an exception allows the web container to handle the
error, but will always take the user to an error page rather than display a friendly
message in the original page.

TIP If you find yourself writing code that generates an error if the user’s in-
put is incorrect, make sure it’s in a validator method instead of an event
listener method.

You can return a message to the user by adding a FacesMessage instance to the
current FacesContext. The AuthenticationBean class does this to tell users that
they entered the wrong username and password:

try
{
 newUser = getUserCoordinator().getUser(loginName, password);
}
catch (ObjectNotFoundException e)
{
 facesContext.addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_WARN,
 "Incorrect name or password.", ""));
 return Constants.FAILURE_OUTCOME;
}
...

If the UserCoordinator.getUser method throws an ObjectNotFoundException, a
new FacesMessage instance is added to the FacesContext with the message “Incor-
rect user name or password” (leaving the detail portion of the message blank).
The Constants.FAILURE_OUTCOME constant is a string with the value “failure”. In
the navigation rules for ProjectTrack, the "failure" outcome simply redisplays
the login page:

<navigation-rule>
 <from-tree-id>/login.jsp</from-tree-id>
...

 <navigation-case>
 <from-outcome>failure</from-outcome>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 503

 <to-tree-id>/login.jsp</to-tree-id>
 </navigation-case>
</navigation-rule>

The Login page has an HtmlMessages component on it, so the user will see this
error message when the page is redisplayed, as shown in figure 13.1.

 For more serious errors, a separate error page is more appropriate. The User-
Coordinator.getUser method also throws a DataStoreException, which indicates
a serious problem at the data store level. You can handle this by reserving one or
more outcomes for serious errors:

try
{
 newUser = getUserCoordinator().getUser(loginName, password);
}
...
catch (DataStoreException d)
{
 Utils.reportError(facesContext, "A database error has occurred.",
 "Error loading User object", d);
 return Constants.ERROR_OUTCOME;
}

Here, we call the reportError method of the Utils class, which looks like this:

Figure 13.1 The AuthenticationBean.login method returns an error
message to the user if no User object can be found.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

504 CHAPTER 13
Backing beans, security, and internationalization

public static void reportError(FacesContext facesContext,
 String message, String detail,
 Exception exception)
{
 facesContext.addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_ERROR,
 message, detail));
 if (exception != null)
 {
 facesContext.getExternalContext().log(message, exception);
 }
}

First of all, the severity of this message is FacesMessage.SEVERITY_ERROR instead of
FacesMessage.SEVERITY_WARN. Second, we log this error—all serious errors should
be logged. The outcome we return is Constants.ERROR_OUTCOME, which evaluates
to the string “error”. In the navigation rules in faces-config.xml, there’s a global
navigation case that maps the "error" outcome to the page error.jsp:

<navigation-rule>
 <description>Global navigation.</description>
 <from-tree-id>*</from-tree-id>
...
 <navigation-case>
 <from-outcome>error</from-outcome>
 <to-tree-id>/error.jsp</to-tree-id>
 </navigation-case>
</navigation-rule>

This way, whenever there’s a serious error, our application code handles it, and
JSF forwards the user to error.jsp.

 An alternate approach for handling serious errors is to simply throw an
instance of the FacesException class. FacesException is a runtime exception, so it
can be thrown even if it is not declared in a throws clause. Here’s an example:

try
{
 user = Utils.getUserCoordinator(facesContext).
 getUser(name, password);
}
...
catch (DataStoreException d)
{
 Utils.log(facesContext, d);
 throw new FacesException("Error loading User object", d);
}

As you can see, the FacesException constructor takes another Exception as an
argument, so it can keep track of the entire exception stack. This exception will be

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 505

bubbled up to the web container—if the web application has an error page con-
figured in its deployment descriptor, that page will be displayed. Otherwise,
you’ll see a default web container error page, which is typically verbose enough to
confuse most users.

 This approach moves some of the navigation out of the world of JSF and into
the servlet world. Consequently, it’s difficult to see what error pages are dis-
played by looking at navigation rules, and you can’t have different error pages
that map to different outcomes in your application. ProjectTrack uses the previ-
ous approach.

TIP Even if you manage error pages using the JSF navigation scheme, you
should still configure an error page in web.xml if you don’t want the
default error page to be displayed when serious errors (with JSF, the
web container, or your own code) occur. We show how to do this in
chapter 10.

Now that we’ve covered the fundamentals, let’s examine ProjectTrack’s back-
ing beans.

13.1.3 Performing authentication

ProjectTrack uses custom authentication and authorization. Logging in and out is
handled by the AuthenticationBean class. (For more on security in general, see
section 13.2.) This bean is used by the Login and Header pages. For this and
other backing beans in ProjectTrack, we’ll build things pretty much the same way:

■ Define public properties for collecting input from UI components.
■ Optionally define other properties for use in JSF EL expressions.
■ Implement action methods to perform the work, usually delegating to the

business layer for any true business logic.
■ Implement any action listener, value-change listener, or validator methods.
■ Configure the bean via the Managed Bean Creation facility.
■ Reference the bean via JSP (for a detailed discussion of how the beans are

integrated into the user interface, see chapter 10).

AuthenticationBean has two properties that are meant to be wired to a login
form: loginName and password. It also has two action methods: login and logout.
The login method performs three primary operations: it gets the User object

from the UserCoordinator, creates and initializes a new Visit object and stores it

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

506 CHAPTER 13
Backing beans, security, and internationalization

in as a session-scoped variable, and returns the appropriate outcome. There are
also a few properties that are used for simple authorization checks. Figure 13.2
shows how the Login page uses this class. The code is shown in listing 13.1.

package org.jia.ptrack.web;

import javax.faces.application.Application;
import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;
import javax.servlet.http.HttpSession;

import org.jia.ptrack.domain.*;

public class AuthenticationBean extends BaseBean
{
 private String loginName;
 private String password;

 public AuthenticationBean()
 {
 }

Listing 13.1 AuthenticationBean.java: This backing bean logs a user in and out, and
provides simple authorization duties.

Figure 13.2 The Login page associates HtmlInputText components with the login and
password properties. It has a single HtmlCommandButton component that executes the
login action method.

 b
 public void setLoginName(String loginName)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 507

 this.loginName = loginName;
 }

 public String getLoginName()
 {
 return loginName;
 }

 public void setPassword(String password)
 {
 this.password = password;
 }

 public String getPassword()
 {
 return password;
 }

 public String login()
 {
 FacesContext facesContext = getFacesContext();
 User newUser = null;
 try
 {
 newUser = getUserCoordinator().getUser(loginName, password);
 }
 catch (ObjectNotFoundException e)
 {
 facesContext.addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_WARN,
 "Incorrect name or password.", ""));
 return Constants.FAILURE_OUTCOME;
 }
 catch (DataStoreException d)
 {
 Utils.reportError(facesContext,
 "A database error has occurred.",
 "Error loading User object", d);
 return Constants.ERROR_OUTCOME;
 }

 Visit visit = new Visit();
 visit.setUser(newUser);
 visit.setAuthenticationBean(this);
 setVisit(visit);

 getApplication().createValueBinding("#{" +
 Constants.VISIT_KEY_SCOPE + Constants.VISIT_KEY +
 "}").setValue(facesContext, visit);

 c
 if (newUser.getRole().equals(RoleType.UPPER_MANAGER))

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

508 CHAPTER 13
Backing beans, security, and internationalization

 {
 return Constants.SUCCESS_READONLY_OUTCOME;
 }

 return Constants.SUCCESS_READWRITE_OUTCOME;
 }

 public String logout()
 {
 FacesContext facesContext = getFacesContext();
 HttpSession session =
 (HttpSession)facesContext.getExternalContext().
 getSession(false);
 session.removeAttribute(Constants.VISIT_KEY_SCOPE +
 Constants.VISIT_KEY);

 if (session != null)
 {
 session.invalidate();
 }

 return Constants.SUCCESS_OUTCOME;
 }

 public boolean isInboxAuthorized()
 {
 return !getVisit().getUser().getRole().
 equals(RoleType.UPPER_MANAGER);
 }

 public boolean isCreateNewAuthorized()
 {
 return getVisit().getUser().getRole().
 equals(RoleType.PROJECT_MANAGER);
 }

 public boolean isReadOnly()
 {
 return getVisit().getUser().getRole().
 equals(RoleType.UPPER_MANAGER);
 }
}

All of our backing beans subclass the BaseBean class, which we developed in
chapter 12. This class has common properties and methods useful for all of our
backing beans.

 d

 e

 b
The login action method is responsible for using the loginName and password
properties to locate a valid User object. Its job is to call UserCoordinator’s getUser

 c

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 509

method and process its result. If a User object is returned, the code creates a new
Visit instance, sets its user and authenticationBean properties, and stores it
using a scope and key defined in the Constants. It then returns the proper out-
come based on the user’s role.

If the role is Upper Manager, the Constants.SUCCESS_READONLY_OUTCOME is
returned; otherwise the Constants.SUCCESS_READWRITE_OUTCOME is returned. This
allows us to display different pages to users based on their roles. If no User object
is returned from UserCoordinator.getUser, a new FacesMessage is added to the
message error list, and the appropriate outcome is returned.
The logout method is a little simpler. It only performs one operation—invalidat-
ing the current session. This is one of the cases where accessing the actual servlet
session is necessary. This method simply grabs the current HttpSession from the
ExternalContext (which is a property of the FacesContext), removes the Visit
object (which was stored in the login method), and then calls its invalidate
method, which removes any other variables and terminates the session.
These read-only properties are for simple authorization checks. For example,
the header uses the createNewAuthorized property to determine whether or not
the Create New toolbar button is disabled. This method checks the user’s role
property because ProjectTrack uses custom authentication. If we had used con-
tainer-based authentication, they would execute the isInUserRole property of
the ExternalContext.

What’s obvious from AuthenticationBean is the basic structure of a backing
bean—declare properties for collecting data from the user interface and expose
action methods for operating on that data. All such methods delegate most of
their work to business layer classes, but handle things like logging, error han-
dling, and navigation.

 Now that we’ve examined the code, let’s look at how to integrate it into
our application.

Initializing and referencing the bean
As we’ve discussed, backing beans are usually declared with the Managed Bean
Creation facility in faces-config.xml. AuthenticationBean is declared as a session-
scoped variable because it can be used by different beans for minor authorization
duties. The managed bean configuration is shown in listing 13.2.

<managed-bean>
 <description>Used for logging and logging out.

 d

 e

Listing 13.2 faces-config.xml: Managed bean configuration for AuthenticationBean
 </description>
 <managed-bean-name>authenticationBean</managed-bean-name>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

510 CHAPTER 13
Backing beans, security, and internationalization

 <managed-bean-class>org.jia.ptrack.web.AuthenticationBean
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>visit</property-name>
 <value>#{sessionScope.visit}</value>
 </managed-property>
 <managed-property>
 <property-name>projectCoordinator</property-name>
 <value>#{applicationScope.projectCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>statusCoordinator</property-name>
 <value>#{applicationScope.statusCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>userCoordinator</property-name>
 <value>#{applicationScope.userCoordinator}</value>
 </managed-property>
</managed-bean>

The code in listing 3.2 will store an instance of the AuthenticationBean under the
key authenticationBean. Note that we initialize the common properties imple-
mented in our BaseBean class (which AuthenticationBean subclasses). We’ll initial-
ize these properties for every other bean as well.

 Here’s how the Login page references the bean:

<h:outputLabel for="userNameInput">
 <h:outputText value="Enter your user name:"/>
</h:outputLabel>
<h:inputText id="userNameInput" size="20" maxlength="30"
 required="true"
 value="#{authenticationBean.loginName}">
 <f:validateLength minimum="5" maximum="30"/>
</h:inputText>
...
<h:outputLabel for="passwordInput">
 <h:outputText value="Password:"/>
</h:outputLabel>
<h:inputSecret id="passwordInput" size="20" maxlength="20"
 required="true"
 value="#{authenticationBean.password}">
 <f:validateLength minimum="5" maximum="15"/>
</h:inputSecret>
...
<h:commandButton action="#{authenticationBean.loginName}"

 title="Submit"
.../>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 511

As you can see, there are two HtmlInputText controls whose values references the
loginName and password properties of the AuthenticationBean instance. There’s
also an HtmlCommandButton component whose action property references Authen-
ticationBean’s login action method.

 The logout action method property is referenced separately by the header, as
are two of the authorization properties:

<jia:navigatorToolbar ...>

 <jia:navigatorItem name="inbox"
 label="Inbox"
 icon="/images/inbox.gif"
 action="inbox"
 disabled="#{!authenticationBean.inboxAuthorized}"/>
...
 <jia:navigatorItem name="createNew"
 label="Create new"
 icon="/images/create.gif"
 action="#{createProjectBean.create}"
 disabled="#{!authenticationBean.createNewAuthorized}"/>
 <jia:navigatorItem name="logout"
 label="logout"
 icon="/images/logout.gif"
 action="#{authenticationBean.logout}"/>
</jia:navigatorToolbar>

The header has a UINavigator component, which we will develop in chapter 19. A
UINavigator has child navigator items, which represent toolbar buttons in this
case. The first two buttons are enabled or disabled based on the value of the
inboxAuthorized and createNewAuthorized properties. The last button executes
AuthenticationBean’s logout action method.

 That’s it for AuthenticationBean. Once a user has logged in, he or she is directed
to either the Inbox or Show All page, both of which are backed by SelectProjectBean.

13.1.4 Listing projects with UIData and parameterizing listeners

The SelectProjectBean is responsible for listing projects and allowing a user to
approve, reject, or view the details of a project in the list. The class has two prop-
erties, inboxProjects and allProjects, that return a List of Project instances. The
List that these properties return can be sorted by the sort action listener method.
The lists returned by the inboxProjects and allProjects properties are also
intended to be used with a UIData component, so SelectProjectBean also has a
component binding property called projectTable, which is meant to be bound to

the UIData that displays the project list. This property is used by getProject, which
is the method that performs the real work of loading a project and returning the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

512 CHAPTER 13
Backing beans, security, and internationalization

proper outcome. getProject is called by the approve, reject, and delete action
methods, which are referenced by Command components in the JSPs. Figure 13.3
shows how the Inbox page uses SelectProjectBean and gives you an idea of how
this bean works.

 The source for this class is shown in listing 13.3.

package org.jia.ptrack.web;

import java.util.ArrayList;
import java.util.List;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIData;
import javax.faces.context.FacesContext;
import javax.faces.event.ActionEvent;

Listing 13.3 SelectProjectBean.java: Lists projects and allows users to approve,
reject, or delete them

Figure 13.3 The Inbox page associates an HtmlDataTable with SelectProjectBean’s
getInboxProjects property. The table is also is bound to the bean via the projectTable
component binding property. There are three HtmlCommandLink components that are used for
column headers and call the sort action listener method. There are also three HtmlCommandLink
buttons that are repeated for each project; they call the approve, reject, and details action
methods.
import org.jia.ptrack.domain.*;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 513

class CommandType extends EnumeratedType
{
 public final static CommandType APPROVE =
 new CommandType(0, "Approve");
 public final static CommandType REJECT =
 new CommandType(10, "Reject");
 public final static CommandType DETAILS =
 new CommandType(20, "Details");

 private CommandType(int value, String description)
 {
 super(value, description);
 }
}

public class SelectProjectBean extends BaseBean
{
 private UIData projectTable;
 private ProjectColumnType sortColumn;

 public SelectProjectBean()
 {
 }

 public UIData getProjectTable()
 {
 return projectTable;
 }

 public void setProjectTable(
 UIData projectTable)
 {
 this.projectTable = projectTable;
 }

 public List getInboxProjects()
 throws DataStoreException
 {
 try
 {
 return getProjectCoordinator().getProjects(
 getVisit().getUser().getRole(), sortColumn);
 }
 catch (ObjectNotFoundException e)
 {
 return new ArrayList(0);
 }
 }

 public List getAllProjects()
 throws DataStoreException

 b

 c

 d

 e

 f
 {
 try

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

514 CHAPTER 13
Backing beans, security, and internationalization

 {
 return getProjectCoordinator().getProjects(sortColumn);
 }
 catch (ObjectNotFoundException e)
 {
 return new ArrayList(0);
 }
 }

 public void sort(ActionEvent actionEvent)
 {
 boolean paramFound = false;
 List children = actionEvent.getComponent().getChildren();
 for (int i = 0; i < children.size(); i++)
 {
 if (children.get(i) instanceof UIParameter)
 {
 UIParameter currentParam = (UIParameter) children.get(i);
 if (currentParam.getName().equals("column") &&
 currentParam.getValue() != null)
 {
 String paramValue = currentParam.getValue().toString();
 sortColumn = (ProjectColumnType)ProjectColumnType.
 getEnumManager().getInstance(paramValue);
 paramFound = true;
 break;
 }
 }
 }
 if (!paramFound)
 {
 throw new FacesException("Expected child UIParameter with " +
 "name 'column' and a value equal to the column name to sort.");
 }
 }

 protected String getProject(
 CommandType command)
 {
 FacesContext facesContext = getFacesContext();
 Project project = (Project) projectTable.getRowData();
 try
 {
 project = getProjectCoordinator().
 get(project.getId());
 }
 catch (ObjectNotFoundException e)
 {
 facesContext.addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_WARN,

 g

 h
 "The project you selected cannot be found",

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 515

 "The project is no longer in the data store."));
 return Constants.FAILURE_OUTCOME;
 }
 catch (DataStoreException d)
 {
 Utils.reportError(facesContext,
 "A database error has occrred",
 "Error loading project", d);
 return Constants.ERROR_OUTCOME;
 }

 if (command == CommandType.APPROVE ||
 command == CommandType.REJECT)
 {
 if (!getStatusCoordinator().
 isValidStateChange(project.getStatus(),
 command == CommandType.APPROVE))
 {
 Utils.addInvalidStateChangeMessage(facesContext,
 command == CommandType.APPROVE);
 return Constants.FAILURE_OUTCOME;
 }
 }

 getVisit().setCurrentProject(project);

 return Constants.SUCCESS_OUTCOME;
 }

 public String approve()
 {
 return getProject(CommandType.APPROVE);
 }

 public String reject()
 {
 return getProject(CommandType.REJECT);
 }

 public String details()
 {
 return getProject(CommandType.DETAILS);
 }
}

This defines an enumerated type called CommandType that’s used internally to
parameterize calls to getProject (h).
sortColumn is an internal field that stores the sort order for project lists returned

 i

 b

 c

by the inboxProjects (e) and allProjects (f) properties. This field is of type
ProjectColumnType, which is an enumerated type with static constants for four

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

516 CHAPTER 13
Backing beans, security, and internationalization

project columns: NAME, STATUS, TYPE, and ROLE. The sort action listener method
(g) sets this field based on user input, and then the field is used in subsequent
requests for the inboxProjects and allProjects properties.
This defines the projectTable component binding property, which is meant to
be bound to the UIData component that lists the projects. We use UIData as
opposed to its HTML-specific subclass, HtmlDataTable, because we’re not manip-
ulating any HTML-specific properties. This property is used by getProject (h)
to determine which row has been selected.
inboxProjects is a read-only property that returns a List of Project instances for
the user’s inbox. It retrieves this list from the ProjectCoordinator class’s get-
Projects method, which takes the user’s role and the column to use for sorting as
parameters. (It needs the user’s role because an inbox is technically a list of the
projects available for a specific role.)
The allProjects property is also read-only, and it returns a List of all Project
instances, sorted by sortColumn.
The sort action listener method sets the sortColumn field based on the column the
user clicks on. There can be up to four different columns in the associated view, so
we need to tell sort which column the user selected. There are few ways to do this:

■ Give each column a different action listener method, and have all of them
call an internal method, each sending different parameters. This approach
is perfectly valid, and we use it for the getProject method (h), which is
called by the approve, reject, and details methods (i). The drawback to
this approach is that if we had many columns, we would have to have a
separate action listener method for each one.

■ Look at the value property of the component that executed the action lis-
tener. This can work in some situations, but you can’t guarantee that the
value will remain constant, especially if it’s displayed to the user. If it’s dis-
played to the user, as is often the case (because the value is often a label), it
could change based on the user’s locale.

■ Look for a UIParameter component that’s the child of the event’s sender.
This is useful if you need to send several parameters to an action listener,
but the code is a bit cumbersome:

 public void sort(ActionEvent e)
 {
 boolean paramFound = false;
 List children = e.getComponent().
 getChildren);

 d

 e

 f

 g
 for (int i = 0; i < children.size(); i++)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 517

 if (children.get(i) instanceof
 UIParameter)
 {
 UIParameter currentParam =
 (UIParameter)children.get(i);
 if (currentParam.getName().
 equals("column") &&
 currentParam.getValue() != null)
 {
 String paramValue = currentParam.
 getValue().toString();
 sortColumn = (ProjectColumnType)
 ProjectColumnType.getEnumManager().
 getInstance(paramValue);
 paramFound = true;
 break;
 }
 }
 }
 if (!paramFound)
 {
 throw new FacesException(
 "Expected child UIParameter with " +
 "name 'column' and a value equal " +
 "to the column name to sort.");
 }
 }

Here, we iterate through the child components, looking for a UIParameter
with the name “column”. If found, we then use its value property to retrieve
the proper value from the ProjectColumnType class (the enumManager.getIn-
stance method just returns the proper ProjectColumnType instance based
on the value of a string). If no parameter is found, we throw an exception,
because the front-end developer tried to call this action listener method
without adding the correct UIParameter.

The UIParameter component could be configured in JSP like so:

 <h:commandLink styleClass="table-header"
 actionListener="#{inboxBean.sort}">
 <h:outputText value="Type"/>
 <f:param name="column" value="type"/>
 </h:commandLink>

Here, the sender is an HtmlCommandLink instance, and it has a child UIPa-
rameter with the name “column” and the value “type”.

 This approach will work, and can be useful in situations where you need

to pass several parameters to an action method, but it’s not the simplest or
the most efficient way to do things.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

518 CHAPTER 13
Backing beans, security, and internationalization

■ Use the id property of the component that called the action listener. This
is the approach we use in g. The value of the sender’s identifier maps to
a ProjectColumnType description, so all we have to do is retrieve the
correct instance from the ProjectType class. Here’s the same JSP for the
type column:

 <h:commandLink styleClass="table-header" id="type"
 actionListener="#{inboxBean.sort}">
 <h:outputText value="Type"/>
 </h:commandLink>

In general, we recommend either the identifier-based approach or the method-
based approach to parameterizing event listeners.
The getProject method retrieves the currently selected Project instance from the
associated UIData component via the projectTable property (d). It then uses the
object’s identifier to load a fresh, new Project instance from the ProjectCoordi-
nator (this ensures that we have the most recent copy). The ProjectCoordinator’s
getProject method can throw some exceptions; these are handled by creating
error messages and returning different outcome, as described in section 13.1.2.

NOTE UIData also stores a variable in request scope called “var” that can be
used to retrieve the currently selected item.

Projects can’t always be approved or rejected. For example, if a Project is in the
initial state (Proposal), it can’t be rejected because there’s no state before Proposal.
Also, a Project can’t be approved or rejected if it’s in the final state (Closed),
because that state indicates that no further action can occur. When a user selects a
Project for approval or rejection, it’s important to make sure the operation is
valid before showing them a new screen. Consequently, the getProject method
performs this check using the StatusCoordinator.isValidStateChange method.

 If the state change isn’t valid, it calls the Utils.addInvalidStateChange method
and then returns Constants.FAILURE_OUTCOME so that the page will redisplay itself
with the error message. The addInvalidStateChange method simply adds a generic
message to the FacesContext indicating the specific type of error. This message
isn’t associated with a specific UI component, so it’s applicable to the entire page
(the source for Utils is shown in chapter 12, listing 12.2).

 If the state change is valid and there aren’t any errors, the method simply sets
this Project as the current project with the visit.currentProject property, which
will be used by subsequent views. It then returns Constants.SUCCESS_OUTCOME.

 h
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 519

SelectProjectBean exposes three action methods: approve, reject, and details.
Each method calls getProject (h) with a different CommandType (b) value. This
is a different approach to parameterizing access to a method than g, and it’s
better for action methods, because action methods don’t have direct access to the
component that fired the action event as do action listener methods.
Even though getProject is called by all three action methods, we would like them to
take the user to different views. getProject returns the same outcome regardless of
the CommandType value that’s passed in, so how do we do this? In the navigation
rules, we can specify a different view based on the specific action method that’s called:

<navigation-rule>
 <from-view-id>/protected/inbox.jsp</from-view-id>
 <navigation-case>
 <from-action>#{inboxBean.details}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/general/details.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{inboxBean.approve}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/protected/approve.jsp</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-action>#{inboxBean.reject}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/protected/reject.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

This is the navigation rule for the Inbox page (there is a SelectProjectBean
instance stored in the request with the key inboxBean). All of the action methods
will return "success" if they complete without errors, but a different page is cho-
sen depending on the specific action method that’s called. So, if an HtmlCommand-
Button references the details action method property, details.jsp is displayed
upon successful completion; if the approve action method property is referenced,
the approve.jsp page is displayed; if the reject action method property is refer-
enced, the reject.jsp page is displayed.

 We’ve now finished analyzing SelectProjectBean’s code. Next, we examine
how it’s configured, and show some more examples of its use.

Initializing and referencing the bean
This backing bean performs double duty—an instance is stored for the Inbox
page and another one for the Show All Projects page. Listing 13.4 shows the man-

 i
aged bean declaration.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

520 CHAPTER 13
Backing beans, security, and internationalization

<managed-bean>
 <description>Lists projects in the user's inbox and allows
 them to select one for approval, rejection, or details.
 </description>
 <managed-bean-name>inboxBean</managed-bean-name>
 <managed-bean-class>org.jia.ptrack.web.SelectProjectBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>visit</property-name>
 <value>#{sessionScope.visit}</value>
 </managed-property>
 <managed-property>
 <property-name>projectCoordinator</property-name>
 <value>#{applicationScope.projectCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>statusCoordinator</property-name>
 <value>#{applicationScope.statusCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>userCoordinator</property-name>
 <value>#{applicationScope.userCoordinator}</value>
 </managed-property>
</managed-bean>
<managed-bean>
 <description>Lists all projects and allows the user to select
 one and view its details.
 </description>
 <managed-bean-name>showAllBean</managed-bean-name>
 <managed-bean-class>org.jia.ptrack.web.SelectProjectBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>visit</property-name>
 <value>#{sessionScope.visit}</value>
 </managed-property>
 <managed-property>
 <property-name>projectCoordinator</property-name>
 <value>#{applicationScope.projectCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>statusCoordinator</property-name>
 <value>#{applicationScope.statusCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>userCoordinator</property-name>

Listing 13.4 faces-config.xml: Managed bean configuration for SelectProjectBean
 <value>#{applicationScope.userCoordinator}</value>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 521

 </managed-property>
</managed-bean>

The code in listing 13.4 declares two request-scoped instances of the Select-
ProjectBean: one stored under the key inboxBean (for the Inbox page) and one
under the key showAllBean (for the Show All page). Note that these names don’t
sound anything like “SelectProjectBean”, but they do make sense to the person
developing the actual page.

 Listing 13.5 shows how this bean is used by the Inbox page.

...
<h:dataTable styleClass="table-background"
 rowClasses="table-odd-row,table-even-row"
 cellpadding="3"
 value="#{inboxBean.inboxProjects}"
 var="project"
 binding="#{inboxBean.projectTable}">

 <h:column>
 <f:facet name="header">
 <h:commandLink styleClass="table-header" id="name"
 actionListener="#{inboxBean.sort}">
 <h:outputText value="Project name"/>
 </h:commandLink>
 </f:facet>
 <h:outputText value="#{project.name}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:commandLink styleClass="table-header" id="type"
 actionListener="#{inboxBean.sort}">
 <h:outputText value="Type"/>
 </h:commandLink>
 </f:facet>
 <h:outputText value="#{project.type}"/>
 </h:column>

 <h:column>
 <f:facet name="header">
 <h:commandLink styleClass="table-header" id="status"
 actionListener="#{inboxBean.sort}">
 <h:outputText value="Status"/>
 </h:commandLink>

Listing 13.5 inbox.jsp: SelectProjectBean used with an HtmlDataTable
 </f:facet>
 <h:outputText value="#{project.status}"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

522 CHAPTER 13
Backing beans, security, and internationalization

 </h:column>

 <h:column>
 <h:commandLink action="#{inboxBean.approve}">
 <h:outputText value="Approve"/>
 </h:commandLink>
 </h:column>

 <h:column>
 <h:commandLink action="#{inboxBean.reject}">
 <h:outputText value="Reject"/>
 </h:commandLink>
 </h:column>

 <h:column>
 <h:commandLink action="#{inboxBean.details}">
 <h:outputText value="Details"/>
 </h:commandLink>
 </h:column>

</h:dataTable>
...

The page in listing 13.5 lists all projects in the user’s inbox by accessing the
inboxProjects property. It has three column headers: Name, Type, and Status.
Each of these columns has an HtmlCommandLink component with the action lis-
tener method inboxBean.sort registered, so when a user clicks on a column, this
method will re-sort the items.

 For each project listed, there is an HtmlCommandButton for each of the bean’s
three action methods. HtmlDataTable keeps track of the object related to the row
containing the HtmlCommandButton; this is why the getProject method can retrieve
the current Project instance with the UIData.getRowData method. This is the
same JSP that displays the page shown in figure 13.3.

 This completes our tour of SelectProjectBean, which is the most complicated
backing bean in our application. Now, let’s examine UpdateProjectBean.

13.1.5 Updating projects

Once SelectProjectBean has set the currentProject property of the Visit object,
currentProject can be modified by other beans. This is the job of the Update-
ProjectBean. Projects in ProjectTrack aren’t edited in the traditional sense—all a
user can do is change the status (either approve or reject it). In the process, they

can add comments to the history or update the list of artifacts. This bean backs
both the Approve a Project and Create a Project pages.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 523

UpdateProjectBean has single property called comments; we can edit artifacts by
directly manipulating visit.currentProject. UpdateProjectBean handles approval

Figure 13.4 The Approve a Project page associates UpdateProjectBean’s comments property
with an HtmlTextarea component, and has an HtmlCommandButton for both the approve and
cancel action methods. The other fields on the form are associated with visit.currentProject.
and rejection with a single parameterized method, update, that’s called by two
separate action methods (approve and reject). Figure 13.4 shows how the Approve

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

524 CHAPTER 13
Backing beans, security, and internationalization

a Project page works with this bean (the cancel action method is implemented by
UpdateProjectBean’s superclass, BaseBean).

 Listing 13.6 shows the source for UpdateProjectBean.

package org.jia.ptrack.web;

import javax.faces.application.FacesMessage;
import javax.faces.context.FacesContext;

import org.jia.ptrack.domain.*;

public class UpdateProjectBean extends BaseBean
{
 private String comments;

 public UpdateProjectBean()
 {
 }

 public String getComments()
 {
 return comments;
 }

 public void setComments(String comments)
 {
 this.comments = comments;
 }

 protected String update(boolean approve)
 {
 FacesContext facesContext = getFacesContext();

 Visit visit = getVisit();
 boolean projectFound = true;
 Project project = visit.getCurrentProject();
 if (project.changeStatus(approve, getVisit().getUser(), comments))
 {
 try
 {
 getProjectCoordinator().update(project);
 }
 catch (ObjectNotFoundException e)
 {
 projectFound = false;

Listing 13.6 UpdateProjectBean.java: Handles the actual approval or rejection of the
current project

 b

 c
 }
 catch (DataStoreException d)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 525

 {
 Utils.reportError(facesContext, "A database error has occurred.",
 "Error updating project.", d);
 return Constants.ERROR_OUTCOME;
 }
 }
 else
 {
 Utils.addInvalidStateChangeMessage(facesContext, approve);
 return Constants.FAILURE_OUTCOME;
 }

 if (projectFound == false)
 {
 facesContext.addMessage(null,
 new FacesMessage(FacesMessage.SEVERITY_WARN,
 "The project you selected cannot be found",
 "The project is no longer in the data store."));

 return Constants.FAILURE_OUTCOME;
 }

 if (visit.getAuthenticationBean().isReadOnly())
 {
 return Constants.SUCCESS_READONLY_OUTCOME;
 }
 else
 {
 return Constants.SUCCESS_READWRITE_OUTCOME;
 }
 }

 public String approve()
 {
 return update(true);
 }

 public String reject()
 {
 return update(false);
 }
}

The comments property is used in the update method (d) when changing the
project’s status. Internally, the Project creates a new Operation instance, using
this property for the comment. Operations make up a project’s history, and are
displayed on the Project Details page.

 d

 b
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

526 CHAPTER 13
Backing beans, security, and internationalization

The update method performs the actual work of updating the project, and is
called by the approve and reject action methods (d). It has one boolean param-
eter, approve, so that it knows whether this is an approval or rejection. First, the
method retrieves the current project. Next, it calls the Project.changeStatus
method, which performs the actual approval or rejection using the current User
object and the comments property (b).

 If the status change is successful, the Project is updated through the Project-
Coordinator. If the status change isn’t valid (for instance, an attempt to reject a
project that’s already in the first state), the Utils.invalidStateChange method is
called (which adds an error message to the FacesContext; see listing 12.2), and a
"Constants.FAILURE" outcome is returned. This indicates that the page should be
redisplayed with an error message.

 If no project was found, then the current project was deleted from the data
store sometime in between the time it was displayed on a page and the time the
user tried to update it. In that case, a different error message is added and a fail-
ure outcome is returned as well. If there were no errors, the Constants.SUCCESS
outcome is returned.
The update method is executed by two separate action methods—approve method
calls it with the value of true, and the reject method passes in false. This is sim-
ilar to the SelectProjectBean.getProject method except that we use a boolean
instead of an EnumeratedType subclass. (Unlike SelectProjectBean, there’s no
need to define special navigation cases that take into account the action method,
because these two action methods are called from entirely different pages.)

Now that we’ve examined the code, let’s see how to use UpdateProjectBean in the
rest of the application.

Initializing and referencing the bean
UpdateProjectBean doesn’t need to remember its state between requests because
it’s geared toward processing updates performed on a single page, so we’ll store it
in request scope. The managed bean entry is shown in listing 13.7.

<managed-bean>
 <description>Approves or rejects the current Project.</description>
 <managed-bean-name>updateProjectBean</managed-bean-name>
 <managed-bean-class>org.jia.ptrack.web.UpdateProjectBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>

 c

 d

Listing 13.7 faces-config.xml: Managed bean entry for UpdateProjectBean
 <managed-property>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 527

 <property-name>visit</property-name>
 <value>#{sessionScope.visit}</value>
 </managed-property>
 <managed-property>
 <property-name>projectCoordinator</property-name>
 <value>#{applicationScope.projectCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>statusCoordinator</property-name>
 <value>#{applicationScope.statusCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>userCoordinator</property-name>
 <value>#{applicationScope.userCoordinator}</value>
 </managed-property>
</managed-bean>

The code in listing 13.7 configures an instance of UpdateProjectBean in the request
scope under the key updateProjectBean. All of the configured properties are imple-
mented by UpdateProjectBean’s superclass.

 This bean is referenced on both the Approve a Project and Reject a Project
pages. Here are some snippets from the Approve a Project page and from project_
comments.jsp, which it includes:

...
<h:panelGrid columns="1" cellpadding="5"
 styleClass="table-background"
 rowClasses="table-odd-row,table-even-row">
 <h:outputLabel for="commentsInput">
 <h:outputText value="Your comments:"/>
 </h:outputLabel>
 <h:inputTextarea id="commentsInput" rows="10" cols="80"
 value="#{updateProjectBean.comments}"/>
</h:panelGrid>
...
<h:commandButton value="Approve"
 action="#{updateProjectBean.approve}"/>

<h:commandButton value="Cancel"
 action="#{updateProjectBean.cancel}"
 immediate="true"/>
...

The first segment associates the value of an HtmlInputTextarea component with
UpdateProjectBean’s comments property. There are also two HtmlCommandButtons at
the bottom; one of them calls the approve action method, and the other calls the

cancel action method (defined in the superclass). Figure 13.4 shows what this
page looks like in a browser.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

528 CHAPTER 13
Backing beans, security, and internationalization

 This bean is used the same way in the Reject a Project page, except that it uses
the reject action method instead of approve.

 That’s all there is to approving and rejecting a project. Now, let’s see the code
behind the creation process.

13.1.6 Creating new projects

New projects are added to the system by CreateProjectBean, which backs the
header and Create a Project views. The bean has a component binding property,
projectSelectOne, that it uses to initialize a new HtmlSelectOneMenu component. It
has two action methods: create and add. The create action method is called by the
header before navigation to the Create a Project page, to ensure that the bean has
a new Project instance to work with. Then, once the user has edited the project
with the Create a Project page, the add method adds the project to the data store.

 Figure 13.5 shows how the header and Create a Project pages use Create-
ProjectBean. Note that Create a Project basically edits visit.currentProject but
executes CreateProjectBean action methods, including the cancel action method,
which is inherited from BaseBean. The bean’s source is shown in listing 13.8

package org.jia.ptrack.web;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.component.UIInput;
import javax.faces.component.html.HtmlSelectOneMenu;
import javax.faces.context.FacesContext;
import javax.faces.validator.ValidatorException;

import org.jia.ptrack.domain.DataStoreException;
import org.jia.ptrack.domain.Project;

public class CreateProjectBean extends BaseBean
{
 private HtmlSelectOneMenu projectSelectOne;

 public CreateProjectBean()
 {
 }

 public HtmlSelectOneMenu getProjectSelectOne()
 {

Listing 13.8 CreateProjectBean.java: Creates a new Project and adds it to the
data store

 b

 if (projectSelectOne == null)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 529

 projectSelectOne = (HtmlSelectOneMenu)
 getApplication().createComponent(
 HtmlSelectOneMenu.COMPONENT_TYPE);
 projectSelectOne.setId("typeSelectOne");
 projectSelectOne.setTitle(
 "Select the project type");
 projectSelectOne.setRequired(true);
 projectSelectOne.setValueBinding("value",
 getApplication().createValueBinding(
 "#{visit.currentProject.type}"));
 projectSelectOne.setConverter(
 getApplication().createConverter(
 ProjectTypeConverter.CONVERTER_ID));
 }

 return projectSelectOne;
 }

 public void setProjectSelectOne(
 HtmlSelectOneMenu projectSelectOne)
 {
 this.projectSelectOne = projectSelectOne;
 }

 public UIInput getReqContactEmailInput()
 {
 return reqContactEmailInput;
 }

 public void setReqContactEmailInput(
 UIInput reqContactEmailInput)
 {
 this.reqContactEmailInput = reqContactEmailInput;
 }

 public void validateReqContact(
 FacesContext facesContext,
 UIComponent component, Object newValue)
 throws ValidatorException
 {
 if (reqContactEmailInput.getSubmittedValue().toString().equals(""))
 {
 facesContext.addMessage(
 reqContactEmailInput.getClientId(facesContext),
 new FacesMessage("Please fill in this field."));
 throw new ValidatorException(new FacesMessage(
 "E-mail address is required for the contact."));
 }
 }

 b

 c

 d
 public String create() e

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

530 CHAPTER 13
Backing beans, security, and internationalization

 {
 getVisit().setCurrentProject(new Project());
 return Constants.SUCCESS_OUTCOME;
 }

 public String add()
 {
 FacesContext facesContext = getFacesContext();
 Project project = getVisit().getCurrentProject();
 project.setInitialStatus(getStatusCoordinator().getInitialStatus());
 try { getProjectCoordinator().add(project); }
 catch (DataStoreException e)
 {
 Utils.reportError(facesContext, "A database error has occurred",
 "Error adding project", e);
 return Constants.ERROR_OUTCOME;
 }
 return Constants.SUCCESS_OUTCOME;
 }
}

The projectSelectOne component binding property is meant to be bound to an
HtmlSelectOneMenu component on the associated view that selects the project’s
type property. The property’s getter method is an example of how you can create
and initialize a UI component in code. It sets a few of the component’s proper-
ties, including its value with a ValueBinding instance. This is essentially the same
work that’s done with JSP declarations for other components on the page.

 You can initialize a UI component like this whenever it is bound to a backing
bean component property. However, this is usually only necessary when the ini-
tialization depends on factors that can’t be expressed with value-binding expres-
sions. (Technically, there’s no need to do this in ProjectTrack, but this is a
sample application...) For more information on component binding properties,
see section 12.2.3, page 462.
The reqContactEmailInput component binding property is used by the validateReq-
Contact method (d). It is of type UIInput, so it can be bound to any input control.
validateReqContact is a validator method that’s intended to be used with the
field that collects the requirements contact name. This method enforces a very
basic rule: if you enter a requirements contact name, you must also enter an email
address for that person. So, the method simply checks the submittedValue prop-
erty of the reqContactEmailInput component, and if it’s empty, it creates a new
FacesMessage and registers it for that component. It also throws a Validator-

 f

 b

 c

 d
Exception with another FacesMessage, which tells JSF that validation has failed.
The result is two error messages—one for the input control that collects the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 531

requirements contact name (created from the ValidatorException), and one for the
control that collects the email address (added manually), as shown in figure 13.6.

 If the Requirements contact field is empty, this validator isn’t called. In
other words, it’s perfectly valid to leave both fields blank or to enter just the
email address.

Figure 13.5 The header executes the CreateProjectBean.create action method before
navigating to the Create a Project page. The Create a Project page associates most properties
with visit.currentProject, but it also binds an HtmlSelectOneMenu component to a
CreateProjectBean property, and also executes two action methods with HtmlCommandButton
components. The cancel action method is implemented by CreateProjectBean’s superclass,
BaseBean.
The create action method simply creates a new Project instance and sets it as the
current project, so that it can be edited and added to the data store on the next page.

 e

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

532 CHAPTER 13
Backing beans, security, and internationalization

The add action method is pretty straightforward; it sets the initial status of the
current project, and then adds it to the data store through the ProjectCoordinator.
If there is an exception, it calls Utils.reportError (which creates a new Faces-
Message and writes to the log file), and then returns Constants.ERROR_OUTCOME.
Otherwise, it returns Constants.SUCCESS_OUTCOME.
The following section discusses how the bean is used in the application.

Initializing and referencing the bean
Because a CreateProjectBean is stateless, it can be declared in the request scope
of the application. Its managed bean declaration is shown in listing 13.9.

<managed-bean>
 <description>Creates and adds a new Project to the data store.
 </description>
 <managed-bean-name>createProjectBean</managed-bean-name>
 <managed-bean-class>org.jia.ptrack.web.CreateProjectBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>visit</property-name>
 <value>#{sessionScope.visit}</value>
 </managed-property>
 <managed-property>
 <property-name>projectCoordinator</property-name>
 <value>#{applicationScope.projectCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>statusCoordinator</property-name>
 <value>#{applicationScope.statusCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>userCoordinator</property-name>
 <value>#{applicationScope.userCoordinator}</value>
 </managed-property>
</managed-bean>

Figure 13.6 The validateReqContact validator complains if you enter the contact name but not
the email address.

 f

Listing 13.9 faces-config.xml: Managed bean entry for CreateProjectBean
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 533

The code in listing 13.9 declares a request-scoped instance of CreateProjectBean
under the key createProjectBean, and then initializes all of the necessary proper-
ties inherited from BaseBean.

 As we stated earlier, this bean is referenced in the header and the Create a Project
page. Remember, the header’s toolbar is implemented using the UINavigator
custom component (see online extension chapter 20). One of the component’s
navigator items (which represents a single button on the toolbar) references the
create method:

<jia:navigatorToolbar ...>
...
 <jia:navigatorItem name="createNew"
 label="Create New"
 icon="/images/create.gif"
 action="#{createProjectBean.create}"
 disabled="#{!authenticationBean.createNewAuthorized}"/>
...
</jia:navigatorToolbar>

The outcome of this action (which is always Constants.SUCCESS_OUTCOME) is used
to load the Create a Project page.

 The Create a Project page has a lot of components on it—one for each prop-
erty a user needs to set when creating a new project. Most of these components
are associated with visit.currentProject. Several components on the page use
CreateProjectBean, however:

...

<h:outputLabel for="typeSelectOne">
 <h:outputText value="Type:"/>
</h:outputLabel>
<h:selectOneMenu binding="#{createProjectBean.projectSelectOne}">
...

<h:outputLabel for="requirementsInput">
 <h:outputText value="Requirements contact:"/>
</h:outputLabel>
<h:inputText id="requirementsInput" size="40"
 value="#{visit.currentProject.requirementsContact}"
 validator="#{createProjectBean.validateReqContact}"/>
<h:message for="requirementsInput" styleClass="errors"/>

<h:outputLabel for="requirementsEmailInput">
 <h:outputText value="Requirements contact e-mail:"/>
</h:outputLabel>
<h:inputText id="requirementsEmailInput" size="40"
 value="#{visit.currentProject.requirementsContactEmail}"

 binding="#{createProjectBean.reqContactEmailInput}">
...

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

534 CHAPTER 13
Backing beans, security, and internationalization

</h:inputText>
<h:message for="requirementsEmailInput" styleClass="errors"/>

<h:commandButton value="Save" action="#{createProjectBean.add}"/>
<h:commandButton value="Cancel" action="#{createProjectBean.cancel}"
 immediate="true"/>
...

Note that for the HtmlSelectOneMenu declaration, we don’t specify any properties
because they’re all initialized with createProjectBean.projectSelectOne’s getter
method. The requirementsInput component has createProjectBean.validate-
ReqContact set as its validator, and the requirementsEmailInput control is bound to
the reqContactEmailInput so that the validator method can check its values. The
errors are displayed with the HtmlMessages components declared after the controls.

 The action methods are referenced, as usual, in the action property of Command
components. Figure 13.6 shows what the header and Create a Project pages look
like in a browser.

 We’ve now covered backing beans for just about every view in ProjectTrack,
except for Project Details.

13.1.7 Paging through the project history with UIData

The last of ProjectTrack’s backing beans is ShowHistoryBean, which has a simple
goal: to allow a UIData component to break up the project’s history listing into
several pages. Paging through data isn’t a core feature of UIData, but it’s simple to
implement. UIData has a first property, which tells it which row to display first,
and a rows property, which tells it how many rows to display. All we have to do is
modify the component’s first property every time the user wants to move for-
ward or backward in the data set, increasing or decreasing it by rows.

 ShowHistoryBean has a component binding property, historyDataTable, that
should be bound to the UIData component in the view. (We use HtmlDataTable’s
superclass, since the bean doesn’t access any HTML-specific properties.) It also
has a rowsPerPage property, which determines how may rows the component
will display at once.

 In addition, it has a read-only property called currentProjectHistory, which
returns the history for the current Project instance (which is a List of Operation
objects). This is the property that should be associated with the UIData compo-
nent’s value property.

 This bean is used only by the Project Details view. Figure 13.7 shows how the
view uses this bean; note that the cancel action method is implemented in the

base class. The source for ShowHistoryBean appears in listing 13.10.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 535

Figure 13.7 The Project Details page uses the ShowHistoryBean to display the project’s history,
and allow the user to page through the data set. The history is displayed with an HtmlDataTable
component, which is bound to to the ShowHistoryBean.historyDataTable property. The table’s
rows property is bound to the bean’s rowsPerPage property, and its value is bound to the bean’s
currentProjectHistory property. Two action listener methods—next and previous—control

paging forward or backward (respectively) in the data set. Also, the Ok button executes the cancel
action method, which is implemented in the superclass.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

536 CHAPTER 13
Backing beans, security, and internationalization

package org.jia.ptrack.web;

import java.util.List;
import javax.faces.component.UIData;
import javax.faces.event.ActionEvent;

public class ShowHistoryBean extends BaseBean
{
 private int rowsPerPage = 5;
 private UIData historyDataTable;

 public ShowHistoryBean()
 {
 }

 public UIData getHistoryDataTable()
 {
 return historyDataTable;
 }

 public void setHistoryDataTable(UIData historyDataTable)
 {
 this.historyDataTable = historyDataTable;
 }

 public int getRowsPerPage()
 {
 return rowsPerPage;
 }

 public void setRowsPerPage(int rowsPerPage)
 {
 this.rowsPerPage = rowsPerPage;
 }

 public List getCurrentProjectHistory()
 {
 return getVisit().getCurrentProject().getHistory();
 }

 public boolean getShowNext()
 {
 return (historyDataTable.getFirst() +
 rowsPerPage) <
 getCurrentProjectHistory().size();
 }

Listing 13.10 ShowHistoryBean.java: Displays a project's history and allows the user
to page through the operations

 b

 c

 d

 e

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 537

 public boolean getShowPrevious()
 {
 return (historyDataTable.getFirst()—
 rowsPerPage) >= 0;
 }

 public void next(ActionEvent actionEvent)
 {
 int newFirst =
 historyDataTable.getFirst() + rowsPerPage;
 if (newFirst <
 getCurrentProjectHistory().size())
 {
 historyDataTable.setFirst(newFirst);
 }
 }

 public void previous(ActionEvent actionEvent)
 {
 int newFirst =
 historyDataTable.getFirst() - rowsPerPage;
 if (newFirst >= 0)
 {
 historyDataTable.setFirst(newFirst);
 }
 }

}

The historyDataTable property is meant to be bound to the UIData component
with which our bean will be working. The next and previous action listener
methods (f) historyDataTable’s first property, which is the first row the UIData
will display.
The rowsPerPage property sets the number of rows to be displayed on each page.
Because a setter method has been exposed, it can be initialized with the Man-
aged Bean Creation facility.
The currentProjectHistory property returns the actual List of Operation objects
that the UIData will display. It’s intended to be bound to the UIData component’s
value property.
The showNext property returns true if there are any more pages to display, and
the showPrevious property returns true if there are previous pages to display.
The intention is for these two properties to be bound to the rendered properties
of the UICommand components responsible for moving to the next and previous

 e

 f

 b

 c

 d

 e
pages. (In the Project Details page, these are HtmlCommandLink components.)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

538 CHAPTER 13
Backing beans, security, and internationalization

The next and previous action listener methods perform the actual work of this
bean—they either increase or decrease historyDataTable’s first property by
rowsPerPage rows, as long as doing so wouldn’t make first out of the current-
ProjectHistory’s bounds.

 When historyDataTable is redisplayed, it will begin with the first row. For
example, let’s suppose that rowsPerPage was set at 5 (the default), there are 50 items
in currentProjectHistory, and we are displaying rows 0–4 (so first is 0, which is the
default). If next is executed, first will be set to 5, so rows 5–9 will be displayed. If
previous is executed, first will be set back to 0, so rows 0–4 will be displayed again.

 We chose to implement next and previous as action listener methods because
they don’t affect navigation (the page is always redisplayed). If you’re wondering
why we chose to manipulate the historyDataTable.first property in code instead
of using a value-binding expression in JSP, the reason is simple: ShowHistoryBean
is request-scoped, and consequently stateless. If ShowHistoryBean kept track of
the first property itself, it would have to be stored in the session so that it could
remember the value.

TIP Try to write your backing beans to be stateless if possible, so they can be
stored in request scope. The easiest way to do this is to push your state
onto UI components – either by setting their properties, or adding ap-
plication-specific attributes. Making beans stateless simplifies develop-
ment and reduces server load (as opposed to storing beans in the
session). If you store your bean in the session, it may need be initialized
before a page is displayed, which requires more overhead. (If you really
need to initialize a bean when a page is displayed, you can do so with a
phase listener; see chapter 11.)

You may have noticed that ShowHistoryBean could be reused for other types of
lists. As a matter of fact, it is a prime candidate for generalization; for example,
you could have a DataPager bean that worked with any property of type List, as well
as other UIData-friendly data types like java.sql.ResultSet and javax.servlet.
jsp.jstl.sql.Result. This property for the data list could be configured with the
Managed Bean Creation facility. You can also expect to see third-party compo-
nents that perform scrolling for you.

 Now that we’ve examined this bean’s code, let’s look at how the application
uses it.

Initializing and referencing the bean

 f
We can configure ShowHistoryBean using the Managed Bean Creation facility
just like the other beans. The only difference is that we can also set its rowsPerPage

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 539

property so that the number of rows displayed can be modified in faces-config.
xml. Listing 13.11 shows the managed bean entry.

<managed-bean>
 <description>Pages through history list.</description>
 <managed-bean-name>showHistoryBean</managed-bean-name>
 <managed-bean-class>
 org.jia.ptrack.web.ShowHistoryBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>rowsPerPage</property-name>
 <value>3</value>
 </managed-property>
 <managed-property>
 <property-name>visit</property-name>
 <value>#{sessionScope.visit}</value>
 </managed-property>
 <managed-property>
 <property-name>projectCoordinator</property-name>
 <value>#{applicationScope.projectCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>statusCoordinator</property-name>
 <value>#{applicationScope.statusCoordinator}</value>
 </managed-property>
 <managed-property>
 <property-name>userCoordinator</property-name>
 <value>#{applicationScope.userCoordinator}</value>
 </managed-property>
</managed-bean>

As you can see, the entry defines a request-scoped bean called showHistoryBean
and configures all of the BaseBean properties, but it also sets the rowsPerPage
property to 3. The value 3 is logical, because each entry consumes a decent
amount of screen real estate.

 This bean is used by the Project Details page because it is the only one that dis-
plays a project’s history. Here’s a snippet from that JSP:

<h:dataTable cellpadding="5" styleClass="table-background"
 value="#{showHistoryBean.currentProjectHistory}"
 var="operation"
 binding="#{showHistoryBean.historyDataTable}"

Listing 13.11 faces-config.xml: Managed bean entry for ShowHistoryBean
 rows="#{showHistoryBean.rowsPerPage}">
...

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

540 CHAPTER 13
Backing beans, security, and internationalization

 <h:column>
 <h:panelGrid columns="1" width="100%" border="1"
 styleClass="table-even-row">
...
 <h:outputText value="#{operation.timestamp}">
 <f:convertDateTime dateStyle="full" timeStyle="short"/>
 </h:outputText>
 <h:outputText
 value="#{operation.fromStatus} -> #{operation.toStatus}"/>
 <h:outputText value="(#{operation.user.role})"/>
...
 <h:outputText value="Comments:"/>
 <h:outputText value="#{operation.comments}"
 styleClass="project-data"/>
...
 </h:panelGrid>
 </h:column>

 <f:facet name="footer">
 <h:panelGroup>
 <h:commandLink actionListener="#{showHistoryBean.previous}"
 rendered="#{showHistoryBean.showPrevious}"
 style="padding-right: 5px;">
 <h:outputText value="Previous"/>
 </h:commandLink>
 <h:commandLink actionListener="#{showHistoryBean.next}"
 rendered="#{showHistoryBean.showNext}">
 <h:outputText value="Next"/>
 </h:commandLink>
 </h:panelGroup>
 </f:facet>
</h:dataTable>

As expected, both the HtmlDataTable component and its value are bound to the
ShowHistoryBean instance. In addition, the component’s rows property, which
indicates the number of rows to display, is bound to the bean’s rowsPerPage prop-
erty. The UICommand components responsible for executing the action listener
methods are HtmlCommandLink components, and their rendered properties are
bound to the showPrevious and showNext properties, so that they are hidden when
no more pages are available. The Project Details page is shown in figure 13.7.

 With this simple class, we’ve added the capability to page through our data
set—but what if we were working with JDBC instead of collections?

13.1.8 Working with JDBC ResultSets and UIData

So far, all of our backing beans have treated data layer objects such as Project-

Coordinator as black boxes; all we know is that they work with Projects, which
implies that they perform some sort of persistence mechanism such as object/

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 541

relational mapping (ORM), either with custom code or with a library like Hibernate
[JBoss, Hibernate] or Java Data Objects (JDO) [Sun, JDO]. This works great for a
pure object-oriented approach. In some cases, however, you may want to hook up
UI components directly to a data service object, like a JDBC ResultSet. Let’s take
another look at SelectProjectBean from that perspective, and then talk about how
the rest of ProjectTrack would be different.

 SelectProjectBean uses a UIData component to list project information for
both the Inbox and Show All pages. Recall that UIData works with DataModel
objects exclusively. You can set its value property to an array, java.util.List,
java.sql.ResultSet, or javax.servlet.jsp.jstl.sql.Result, and UIData will auto-
matically create a DataModel wrapper for the object using one of several sub-
classes. (If you use any other type, it will create a ScalarDataModel instance as a
wrapper, which represents a single row.) So, in the case of the SelectProjectBean.
allProjects property, which is a List of Project instances, a UIData component
would wrap it with a ListDataModel interface.

 In practical terms, this means that using UIData directly with a ResultSet is
similar to using it with a List, an array, and any other data types it supports. It
also means that if you create your own DataModel subclass (as we do in online
extension chapter 18), UIData will treat it the same as well. So, as long as Select-
ProjectBean returns a ResultSet instead of a List, there should be very few mod-
ifications (if any) to the associated views.

 To examine this scenario, let’s assume that the projectCoordinator property
of BaseBean actually returns a class called ResultSetProjectCoordinator, which
works with ResultSets instead of Lists. There would be a single instance of this
class initialized at startup through the Initializer class we covered in chapter 12,
just as there is with the MemoryProjectCoordinator class.

 What we’d like is for SelectProjectBean’s inboxProjects property to return a
ResultSet. Here’s what that property’s accessor currently looks like:

public List getInboxProjects() throws DataStoreException
{
 try
 {
 return getProjectCoordinator().
 getProjects(getVisit().getUser().getRole(),
 sortColumn);
 }
 catch (ObjectNotFoundException e)
 {
 return new ArrayList(0);

 }
}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

542 CHAPTER 13
Backing beans, security, and internationalization

Let’s change it to the following:

public java.sql.ResultSet getInboxProjects()
 throws DataStoreException
{
 return getProjectCoordinator().
 getProjects(getVisit().getUser().getRole());
}

This time, we return a ResultSet instead. No ObjectNotFoundException is thrown,
so there’s no need to catch one. We also leave out the sortColumn parameter, just
to keep things simple.

 This ResultSetProjectCoordinator class uses a standard SQL query to retrieve
all of the projects available for the specified role, as shown in listing 13.12.

package org.jia.ptrack.domain;

import java.sql.*;

public class ResultSetProjectCoordinator
{
 private String url;
 private String name;
 private String password;

 public ResultSetProjectCoordinator(String url, String name,
 String password) throws DataStoreException
 {
 try
 {
 Class.forName("org.hsqldb.jdbcDriver");
 }
 catch (Exception e)
 {
 throw new DataStoreException("Error loading JDBC driver", e);
 }
 this.url = url;
 this.name = name;
 this.password = password;
 }

 public ResultSet getProjects(RoleType role)
 throws DataStoreException
 {
 try

Listing 13.12 ResultSetProjectCoordinator.java: Coordinator class that returns a
JDBC ResultSet instead of a List of Project instances

Returns standard
ResultSet
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing backing beans 543

 Connection conn = DriverManager.getConnection(url,
 name, password);
 Statement stmt = conn.createStatement(
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

 return stmt.executeQuery(
 "select p.id, p.name as name, pt.description as type, " +
 "s.name as status, r.description as waitingfor " +
 "from projects p, project_type pt, status s, role r " +
 "where p.type = pt.project_type_id " +
 "and p.status = s.status_id " +
 "and s.role_id = r.role_id " +
 "and r.role_id = " + role.getValue());
 }
 catch (SQLException e)
 {
 throw new DataStoreException(
 "Error executing query for loading projects", e);
 }
 }
 ...
}

As you can see, all this class does is execute a SQL query and return the results (the
tables referenced in the query map to ProjectTrack’s Project, Project Type, Status,
and RoleType entities). Note, however, that when the Statement is created, we set
the ResultSet type to ResultSet.TYPE_SCROLL_INSENSITIVE (b), which means it can
move backward and forward through the data, and that the data is generally not
sensitive to change.

NOTE In order to use a javax.sql.ResultSet instance with a UIData compo-
nent (or, specifically, the ResultSetDataModel object that UIData uses
internally), the ResultSet must be scrollable. The valid types for scrol-
lable ResultSets are ResultSet.TYPE_SCROLL_SENSITIVE and Result-
Set.TYPE_SCROLL_INSENSITIVE. A ResultSet’s type is usually set when
executing a query, either through a Statement or a PreparedState-
ment object.

The ResultSetProjectCoordinator class isn’t an example of great design—it
doesn’t pool connections, use prepared statements, or perform any other intelli-
gent optimizations. It also uses an older mechanism of accessing a JDBC driver, as

Must be
scrollable

 b
opposed to the newer javax.sql.DataSource class introduced in JDBC 2.0. Even if

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

544 CHAPTER 13
Backing beans, security, and internationalization

we had implemented more functionality and used the DataSource class, the bot-
tom line would hold true: we’re just returning a ResultSet. (The same thing goes
for javax.sql.RowSets, since it subclasses ResultSet.)

 So, how does this all affect the associated Inbox view, with the UIData compo-
nent? It doesn’t affect it at all. To see why, let’s examine the view’s UIData declaration:

<h:dataTable styleClass="table-background"
 rowClasses="table-odd-row,table-even-row"
 cellpadding="3"
 value="#{inboxBean.inboxProjects}"
 var="project"
 binding="#{inboxBean.projectTable}">
 <h:column>
...
 <h:outputText value="#{project.name}"/>
...
 <h:outputText value="#{project.type}"/>
...
 <h:outputText value="#{project.status}"/>
...
</h:dataTable>

So, the UIData component is associated with the inboxBean.inboxProjects prop-
erty. Each row in inboxBean.inboxProjects is exposed as a request-scoped variable
named project that is made available to child components when displaying their
rows. So, the expressions "#{project.name}", "{project.type}", and "{project.
status}" are accessing the name, type, and status properties of the current row.

 Previously this worked fine because inboxProjects returned a List of Project
instances, and each Project has name, type, and status properties. The same JSP
declaration works equally well for a ResultSet because the ResultSetDataModel
class, which is used internally by UIData, returns a java.util.Map for each row,
backed by the underlying ResultSet.

 So, the expression "#{project.name}" asks the current row’s Map for the value
of key name, which is the same as retrieving the value of the name column for the
current row. If you take a look at the SQL query in listing 13.13, you can see that
we gave the result columns in the query names that matched the Project prop-
erty’s names. Consequently, no changes to the view are necessary.

 That’s really all there is to it—just associate a ResultSet directly to a UIData
component, and you’ve finished. Displaying multiple pages of a ResultSet is sim-
ilar to the ShowHistoryBean class we discussed in section 13.1.7, except for the fact
that you can’t retrieve the total row count from a ResultSet.
 JSF’s EL was designed to easily accommodate different types, so you can
associate other UI components directly with data service objects that expose

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Adding security 545

JavaBean-style properties. Some tools, like Java Studio Creator [Sun, Creator],
will even allow you to drop RowSets into your backing beans and then let you wire
up columns to UI components visually. IBM’s WebSphere Studio [WSAD] handles
this through service data objects (which are being submitted for standardization
as JSR 235).

TIP In most cases, we don’t recommend creating data service objects, like
ResultSets and RowSets, directly in your backing beans, but this
approach can work for small applications. Using a separate class like
ResultSetProjectCoordinator, which is an implementation of the
Data Table Gateway pattern [Fowler, Enterprise], is more flexible because
you can unit-test it and reuse it within different backing beans.

So, how would this database-centric view of the world affect the rest of Project-
Track? Simply put, it wouldn’t work with objects. For starters, take a look at the
code in SelectProjectBean that retrieves the selected Project instance from the
UIData component:

Project project = (Project)projectTable.getRowData();

This wouldn’t work, since projectTable is associated with a ResultSet instead of a
List of Project instances. As we said earlier, each row is returned as a Map, so the
equivalent line would be

Map projectMap = (Map)projectTable.getRowData();

Of course, the rest of the application was designed to work with Project instances,
so this isn’t the only necessary change. The main theme is simple, though: use
Maps instead of beans and ResultSets instead of Lists.

13.2 Adding security

So far, we’ve been oblivious to any possible security issues with ProjectTrack. Web
security is a big topic, so we’ll leave the exhaustive discussions to experts in that
arena. For our purposes, only two words are necessary: authentication and autho-
rization. Authentication is the process of validating a user’s credentials; authoriza-
tion allows the user to access particular resources.

 ProjectTrack has pretty basic requirements—a user is authenticated based on
his or her login name and password. Each user has a role, and there are only two
different levels of authorization—read-write and read-only access. The only role

that has read-only access is the Upper Manager; every other role has read-write
access. In addition, only Project Managers can create new projects. In practical

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

546 CHAPTER 13
Backing beans, security, and internationalization

terms, this means that Upper Managers can’t access the Inbox, Approve a Project,
or Reject a Project pages, and only Project Managers can access the Create a
Project page.

 In order to add basic authentication and authorization capabilities to Project-
Track, we have two options: traditional web container–based security, and cus-
tom security.

13.2.1 Container-based vs. custom security

The basic premise behind web container–based security is that the container han-
dles authentication by checking a username and password against some data
store. Exactly which data store is used is up to the web container vendor—most
offer a few options ranging from a Lightweight Directory Access Protocol (LDAP)
server to a flat XML file or a relational database. Once the user has been authen-
ticated, the container can control which resources the user can access based on his
or her role. (The specifics about which resource can be accessed by which role are
configured in the application’s deployment descriptor.)

 All web containers provide four types of authentication: HTTP basic, HTTP
digest, client-certificate, and form-based. All of these mechanisms provide the
basic functionality described previously, but they interact with the user differently.
Basic authentication uses the HTTP protocol to pop up a modal dialog box asking
for the username and password. Digest authentication works the same way, except
a digest of the password is transferred instead of clear text.

 Certificate-based authentication relies on client certificates to identify users, so
users are never prompted for their username or password. Form-based authenti-
ation lets you use a custom form (which can be JSP, HTML, or something else). This
form must, however, post to a specific URL and contain special form parameters
that the web container understands. All of these methods can be used in conjunc-
tion with Secure Sockets Layer (SSL), which ensures that the login is encrypted.
(For more about servlet security, see Java Servlet Programming [Hunter].)

 Regardless of which method you’d like to implement, there’s one point that’s
important from the perspective of JavaServer Faces: container-based security
requires posting directly to the server, avoiding FacesServlet, which handles all
JSF requests. In all of these scenarios, the web container does its work before it
even thinks about JSF. JSF is implemented as a just another servlet, after all, so it
doesn’t get any special treatment.

 For all of the authentication methods other than form-based, this isn’t a prob-

lem, because the user doesn’t interact with input controls. For these methods, you
can use the standard container security features, which are configured via web.xml.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Adding security 547

 If you want to have a nice form-based login page complete with JSF components
and features like validation and action methods, you’re out of luck. Because the
form-based security requires posting to a specific URL that’s processed by the web
container before FacesServlet, there’s no way to use JSF components with form-
based container security. There are two choices: use a login page that doesn’t have
any JSF components, or don’t use container-based security at all.

 There’s nothing wrong with using a non-JSF login page for container-based
authorization. If you choose to do so, integration is the same as with any other
Java web application. You can access familiar methods like getUserPrincipal,
getRemoteUser, and isUserInRole through ExternalContext (see chapter 11).

13.2.2 Using custom security

ProjectTrack uses custom security. We’ve already examined the code for the
AuthenticationBean, which handles authentication duties. It collects a login and
password from JSF components, retrieves a User object from the UserCoordinator
(if possible), creates a new Visit object (initializing its user property), and then
forwards the user either to the Inbox or Show All page (depending on the user’s
access level)—see section 13.1.3 for details.

 AuthenticationBean has methods for simple authorization checks, but as Pro-
jectTrack stands, any user can access any page, no matter what access level he or
she has. In fact, any user can access pages without even logging in. In order to
control access to specific pages, we can use an authorization filter.

Developing an authorization filter
Filters are a standard feature of the Servlet API—they allow you to perform
additional processing on a request before and after it’s handled by traditional
servlets. (The pattern-conscious will note that filters are an implementation of the
Intercepting Filter pattern [Alur, Crupi, Malks].) Because JSF is implemented as a
servlet, you can use filters to do work before or after JSF processes requests as well.

 Filters are commonly used for authorization duties because they can reroute a
request if the user isn’t authorized to view the requested resource. This is exactly
what ProjectTrack’s AuthorizationFilter does—if there’s no Visit object stored
in the session, it reroutes the request to the Login page. If there is a Visit object
in the session and the user is an Upper Manager, it denies access to any protected
resources (the Inbox, Approve a Project, and Reject a Project pages); if the user is
not a Project Manager, it denies access to the Create a Project page. Otherwise,
it’s business as usual. The source is shown in listing 13.13.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

548 CHAPTER 13
Backing beans, security, and internationalization

package org.jia.ptrack.web;

import java.io.IOException;
import java.text.MessageFormat;
import java.util.ResourceBundle;
import javax.servlet.*;
import javax.servlet.http.*;

import org.jia.ptrack.domain.RoleType;

public class AuthorizationFilter implements Filter
{
 FilterConfig config = null;
 ServletContext servletContext = null;

 public AuthorizationFilter()
 {
 }

 public void init(FilterConfig filterConfig)
 throws ServletException
 {
 config = filterConfig;
 servletContext = config.getServletContext();
 }

 public void doFilter(ServletRequest request,
 ServletResponse response, FilterChain chain)
 throws IOException, ServletException
 {
 HttpServletRequest httpRequest = (HttpServletRequest)request;
 HttpServletResponse httpResponse = (HttpServletResponse)response;
 HttpSession session = httpRequest.getSession();

 String requestPath = httpRequest.getPathInfo();
 Visit visit = (Visit)session.
 getAttribute(Constants.VISIT_KEY);

 if (visit == null)
 {
 session.setAttribute(
 Constants.ORIGINAL_VIEW_KEY,
 httpRequest.getPathInfo());
 httpResponse.sendRedirect(
 httpRequest.getContextPath() +
 Constants.LOGIN_VIEW);
 }

Listing 13.13 AuthorizationFilter.java: Redirects to the login page unauthenticated
users and denies access to unauthorized resources

 b

 d
 c
 else
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Adding security 549

 session.removeAttribute(
 Constants.ORIGINAL_VIEW_KEY);
 RoleType role = visit.getUser().getRole();

 if ((role.equals(
 RoleType.UPPER_MANAGER) &&
 requestPath.indexOf(
 Constants.PROTECTED_DIR) > 0) ||
 (!role.equals(RoleType.PROJECT_MANAGER) &&
 requestPath.indexOf(
 Constants.EDIT_DIR) > 0))
 {
 httpResponse.sendError(
 HttpServletResponse.SC_NOT_FOUND,
 "Path " + requestPath + " not found."
 }
 else
 {
 chain.doFilter(request, response);
 }
 }
 }

 public void destroy()
 {
 }
}

The first thing you should notice about the doFilter method is that there are no
references to the JSF APIs. The doFilter method looks for the Visit object using
the standard Servlet HttpSession object rather than a ValueBinding (b). Because
a filter executes before JSF processes the request, there is no FacesContext instance
available. Because the Application.getValueBinding method requires a Faces-
Context, it can’t be used in filters.

 This highlights an important distinction we made in the Constants class—for
any given key, there’s a constant for the scope and a constant for the value itself.
For example, for the Visit object, there’s the Constants.USER_KEY_SCOPE and the
Constants.USER_KEY. In b, we simply use Constants.USER_KEY, because we’re
already working with an HttpSession instance. In our action method classes, we
use both constants, because we’re dealing with the ValueBinding instance:

Visit visit = (Visit)app.getValueBinding(
 Constants.VISIT_KEY_SCOPE +
 Constants.VISIT_KEY);

 e

 f

 g
This distinction is handy when you’re working with code that doesn’t know
about JSF.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

550 CHAPTER 13
Backing beans, security, and internationalization

 If a Visit instance can’t be found in the session, the code forwards the user’s
request to the login page (c). During this process, it saves the original request
path (d). This can be useful if the login code wants to forward the user to that
page after a successful login (the next section explains how to do this).

 If a Visit can be found, the method first removes the original request path
from the session because the user has already seen the first page (e). If the cur-
rent user is an Upper Manager who has requested any file in the protected direc-
tory, the familiar HTTP “404 Not Found” error appears. The same goes for users
who are not Project Managers but try to access the edit directory (where the Cre-
ate a Project page lives) (f). Otherwise, the filter chain is executed—this will call
any other filters, and then process the request normally (g).

 Note that this filter requires that a Visit object be created and stored in the
session upon successful login. This work is performed by AuthenticationBean,
which is executed by the Login page (see section 13.1.2 for more about this class).

It’s also possible to implement authentication using a phase listener that
fires at the beginning of the Request Processing Lifecycle. The benefit of
this approach is that you can work directly with JSF objects; the drawback
is that it will only be executed for resources that are processed by the
Faces servlet.

Forwarding to another view
The AuthorizationFilter described in the previous section stores the original
request path if the user hasn’t yet logged in. The idea is that the action method
handling the login can retrieve it and forward users to their original page after
they have logged in. This is typical of many systems—if a user requests a page
within the site but they haven’t yet logged in, they see the login page. After suc-
cessfully logging in, users are sent to the page they originally requested.

 This feature doesn’t work too well for applications like ProjectTrack, because
most of the operations center around selecting a project to approve, reject, or
view. If a user just logged in, they haven’t selected a project yet, so half of the
application won’t work properly.

 Even though this feature isn’t part of ProjectTrack, we’ll cover it because it might
be useful in your applications. You can, of course, do this with the normal Servlet
APIs by calling either HttpResponse.redirect or RequestDispatcher.forward. How-
ever, this can also be done using the JSF APIs. This is the code that would be in the
AuthenticationBean’s login method if ProjectTrack needed to forward to the orig-

BY THE
WAY
inally requested page after authentication:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Supporting internationalization in code 551

Application app = getApplication();
ValueBinding originalViewBinding =
 app.createValueBinding("#{" + Constants.ORIGINAL_VIEW_KEY + "}");
String originalViewId = (String)originalViewBinding.
 getValue(facesContext);
if (originalViewId != null)
{
 originalViewBinding.setValue(facesContext, null);
 UIViewRoot view = (UIViewRoot)app.getViewHandler().
 createView(getFacesContext(), originalViewId);
 facesContext.setViewRoot(view);
 facesContext.renderResponse();

 return null;
}

The first thing this code does is retrieve the original request path, which is the
same as the view ID of the requested page. This was stored by the Authentication-
Bean (shown in listing 13.1).

 If the view identifier isn’t null, it’s okay to forward the user to that tree. You
can get a handle to a page through the Application.createView method. By
default, JSF will display the view whose identifier is specified in the navigation
case for the action method’s outcome. To bypass this facility, we can set the view
identifier explicitly with the FacesContext.setViewRoot method. Next, we can
skip any further steps of the request processing lifecycle by calling FacesContext.
renderResponse. This tells JSF to display the newly set view right away and avoid
any additional work. We then return null; there’s no need to return an outcome
since the normal navigation behavior will be skipped.

In this particular scenario, we could have called ExternalContext.
redirect (for a client-side redirect) or ExternalContext.dispatch (to
forward the request internally) instead of using the JSF API. However,
generally speaking, it’s better to use the JSF API, because a view identifi-
er isn’t guaranteed to always map to a URL. This is even more important
in portlet environments, where you have no control over URL structure.

That’s it for ProjectTrack’s security, as well as all of its application code. Now, lets
look at internationalizing the application.

13.3 Supporting internationalization in code

ProjectTrack works fine as it is, as long as you know English. DeathMarch Devel-

BY THE
WAY
opment wanted support for Russian as well, so we have some extra work ahead of

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

552 CHAPTER 13
Backing beans, security, and internationalization

us. Supporting multiple languages involves two steps. First, you move the text
from code into external property files that hook into Java’s multilingual support;
this is called internationalization. Next, you create versions of those files for differ-
ent languages; this is called localization. For more information about internation-
alization and localization in general, see chapter 6.

TIP If you know you need to support multiple locales, it’s better to interna-
tionalize your application from the beginning, instead of updating it
later—even if you start with support for only one language initially.

In chapter 10, we went through the process of internationalizing the JSPs and
localizing them for both Russian and English. We also configured ProjectTrack to
support both languages in faces-config.xml. So, now we need to do the same for
strings displayed through code.

 Two types of strings need to be translated: display strings and messages. Dis-
play strings are the text that users typically see on a screen—strings like “Inbox”
and “Project Details”. Messages are either the result of validation errors or gener-
ated by action methods; for example, the AuthenticationBean sends a message if
the login or password is incorrect, and most of the action methods will send an
error message if there is a problem with the database.

13.3.1 Internationalizing text with resource bundles

Display strings are handled through normal Java resource bundles. Almost all of
ProjectTrack’s display strings are defined in JSP; there are a couple of classes,
however—namely AuthorizationFilter and CreateProjectBean—that have dis-
play strings as well. These strings are listed in table 13.1.

Note that the text for the PathNotFound string has “{0}”. This means that the code
can substitute a parameter into the string, which is the request path name in this
case. Your strings can have any number of parameters. For simplicity, we’ll use the

Table 13.1 Display strings in Java code that need to be internationalized.

Class Key English text

AuthorizationFilter PathNotFound Path {0} not found.

CreateProjectBean ProjectTypeTitle Select the project type
same resource bundle that was used in chapter 10—ptrackResources.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Supporting internationalization in code 553

 In order to support the strings listed in table 13.1, we need to add new name/
value pairs to the default resource bundle (WEB-INF/classes/ptrackResources.
properties), as shown in listing 13.14.

AuthorizationFilter
PathNotFound=Path {0} not found.

CreateProjectBean
ProjectTypeTitle=Select the project type

Note that the filename doesn’t end with “en” because English is configured as the
default language.

 Now that we’ve added the proper strings to the resource bundle, it’s time to
modify the code. Since retrieving localized display strings is a common opera-
tion, we’ll add a new method, called getDisplayString, to our Utils class, as shown
in listing 13.15.

...
import java.text.MessageFormat;
import java.util.ResourceBundle;
import java.util.MissingResourceException;
import java.util.Locale;
...
protected static ClassLoader
 getCurrentClassLoader(Object defaultObject)
{
 ClassLoader loader =
 Thread.currentThread().getContextClassLoader();
 if (loader == null)
 {
 loader = defaultObject.getClass().getClassLoader();
 }
 return loader;
}

public static String getDisplayString(
 String bundleName,
 String id,
 Object params[],
 Locale locale)

Listing 13.14 ptrackResources.properties: Text strings for Java classes

Listing 13.15 Utils.java: Updated with a new method to load localized display strings

 b

 c
{
 String text = null;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

554 CHAPTER 13
Backing beans, security, and internationalization

 ResourceBundle bundle =
 ResourceBundle.getBundle(bundleName, locale,
 getCurrentClassLoader(params));
 try
 {
 text = bundle.getString(id);
 }
 catch (MissingResourceException e)
 {
 text = "!! key " + id + " not found !!";
 }
 if (params != null)
 {
 MessageFormat mf = new MessageFormat(text, locale);
 text = mf.format(params, new StringBuffer(), null).toString();
 }
 return text;
}
...

The code starts with a utility method, getCurrentClassLoader (b), that returns
either the class loader for the current thread or the class loader of a specified
default object. Why do we need this? When you load a resource bundle, the
ResourceBundle class searches the classpath for files that are resource bundles. In
this case, we want it to search our web application’s classpath. Utility classes like
Utils are sometimes loaded from a web application’s main classpath with a differ-
ent class loader, and consequently shared across many different web applications.
If we didn’t account for this fact, we couldn’t guarantee that getDisplayString
would work properly unless the Utils class was in the same WEB-INF directory as
the rest of the web application.

 The getDisplayString method (c) loads the bundle using the static Resour-
ceBundle.getBundle method, passing in the ClassLoader instance retrieved from
getCurrentClassLoader. It then retrieves a string from the bundle for the passed-
in identifier, using the ResourceBundle.getString method. This method can throw
a MissingResourceException if the specified identifier wasn’t found. We’d prefer
to return an error string instead in that case, so we catch the exception. If an
array of parameters were passed in, we insert those into a string using the Message-
Format class.

 We can use the getDisplayString method in any code that needs to retrieve
a localized display string. Let’s start with AuthorizationFilter. All we have to do

is change the hardcoded error message to use the proper string from the
resource bundle:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Supporting internationalization in code 555

public void doFilter(ServletRequest request,
 ServletResponse response,
 FilterChain chain)
 throws IOException, ServletException
{
 ...
 HttpServletRequest httpRequest = (HttpServletRequest)request;
 HttpServletResponse httpResponse = (HttpServletResponse)response;
 HttpSession session = httpRequest.getSession();

 String requestPath = httpRequest.getPathInfo();
 ...

 if ((role.equals(RoleType.UPPER_MANAGER) &&
 requestPath.indexOf(Constants.PROTECTED_DIR) > 0) ||
 (!role.equals(RoleType.PROJECT_MANAGER) &&
 requestPath.indexOf(Constants.EDIT_DIR) > 0))
 {
 String text =
 Utils.getDisplayString(Constants.BUNDLE_BASENAME,
 "PathNotFound",
 new Object[] { requestPath },
 request.getLocale());
 httpResponse.sendError(HttpServletResponse.SC_NOT_FOUND,
 text);
 }
 ...
}

First, note that the Constants class declares the name of the resource bundle, avoid-
ing the possibility of mistyping the name. Also, we pass in the current Locale
directly from the HttpRequest object since there is no FacesContext yet (filters are
executed before JSF begins processing the request). Since the string in the bundle
has a parameter in it, we also need to send the getDisplayString method request-
Path as a single parameter (it will replace “{0}” with the value of the requestPath).

 Now, let’s update CreateProjectBean. The only display string in this class is
the title property that’s set for the projectSelectOne component binding prop-
erty, so we need to retrieve the localized string in the property’s accessor:

public HtmlSelectOneMenu getProjectSelectOne()
{
 ...
 projectSelectOne.setTitle(
 Utils.getDisplayString(getApplication().getMessageBundle(),
 "ProjectTypeTitle", null,
 getFacesContext().getViewRoot().getLocale()));
 ...

 return projectSelectOne;
}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

556 CHAPTER 13
Backing beans, security, and internationalization

This time we have access to the JSF APIs, so we retrieve the name of the bundle
from the Application and the locale from the ViewRoot. Note that the Applica-
tion.messageBundle property returns the bundle configured in faces-config.xml,
which is primarily for customized messages but can also be used to localize dis-
play strings. You can specify only one bundle in faces-config.xml, so if your
application has several bundles, you should load them with string constants, as
in the previous example. Since this string is not parameterized, we pass in null
for the parameters.

TIP Resource bundle keys are perfect candidates for centralized constants,
since they can easily be mistyped and they’re sometimes reused. In Pro-
jectTrack, we could have placed constants for these two strings in the
Constants class.

With these minor changes, we’ve internationalized all of the display text that’s
handled by Java code. The application, however, will behave exactly the same—it
will display English text for everything.

Localizing for Russian
To localize these strings for Russian, we just need to add strings to the Russian
resource bundle, which has the suffix “ru”, which is the ISO Language Code for
Russian (see appendix E for a list of all the language codes). The ptrackResources_
ru.properties file is shown in listing 13.16.

AuthorizationFilter
PathNotFound={0} íå íàéäåíî

CreateProjectBean
ProjectTypeTitle=âûáåðèòå òèï ïðîåêòà

As soon as we create this file and place it in the WEB-INF/classes directory, these
strings will display in Russian (if the user’s locale is currently Russian). Now that
we’ve mastered the display text, let’s take a look at internationalizing messages.

Listing 13.16 ptrackResources_ru.properties: Updated with Russian text strings for
Java classes
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Supporting internationalization in code 557

13.3.2 Internationalizing messages

If you examine each of the ProjectTrack backing beans, you’ll find a decent num-
ber of messages, both for information purposes and to report errors. These are
summarized in table 13.2.

Because messages have properties like a severity level, a summary, and detailed
messages, JSF handles them slightly differently than ordinary display text. You
specify two name/value pairs in the resource bundle—one for the summary and
one for the detail. The identifiers are the same, but the detail string’s identifier
ends with “.detail”. This is the same process we used for customizing default mes-

Table 13.2 ProjectTrack contains a number of error and informational messages.

Class Severity ID English Summary English Detail

AuthenticationBean Info BadLogin Incorrect name or
password.

AuthenticationBean Error ErrorLoadingUser A database error
has occurred.

Error loading User
object.

SelectProjectBean,
UpdateProjectBean

Info ProjectNotFound The project you
selected cannot
be found.

The project is no
longer in the data
store.

SelectProjectBean Error ErrorLoadingProject A database error
has occurred.

Error loading
project.

CreateProjectBean Error ErrorAddingProject A database error
has occurred.

Error adding
project.

CreateProjectBean Info ContactEmailRequired E-mail address is
required for the
contact.

UpdateProjectBean Error ErrorUpdatingProject A database error
has occurred.

Error updating
project.

Utils Info CanNotApprove You cannot
approve a
project with the
status “{0}”.

Utils Info CanNotReject You cannot reject
a project with the
status “{0}”.
sages in chapter 6. Listing 13.17 shows the resource bundle updated to include
strings for ProjectTrack’s application-generated messages.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

558 CHAPTER 13
Backing beans, security, and internationalization

Messages
BadLogin=Incorrect name or password.
ErrorLoadingUser=A database error has occurred.
ErrorLoadingUser_detail=Error loading User object.
ProjectNotFound=The project you selected cannot be found.
ProjectNotFound_detail=The project is no longer in the data store.
ErrorLoadingProject=A database error has occurred.
ErrorLoadingProject_detail=Error loading project.
ErrorAddingProject=A database error has occurred.
ErrorAddingProject_detail=Error adding project.
ContactEmailRequired=E-mail address is required for the contact.
ErrorUpdatingProject=A database error has occurred.
ErrorUpdatingProject_detail=Error updating project.
CannotApprove=You cannot approve a project with the status "{0}".
CannotReject=You cannot reject a project with the status "{0}".

Here, we’ve defined the identifiers and strings for all of the messages created in our
backing beans. For each message, we define its identifier, the summary, and detail
(the severity level must still be handled in code). Note that the last two strings,
CannotApprove and CannotReject, accept a single parameter, which should be a
string representation of a project’s status.

 Now that we’ve defined all the message strings, we need to update the code to
use them instead of hardcoded values. In order to do this, we’ll write a factory
method [GoF] that will load the resource bundle and then construct a new Faces-
Message instance based on the summary and detail strings in the bundle. We’ll
place it in our Utils class, just like getDisplayString, since it can be used by many
classes throughout an application (backing beans, validators, converters, and so
on). We’ll also update the Utils.reportError method to use this new method.
The source is shown in listing 13.18.

...
public static FacesMessage
 getMessage(String messageId,
 Object params[],
 FacesMessage.Severity severity)
{
 FacesContext facesContext = FacesContext.getCurrentInstance();
 String bundleName =

Listing 13.17 ptrackResource.properties: Messages string used in Java classes

Listing 13.18 Utils.java: Factory method for constructing new FacesMessage
instances from a resource bundle

 b
 facesContext.getApplication().getMessageBundle();
 if (bundleName != null)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Supporting internationalization in code 559

 {
 String summary = null;
 String detail = null;
 Locale locale = facesContext.getViewRoot().getLocale();
 ResourceBundle bundle =
 ResourceBundle.getBundle(bundleName, locale,
 getCurrentClassLoader(params));
 try
 {
 summary = bundle.getString(messageId);
 detail = bundle.getString(messageId + "_detail");
 }
 catch (MissingResourceException e) {}
 if (summary != null)
 {
 MessageFormat mf = null;
 if (params != null)
 {
 mf = new MessageFormat(summary, locale);
 summary = mf.format(params, new StringBuffer(), null).toString();
 }
 if (detail != null && params != null)
 {
 mf.applyPattern(detail);
 detail = mf.format(params, new StringBuffer(), null).toString();
 }
 return (new FacesMessage(severity, summary, detail));
 }
 }
 return new FacesMessage(severity,
 "!! key " + messageId + " not found !!",
 null);
}
...

public static void reportError(
 FacesContext facesContext,
 String messageId,
 Exception exception)
{
 FacesMessage message = getMessage(messageId, null,
 FacesMessage.SEVERITY_ERROR);
 facesContext.addMessage(null, message);
 if (exception != null)
 {
 facesContext.getExternalContext().
 log(message.getSummary(), exception);
 }
}
...

 c
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

560 CHAPTER 13
Backing beans, security, and internationalization

The new getMessage method (b) is similar to getDisplayString in listing 13.16.
The difference is that it creates a new FacesMessage instance based on two display
strings—the summary and the detail. The only difference between the two iden-
tifiers is that the latter one ends in “_detail”. This is what JSF does internally for
standard messages, as well as custom ones that you define. The listing also shows
an updated version of reportError (c), which uses getMessage to load a message
based on its identifier.

Here, we’ve created a single factory method that takes a few parameters.
It would be nice to have some convenience methods with defaults, so we
wouldn’t have to specify commonly known parameters like locale and
the severity. If you don’t want to write these methods yourself, the Car-
Demo application, included with the JSF RI [Sun, JSF RI], has a Message-
Factory class with additional methods, which is free for reuse.

Now that we’ve defined a new factory method, we can use it in all of the places
throughout our code where we created a FacesMessage instance manually. Let’s see
how to do this by examining the login method of the AuthenticationBean class:

public String login()
{
 FacesContext facesContext = getFacesContext();

 User newUser = null;
 try
 {
 newUser = getUserCoordinator().getUser(loginName, password);
 }
 catch (ObjectNotFoundException e)
 {
 facesContext.addMessage(null,
 Utils.getMessage("BadLogin", null,
 FacesMessage.SEVERITY_INFO));
 return Constants.FAILURE_OUTCOME;
 }
 catch (DataStoreException d)
 {
 Utils.reportError(facesContext, "ErrorLoadingUser", d);
 return Constants.ERROR_OUTCOME;
 }
 ...
}

The changes are in the exception handling after the method calls getUser. An

BY THE
WAY
ObjectNotFoundException is not a major error, so in this case we add a message

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Supporting internationalization in code 561

with the info severity level using our new getMessage method with the identifier
BadLogin. DataStoreExceptions are serious errors, though, so we use the updated
version of reportError with the identifier ErrorLoadingUser.

SOAPBOX Creating messages in code is currently too much work—you shouldn’t
have to write a FacesMessage factory method at all; it should be part of the
standard API. We hope this will be addressed in a future version of JSF.

With similar changes to the other backing beans, we’ll have a fully international-
ized version of ProjectTrack. The next step is to add support for Russian.

Localizing for Russian
Now that the messages are internationalized, let’s localize them for Russian. All
we have to do is update ptrackResources_ru.properties as shown in listing 13.19.

Messages
InvalidEmail=Ââåäèòå äåéñòâóþùèé àäðåñ ýëåêòðîííîé ïî÷òû
BadLogin=Íåâåðíîå èìÿ èëè ïàðîëü
ErrorLoadingUser=Îøèáêà â áàçå äàííûõ
ErrorLoadingUser_detail=Îøèáêà â çàãðóçêå èìåíè ïîëüçîâàòåëÿ
ProjectNotFound=âûáðàííûé ïðîåêò íå íàéäåí
ProjectNotFOund_detail=ïðîåêò âûâåäåí èç áàçû äàííûõ
ErrorLoadingProject=Îøèáêà â áàçå äàííûõ
ErrorLoadingProject_detail=Îøèáêà â çàãðóçêå ïðîåêòà
ErrorAddingProject=Îøèáêà â áàçå äàííûõ
ErrorAddingProject_detail=Îøèáêà â äîáàâëåíèÿ ïðîåêòà
ContactEmailRequired=Òðåáóåòñÿ êîíòàêòíûé àäðåñ ýëåêòðîííîé ïî÷òû
NoProjectAdapter=Ñèñòåìíàÿ îøèáêà
NoProjectAdapter_detail=ñâîéñòâî ProjectAdapter íå óñòàíîâëåíî
ErrorUpdatingProject=Îøèáêà â áàçå äàííûõ
ErrorUpdatingProject_detail=Îøèáêà â îáíîâëåíèè ïðîåêòà
CannotApprove=Âû íå ìîæåòå ïîäòâåðäèòü ïðîåêò ñî ñòàòóñîì {0}
CannotReject=Âû íå ìîæåòå îòìåíèòü ïðîåêò ñî ñòàòóñîì {0}

That’s it for internationalizing and localizing ProjectTrack’s Java code. Figure 13.8
shows the login page, fully localized for Russian, with a message generated by
AuthenticationBean.

 We’ve now completed developing a full-fledged JSF application. It’s time to
talk about what we did and didn’t do, and why.

Listing 13.19 ptrackResources_ru.properties: Updated with Russian message text
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

562 CHAPTER 13
Backing beans, security, and internationalization

13.4 Design consequences and alternatives

ProjectTrack was designed to demonstrate one possible architecture for a JSF
application, and also to help you understand how all of JSF’s features can be used
in a working piece of software that’s more complicated than a typical example.
The specific design decisions we made are by no means the only way you can
develop a JSF application. Like most things in software development, your opti-
mal solution depends on the specific needs and constraints of your project. In
this section, we briefly review the decisions made with ProjectTrack, and talk
about some of the alternatives.

13.4.1 Accessing the business layer

In chapter 12 we talked about the different layers of an application. The applica-
tion layer includes action methods and backing beans like AuthenticationBean;
the business layer includes objects like User and ProjectCoordinator.

 In practice, this means that the business layer doesn’t know anything about JSF
and can be unit-tested independently. The application layer, on the other hand,
knows about JSF, and can manipulate UI components on based on user input. It’s
mainly responsible for collecting data, calling the business layer, and then return-
ing a result that JSF uses to select the next view. This type of design is less error-
prone and much easier to maintain in the long term, and consequently a neces-
sity for larger projects.

Figure 13.8 The login page localized for Russian
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Design consequences and alternatives 563

Alternative: implementing business logic and data access in action methods
Even though we highly recommend always using a separate domain layer, it’s
entirely possible to forgo it entirely and write everything in action methods. This
the simple approach we highlighted at the beginning of chapter 12 (see figure 12.1).
In this scenario, the action methods perform all of the business logic and talk
directly to other systems like databases, web services, or EJB servers. In terms of
ProjectTrack, this means that instead of calling the Coordinator objects to get
object instances, the action methods would implement this work themselves (or
call other methods located in the same class).

WARNING Some tools will default to placing data service objects in backing beans.
Be aware of the consequences if you choose to let them do the work for you.

This approach can be faster, so it may work well for prototypes or very small
projects. However, it’s harder to unit test (because action methods are tied into
Faces, which requires different types of testing harnesses), and often less main-
tainable because the action methods can become bloated. We think of this
approach as sort of a slippery slope as the project becomes larger. Even if you
want to factor out logic into a separate business layer, the chances of you having
the time to do so are slim. Consequently, you could end up with a very brittle
application that has data access code, business logic, and application layer code
all mixed together.

13.4.2 Organizing beans by function

In ProjectTrack, we took the approach of developing a bean for each class of func-
tions. Each bean manages the data and the action methods for its type of work.
The AuthenticationBean manages login and logout, the SelectProjectBean man-
ages listing and selecting projects (for approval, rejection, or viewing), and so on.

 Organizing application code this way means that it’s not tied to specific views.
For example, SelectProjectBean is used by two entirely different pages—Show
All and Inbox. The Show All page executes one of the bean’s action methods, and
the Inbox page executes all three. An entirely different page could easily execute
any one of these action methods. There are still constraints—for instance, Select-
ProjectBean expects to be bound to a UIData component—but as long as the asso-
ciated view satisfies those constraints, the backing bean is happy.

 This type of organization also makes the system conceptually simple to under-

stand because the code is organized into logical areas of functionality. It’s quite
obvious, for example, that any functionality related to login and logout should be

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

564 CHAPTER 13
Backing beans, security, and internationalization

in the AuthenticationBean. What’s not so obvious, however, is the relationship
between the bean and the view. There’s no way you can tell, for example, that
UpdateProjectBean is associated with both the Approve a Project and Reject a
Project pages without looking at the navigation rules.

Alternative: organizing beans by form
An alternative to organizing beans by function is to organize them by form. So,
for ProjectTrack, we’d have LoginForm, GetProjectForm, ApproveRejectForm, and
so on. This way, each page has an associated form that collects its values (and
optionally has associated action methods as well). In this scenario, the emphasis is
more on the form that’s collecting the values than on the function of the class.
The form may or may not expose action methods for operating on those values.
Often, IDEs will take this approach—every time you create a new view, they will
create a new backing bean for that view.

 One possible drawback to this approach is repeated logic for similar pages.
You can, of course, combat this with inheritance, but if this happens a lot you
could end up with some ugly hierarchies.

 Organizing your backing beans by form works well if your action methods are
implemented using a service class, which we discuss in the next section.

13.4.3 Action methods implemented by backing beans

Since ProjectTrack’s beans are organized around their functionality, each bean
exposes one or more action methods that make up the system’s functional API.
Often it’s easier to expose your action methods from backing beans because it
allows you to associate data with methods, which is, after all, one of the main fea-
tures of object-oriented programming. It also avoids the overhead of searching
for the bean that holds the data and then calling getter methods to get the data;
you can simply use instance variables. In general, we recommend this approach.

The ability to associate action methods directly with data collected from
forms is one of the main differences between JSF and Struts. Struts favors
separate Action classes and form beans.

Alternative: action methods implemented independently
You can mimic the Struts-style action methods in JSF by writing classes that each
have a single action method. This way, the action methods are independent enti-
ties that can live in the application scope and are instantiated the first time

BY THE
WAY
they’re accessed (alternatively, you can initialize them at startup). All backing

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Design consequences and alternatives 565

beans would be completely separate, and the action methods would simply refer-
ence the necessary beans.

 This approach can yield many tiny classes, as is often the case with Struts
Actions. The drawback is that it’s not necessarily clear what the relationship is
between a view, its backing bean(s), and the action methods. In contrast, when the
action method is on the backing bean, it’s clear that it was intended to manipulate
that bean’s properties.

Alternative: action methods implemented by service classes
Another approach is to organize action methods by function. So, you could have a
called ProjectService class that exposed all of the action methods for the system.
You could alternatively have a few service classes that logically grouped different
system functions. Each of these services would be registered with the Managed
Bean Creation facility (or configured at startup).

 This is conceptually similar to the approach ProjectTrack takes, except the ser-
vice classes would generally be more granular and would not be directly associ-
ated with backing bean properties. Instead, they could access backing beans
through managed properties or retrieve them with their scoped variable name.
In addition, they would probably be application-scoped.

 This is roughly equivalent to having a group of Struts Actions at your dis-
posal—the code that performs the work is not directly associated with the values
it manipulates. The service’s action methods could be stateless, like Struts Actions,
or stateful, depending on the needs of your application.

 The benefit of this approach is that you have a clear view of your application’s
functions, and they are well organized. The drawback is the same as using indi-
vidual action methods: it’s hard to see how all of the pieces—views, backing
beans, and action methods—are related. This approach is more appealing than
creating one class per action method because it’s easier to manage (fewer classes)
and better organized (several action methods in one class that perform a specific
type of work).

13.4.4 Initializing backing bean properties with the
Managed Bean Creation facility

ProjectTrack takes a decidedly different approach to associating objects with each
other—for the most part, this is done with the Managed Bean Creation facility.
Any objects that a backing bean needs are exposed through properties that are
configured with the facility. This gives beans strongly typed access to other

objects, and severely limits the need to search for related objects in an application

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

566 CHAPTER 13
Backing beans, security, and internationalization

scope. The details about what object is available in what scope are managed in a
JSF configuration file instead of code.

 Because event listeners reference type-safe properties, the code is less error-
prone. Also, it’s obvious what objects a developer needs to access because they’re
exposed as properties (through the BaseBean class). We highly recommend this
approach whenever possible; the only real drawback is the need to edit yet another
configuration file and create new properties when you introduce a new dependency.

Alternative: retrieving objects by value-binding expressions
Another option is to use the familiar servlet approach of retrieving objects from
different application scopes as necessary. For example, the Visit object could be
retrieved directly from the session scope, and the coordinator classes could be
retrieved from the application scope. There would be no properties to retrieve
these objects, but there may be static utility methods that simplify the task.

 This approach makes sense to existing servlet developers, and also makes it easy
to modify the system when new objects are added to one of the application’s scopes.
The downside is that you’re still forced to worry about where objects are located,
and what their keys are—hallmarks of the Servlet API that are somewhat clunky.

 If you decide to use this approach, remember to use value-binding expressions
when necessary, since they create new object instances for you. So, instead of
defining a visit property in our BaseBean class:

Visit visit = getVisit();

we would retrieve it through a value binding:

Visit visit = (Visit)app.getValueBinding(Constants.VISIT_KEY).
 getValue(facesContext);

Using value bindings ensures that your application code acts in a manner that’s
consistent with the way UI components retrieve objects.

 In general, we highly recommend using strongly typed backing beans and the
Managed Bean Creation facility instead of this approach. However, this approach
is particularly useful when you’re integrating JSF with existing applications that
access objects in this way (see chapter 14 for more information on integrating
with current applications and Struts).

13.5 Summary

In this chapter, we completed developing ProjectTrack, a full-fledged application

based solely on JSF. We began by developing backing beans and action methods—

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 567

the core classes that interact with JSF components. We talked about how thread-
ing issues may be a concern for beans that aren’t stored in request scope, and how
action methods should catch and log all exceptions.

 Next, we walked through the development of backing beans that handle
authentication, as well as loading, updating, and creating projects. For each bean,
we examined how they expose properties that are wired to JSF components, and
how their action methods used those values to execute classes in the business layer.
Each bean was configured via the Managed Bean Creation facility, and we showed
examples of using the bean in JSP (from previous chapters).

 ProjectTrack’s business layer is completely object-oriented, which is the pre-
ferred approach for most applications (especially larger ones). However, JSF
works equally well with data service objects like JDBC ResultSets, so we also exam-
ined how ProjectTrack might be implemented if we used ResultSets directly
instead of objects.

 In addition to the application logic, we examined security issues (settling on an
authorization filter) and the process of internationalization. Finally, we looked at
alternate design choices, like developing a backing bean hierarchy to provide
access to common properties, implementing action methods as independent
classes, and organizing backing beans by form.

 Our tour of ProjectTrack shows how easy it is to develop powerful real-world
JSF applications, building on all of the concepts covered earlier in this book. But
what if you have an existing application with which you’d like to use JSF’s features?
If that’s the question on your mind, read on to the next chapter. (If not, skip to
part 4 to learn how to write custom components, validators, and converters.)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF
with Struts and

existing applications
This chapter covers
■ When to use JSF with other frameworks
■ Integrating JSF with Struts
■ Migrating from Struts to JSF
■ Integrating or migrating other types of

applications
568

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

When to use JSF with other frameworks 569

So far in this book, we’ve been concentrating on the world of JavaServer Faces.
We’ve looked at what makes a web application a JSF application. We’ve meticulously
surveyed all of the standard components and examined navigation, validation, and
type conversion. And we’ve examined what it’s like to build a JSF web application
from scratch.

 Now it’s time to step outside of the box. In the real world, you’re likely to have
additional concerns like integrating JSF with existing applications and deciding
whether you should build new JSF applications in conjunction with another web
framework. In this chapter, we examine these issues and provide general guide-
lines plus detailed instructions for integrating JSF with applications that use
Struts [ASF, Struts].

14.1 What integration means

Before we go any further, let’s define what we really mean by integration. First,
remember that there are two different pieces of the JSF puzzle:

■ User interface components, converters, validators, and event handling.
■ Application features—navigation, action methods, and so on.

Integration means using either one of these pieces with an application or frame-
work that is not based on a JSF implementation. Usually, your primary interest
will be in using the components, and your secondary interest will be integrating
the other features.

 So, you may have an existing Struts application, but you want to take advantage
of JSF components and leave your existing infrastructure (including Struts Actions)
intact. Or, you may have a custom-built application that you slowly migrate to JSF,
starting with its navigation features and later adding JSF components. Another
scenario is developing a new application that uses JSF components and navigation
but integrates with another framework for additional features. For example, there
is a library that allows you to use JSF in conjunction with Spring [Spring-Faces],
which is a framework that focuses more on enterprise application issues.

 Now that you know what we mean by “integration,” let’s look at when it might
be necessary.

14.2 When to use JSF with other frameworks

 Way back in chapter 1, we talked about all of the Java web application frameworks

on the market. You’ll recall that we made two main points. The first was that there

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

570 CHAPTER 14
Integrating JSF with Struts and existing applications

are too many—frameworks exist in places where there’s a hole in the standard
platform stack; the Servlet API and JSP have left a hole that dozens of companies
and organizations have tried to fill. Second, those frameworks can be broken into
two camps: user-interface (UI) frameworks and foundation frameworks.

 The main purpose of JSF is to fill this hole so that using another framework
isn’t a requirement. It’s primarily a UI framework, but it also has some foundation
features, such as page navigation. However, because JSF is new, it may not have all
of the bells and whistles your existing toolkit has, so you may want to use the two
together. (In chapter 1, figure 1.3 shows the stack of web application features and
which of those features are provided by JSF and Struts.)

 Okay, so now it’s clear that JSF does a lot, but not necessarily everything. It’s
also clear that JSF has two main features: UI components and basic application
infrastructure. So, when should you use something else? Our recommendations
are shown in table 14.1.

NOTE Even if you’re not a big JSP fan, remember that you can still use JSF with-
out JSP. There’s an example of integrating JSF with XUL, Mozilla’s XML-
based user interface definition language [XUL], in the JSF reference im-

Table 14.1 Recommendations for when to use JSF with another framework.

Scenario Recommendation

New small-to-medium scale
application

Use JSF by itself. With a standard JSF application, you can still hook into
EJBs, web services, databases, and other back-end data sources.

New large-scale application Build a JSF application but consider another framework for additional
services, like template management or client-side validation, if necessary.

Existing framework-based
application

Integrate with JSF. The primary benefit of supporting JSF will be
third-party components, so look at using UI components first. A safe
approach is to simply migrate to using JSF components and then
follow the direction of your framework for other services. If, however,
you aren’t using any advanced framework features, you may want to
migrate entirely.

Existing small-to-medium scale
application with no framework

Migrate to JSF entirely. This will give you access to JSF components and
industry-wide support for core services; you can augment JSF with any
additional services your application provides.

Existing large-scale application
with no framework

Migrate to JSF entirely, but consider integrating with another framework
for additional services, like template management or client-side valida-
tion, if necessary.
plementation [Sun, JSF RI]. See appendix A for details. You can expect
to see more support for JSP alternatives as time moves on.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The many faces of requests and responses 571

Now that you know when to integrate JSF with an existing framework or applica-
tion, let’s look at what’s involved in such a task.

14.3 The many faces of requests and responses

Throughout this book, we’ve talked about the Request Processing Lifecycle, which
is the set of phases a JSF implementation goes through when it’s processing an
HTTP request. The goal of this lifecycle is to translate a raw request into events,
update components, perform type conversion and validation, and execute appli-
cation logic. In other words, this lifecycle is what JSF is about: providing a higher-
level abstraction for the low-level world of an HTTP request.

 This lifecycle is the norm for an application built entirely with JSF. Most
requests are Faces requests, and most responses are Faces responses (see the defi-
nition for an explanation). But what if you’re integrating JSF with an existing
application, or you have a JSF event listener or additional servlet that generates
its own response (like a dynamically generated image)? In these cases, things get
a little more complicated. Your application can receive a Non-Faces request and
generate Non-Faces responses as well.

DEFINITION A Faces request is any client request that’s processed by the normal Re-
quest Processing Lifecycle. This means any request that’s generated by a
JSF ActionSource component. A Faces response is any response that is
generated by the Render View stage of the lifecycle. A Non-Faces request is
any request that was not initiated by a JSF ActionSource component. A
Non-Faces response is any response that wasn’t created by the Render View
phase of the request Processing Lifecycle. This would include forwards
to non-JSF resources and redirects. Most of the time, a Faces request re-
sults in a Faces response.

As it turns out, there are four possible scenarios: a Faces request generates a Faces
response, a Faces request generates a Non-Faces response, a Non-Faces request gen-
erates a Faces response, and a Non-Faces request generates a Non-Faces response.
The different scenarios are depicted in figure 14.1.

 It’s important to realize that using JSF doesn’t limit you to a world of Faces
requests and Faces responses. This is essential for integration with other frame-
works, because they often have their own request processing lifecycle. If JSF was
arrogant enough to require applications to always generate Faces responses, it
would be much harder to integrate with those frameworks.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

572 CHAPTER 14
Integrating JSF with Struts and existing applications

This level of flexibility also allows you to integrate with other, non-JSF servlets in
the same web application. As a matter of fact, this is the approach used by the
Struts-Faces integration library [ASF, Struts-Faces], which we discuss in the next
section. The ability to mix and match JSF processing also makes it easy to migrate
your applications over time. Because your existing application and JSF both use
the underlying Servlet API, they can access the same application logic.

 The best way to understand a concept is with an example, so in the next sec-
tion, we’ll explore integration with Struts, and examine how to combine this
approach to make the most out of both frameworks.

14.4 Integrating JSF with Struts applications

Now that we’ve talked about when to integrate, and how an integrated applica-
tion differs from a pure JSF application, let’s move ahead with a real-world exam-
ple. There’s been a lot of industry speculation about Struts [ASF, Struts] and JSF,
and the reality is that you can use the two together today, due to the release of the

Figure 14.1 The four possible ways that an application can handle requests and responses.
Struts-Faces integration library [ASF, Struts-Faces]. The library was developed by

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 573

the original author of Struts and one of the leads for the JSF specification, and,
like Struts, is a product of the Apache Software Foundation. This section is prima-
rily geared toward current users of Struts, but even if you’re not a Struts user, you
may be interested in how the library handles integration of the two technologies.

 The primary goal of the library is to provide support for JSF’s UI components.
This means that you can use JSF components on pages that use normal Struts fea-
tures like ActionForms, ActionForwards, and Actions. In order to facilitate this
process, Struts-Faces includes JSP custom tags, renderers, and UI components
that replace existing Struts tags. In most cases, the replacement is extremely
straightforward. Most important, you can usually leave your Struts Actions and
your application and domain logic untouched.

 The library takes the approach of integrating Struts support into the JSF
implementation and leaving you access to the traditional Struts ActionServlet.
This means that Struts-Faces applications can continue to process Struts requests
normally, but they can also support all of the combinations of Faces and Non-
Faces requests. So, for example, you can have a Faces request that generates a
Struts response, as well as a Struts request that generates a Struts response. These
options are depicted in figure 14.2.

 Struts-Faces supports the different request/response scenarios because it doesn’t
replace Struts’ ActionServlet or JSF’s FacesServlet. It simply allows the two to
work together—a Struts-Faces application has an instance of both servlets running.

 Faces requests result in Struts responses if the Struts-Faces <s:form> tag is used.
This is accomplished by replacing JSF’s default ActionListener implementation
with a Struts-Faces ActionListener. So, when an ActionEvent occurs from a Struts-
Faces form, the new ActionListener executes a Struts Action instead of a JSF
action method. Technically, the Struts Action is executed by a specialized Request-
Processor (in Struts, the RequestProcessor is responsible for most of the details
involved with servicing a request). Figure 14.3 shows this architecture.

 In the following sections, we’ll examine how to integrate JSF components with
an existing Struts application, using JSP as the display technology. Familiarity
with Struts and some of its features, like Actions, ActionForms, the Struts Valida-
tor, and Tiles, is assumed. (If you’re in the market for a book on Struts we highly
recommend Ted Husted’s Struts in Action [Husted].) We’ll start with basic steps like
adding the proper libraries, and then move on to replacing the old Struts tags
with new ones that integrate with JSF. We’ll then move on to using Tiles for tem-
plating, and take a look at possibilities for integrating Action architectures.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

574 CHAPTER 14
Integrating JSF with Struts and existing applications

Figure 14.2 The Struts-Faces integration library supports all of the possible scenarios for generating
Struts and Faces requests and responses. However, you generally won’t genreate a Faces response
from a Struts request, unless you’re explicitly trying to hook into JSF’s navigation features.

Figure 14.3 The Struts and Faces servlets both work independently; the integration occurs through
the Struts-Faces ActionListener when using the Struts-Faces form.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 575

If you intend to follow along, you’ll need an existing Struts application, the
Struts-Faces integration library [ASF, Struts-Faces] and a JSF implementation
(either the Sun RI [Sun, JSF RI] or MyFaces [MyFaces]).

NOTE This section is based on Struts-Faces 0.5, which is the most current ver-
sion at the time of this writing. If you’re using a newer version, we rec-
ommend that you read the release notes for any changes or updates.
Some of the examples in this section are based on the example applica-
tion included in Struts-Faces, but they may not be exactly the same.

14.4.1 First steps

The first thing you need to do is set up the proper libraries:

1 Add the Struts-Faces library to your application: The Struts-Faces library
is contained neatly in a single JAR file called struts-faces.jar. Copy this
file from the Struts-Faces distribution into your web application’s WEB-
INF/lib directory.

2 Add the JavaServer Faces libraries to your application: If you’re using
the reference implementation [Sun, JSF RI], the JARs will be called jsf-
api.jar and jsf-impl.jar. Copy these two files from your JSF distribution
into your application’s WEB-INF/lib directory.

3 Add the JavaServer Pages Standard Template Library (JSTL) to your
application: You can either get these the official JSTL distribution site
[Sun, JSTL], or from your JSF implementation. Copy the JSTL JAR files
(jstl.jar and standard.jar) into your application’s WEB-INF/lib directory.

4 Add the JSF controller servlet to your web application’s deployment
descriptor (WEB-INF/web.xml): This step is also required for any other
JSF application:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>
 javax.faces.webapp.FacesServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

Note that <load-on-startup> is set to 1 to make sure that FacesServlet
loads first. Because FacesServlet must load first, you must make sure that

the Struts servlet, ActionServlet, loads second (or even later). This can

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

576 CHAPTER 14
Integrating JSF with Struts and existing applications

be done by either omitting the <load-on-startup> element from the
ActionServlet definition, or changing it to 2 or higher:

<servlet>
 <servlet-name>Struts Servlet</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>
 <load-on-startup>2</load-on-startup>
</servlet>

5 Add a servlet mapping for the JSF controller servlet to your web appli-
cation’s deployment descriptor (WEB-INF/web.xml): Like step 4, this is
a normal JSF configuration step:

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>

This is an example of prefix mapping; you can also use suffix mapping
(see chapter 3 for more about JSF application configuration).

6 Add the Struts-Faces RequestProcessor to your Struts configuration file
(WEB-INF/struts-config.xml): You can do this by adding a <controller>
element. If you’re not using Tiles, use the FacesRequestProcessor class:

<controller>
 <set-property property="processorClass"
 value="org.apache.struts.faces.
 application.FacesRequestProcessor"/>
</controller>

If you are using Tiles, use the FacesTilesRequestProcessor:

<controller>
 <set-property property="processorClass"
 value="org.apache.struts.faces.
 application.FacesTilesRequestProcessor"/>
</controller>

NOTE If you’ve developed your own RequestProcessor, you’ll need to modify
it to subclass the appropriate Struts-Faces RequestProcessor. Be care-
ful that you don’t interfere with any JSF-specific processing (look at the
source for the Struts-Faces class first). Of course, if you do this, you must
also change the <controller> entry in struts-config.xml.
Now that JSF has been added to your Struts application, let’s start the integra-
tion process.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 577

14.4.2 Migrating Struts JSP tags

The JSP custom tags included with Struts-Faces have a single goal: to replace most
of the Struts HTML and bean custom tags with equivalents that are based on JSF.
The Struts team also advocates replacing the remaining Struts Logic and Bean
tag libraries with the equivalent Java Standard Tag Library (JSTL) tags. We won’t
go into detail about converting your application to use JSTL, but you will see
some examples of equivalent tags as we walk through the conversion process. (For
information about using JSF with JSTL, see chapter 3.)

 The Struts-Faces tags are designed to make conversion a relatively simple pro-
cess. Some of the tags are direct replacements for Struts tags, and some are
intended to be used instead of standard JSF tags. You can import the tag library
with the following directive:

<%@ taglib prefix="s"
 uri="http://jakarta.apache.org/struts/tags-faces" %>

Table 14.2 lists all of the tags with detailed descriptions. Like the standard JSF
tags, all attributes of these tags accept value-binding expressions.

Table 14.2 The Struts-Faces integration library includes tags that are replacement for Struts HTML
and Bean tags (and a couple of tags that are replacements for standard JSF tags.) All of these tags
accept value-binding expressions for attributes.

Struts-Faces
JSP Tag

Required
Attributes

Optional
Attributes

Encoding Behavior

<s:base> id, rendered,
target

Displays an HTML <base>
element.

<s:errors> id, rendered,
bundle

Displays all Struts and JSF
messages (if there are any).

<s:form> action id, rendered,
enctype, focus,
focusIndex, method,
onreset, onsubmit,
rendered, style,
styleClass,
styleId, target

Displays an HTML <form> element
associated with a Struts Action.

<s:html> id, locale, xhtml Displays an <html> element.

<s:javascript> cdata, dynamicJava-
Script, formName,
htmlComment,
method, page, src,
staticJavascript

Displays JavaScript validation logic
when used in conjunction with the
Struts Validator. This doesn’t map
to a JSF component; it’s simply a
convenience tag.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

578 CHAPTER 14
Integrating JSF with Struts and existing applications

Table 14.3 lists all of the standard Struts HTML tags and some Struts Bean tags
with their Struts-Faces or JSF equivalent.

<s:message> key or
value

id, rendered,
styleClass, value,
bundle

Display a localized message from a
resource bundle. The key can either
be specified literally or retrieved
with a value-binding expression via
the value attribute. You can nest
parameters with the JSF
<f:param> tag.

<s:loadMessages> var messages Stores a MessageResources
instance (specified by the
message attribute) as a Map in the
request scope under the key
specified by var. This allows the
resources to be accessed through
value-binding expressions (and JSP
2.0/JSTL expressions); for any key,
the Map will return the
corresponding localized string. If
messages is not specified, the
default MessageResources for
this Struts application will be used.
This tag is the Struts equivalent of
the <f:loadBundle> tag.

<s:stylesheet> path id, rendered Displays a relative reference to a
stylesheet using an HTML <link>
element.

<s:subview> id Represents a nested JSP fragment
(this is equivalent to the JSF
<f:subview> tag).

<s:write> id, rendered,
value, styleClass,
filter

Displays the specified value (either
text or a value-binding expression).
If filter is true (the default),
HTML-sensitive characters will be
filtered out.

Table 14.2 The Struts-Faces integration library includes tags that are replacement for Struts HTML
and Bean tags (and a couple of tags that are replacements for standard JSF tags.) All of these tags
accept value-binding expressions for attributes. (continued)

Struts-Faces
JSP Tag

Required
Attributes

Optional
Attributes

Encoding Behavior
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 579

Table 14.3 For most Struts HTML tags and some Struts Bean tags, there is an equivalent tag in
either the Struts-Faces tag library or the standard JSF tag library.

Struts Tag
Struts-Faces
Replacement

JSF Standard Tag Notes

<html:base> <s:base>

<html:button> <h:commandButton>

<html:cancel> <h:commandButton
 id="cancel">

The id attribute must be
“cancel” in order for it to be
treated like the Struts tag.
Also, the immediate
property must be false (the
default). If it’s true, then the
request will be processed as a
normal JSF request instead of
a Struts request.

<html:
checkbox>

<h:selectBoolean>

<html:errors> <s:errors>

<html:file> No replacement at this time.

<html:form> <s:form>

<html:frame> No replacement at this time.

<html:hidden> <h:inputHidden>

<html:html> <s:html>

<html:image> <h:commandButton
 image="[url]"/>

<html:img> <h:graphicImage>

<html:
javascript>

<s:
javascript>

<html:link> <s:link>

<bean:
message>

<s:message>

<html:
multibox>

<h:selectBoolean-
Checkbox>

<html:option> <f:selectItem>
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

580 CHAPTER 14
Integrating JSF with Struts and existing applications

<html:
options>

<f:selectItems> You must modify your code to
return SelectItem
instances or a Map of name/
value pairs instead of arbitrary
JavaBeans.

<html:
options-
Collection>

<f:selectItems> You must modify your code to
return SelectItem
instances or a Map of name/
value pairs instead of arbitrary
JavaBeans.

<html:
password>

<h:inputSecret>

<html:radio> <h:selectItem> inside
<h:selectOneRadio>

<html:reset> <h:commandButton
type="reset">

<html:
rewrite>

No replacement at this time.

<html:select> <h:selectOneRadio>,
<h:selectOneListbox>,
<h:selectOneMenu>,
<h:selectMany-
Checkbox>,
<h:selectMany-
Listbox>,
or <h:selectManyMenu>

Choose the proper JSF tag
based on the parameters you
were using for the Struts
<html:select> tag. (For
example if multiple was
false, use a SelectOne
component; otherwise use a
SelectMany component.)

<html:submit> <h:commandButton>

<html:text> <h:inputText>

<html:
textarea>

<h:inputTextarea>

<s:subview> <f:subview>

<bean:write> <s:write>

<html:xhtml> No replacement at this time.

Table 14.3 For most Struts HTML tags and some Struts Bean tags, there is an equivalent tag in
either the Struts-Faces tag library or the standard JSF tag library. (continued)

Struts Tag
Struts-Faces
Replacement

JSF Standard Tag Notes
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 581

Table 14.3 is by no means an exhaustive list of tags that you can use. You’re free to
mix and match JSTL tags, your own custom tags, and JSF component tags.

NOTE Struts-Faces provides automatic support for DynaBeans and DynaAction-
Forms in JSF value-binding expressions. (DynaBeans are special Java-
Beans that store values in a Map but expose them as normal properties;
DynaActionForms use this feature to allow form properties to be de-
clared in a configuration file instead of code.)

So, if you have a DynaBean available called myBean that has a myProp-
erty property, you can reference it like a normal JavaBean with the fol-
lowing value-binding expression: "#{myBean.myProperty}". For Dyna-
ActionForms, the map property is still supported for backward compati-
bility. So, if you have a DynaForm called myForm with a property called
myProperty, you can reference the property with either "#{myForm.
myProperty}" or "#{myForm.map.myProperty}". For more informa-
tion about DynaForms and DynaBeans, see the Struts site [ASF, Struts] or
Struts in Action [Husted].

Struts-Faces also supports a special implicit variable, called struts, which pro-
vides access to Struts-specific objects in value-binding expressions. Table 14.4 lists
the properties that it exposes.

Table 14.4 Using the struts implicit variable, you can access Struts-specific variables in value-bind-
ing expressions. This variable is an instance of the org.apache.struts.faces.util.Struts-
Context class.

Property Type Description

action-
Event

javax.faces.event.ActionEvent Current action event for this request
(if any).

action-
Mapping

org.apache.struts.action.
ActionMapping

Action mapping for the current request.

action-
Servlet

org.apache.struts.action.
ActionServlet

The Struts ActionServlet instance.

dataSource javax.sql.DataSource Default application data source (if any).

exception java.lang.Throwable Exception thrown by a Struts tag (if any).

external-
Context

javax.faces.context.
ExternalContext

JSF external context.

faces-
Context

javax.faces.context.
FacesContext

JSF context.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

582 CHAPTER 14
Integrating JSF with Struts and existing applications

Now that you know which tags are available and how they map to the Struts HTML
tags, let’s move forward with some concrete examples.

Some of our analysis is based on the Struts-Faces version of the Struts ex-
ample application. The plain vanilla version is included in the standard
Struts 1.1 distribution [ASF, Struts]. The Struts-Faces library includes
two different versions that have been converted to use JSF tags: one that
does not use Tiles, and one that does. The examples here may not match
the examples in the Struts-Faces distribution exactly.

Converting a simple page
To give you an idea of how simple conversion can be, we’ll start by modifying the
Main Menu page from the Struts example application. This isn’t a very compli-
cated page, but it is fully internationalized and uses Struts Bean and HTML tags.
The page in a browser is shown in figure 14.4. The original JSP source for the
page appears in listing 14.1.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<jsp:useBean id="user" scope="session"
 type="org.apache.struts.webapp.example.User"/>
<html:html>

locale java.util.Locale Locale stored in the user’s session for
Struts-based localization.

message-
Resources

org.apache.struts.util.
MessageResources

Default Struts message resources
instance.

module-
Config

org.apache.struts.config.
ModuleConfig

Module configuration for the current mod-
ule.

cancelled boolean Returns true if current request has been
cancelled (indicated by a request
attribute).

Listing 14.1 The original mainMenu.jsp from the Struts example application

Table 14.4 Using the struts implicit variable, you can access Struts-specific variables in value-bind-
ing expressions. This variable is an instance of the org.apache.struts.faces.util.Struts-
Context class. (continued)

Property Type Description

BY THE
WAY
<head>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 583

 <title><bean:message key="mainMenu.title"/></title>
 <html:base/>
</head>
<body bgcolor="white">
<h3><bean:message key="mainMenu.heading"/>
 <jsp:getProperty name="user" property="username"/>
</h3>

 <html:link page="/editRegistration.do?action=Edit">
 <bean:message key="mainMenu.registration"/></html:link>

 <html:link forward="logoff">
 <bean:message key="mainMenu.logoff"/></html:link>

</body>
</html:html>

To convert this page, we’ll follow these steps:

1 Remove the Struts tag libraries.

2 Remove the <jsp:useBean> tag. This is no longer necessary, because
value-binding expressions will find the User object in any scope.

3 Add the JSF standard tag libraries with the following directives:
Figure 14.4 We’ll start the conversion process with the Main Menu for the Struts
example application.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

584 CHAPTER 14
Integrating JSF with Struts and existing applications

<%@ taglib prefix="f"
 uri="http://java.sun.com/jsf/core" %>
<%@ taglib prefix="h"
 uri="http://java.sun.com/jsf/html" %>

4 Add the Struts-Faces tag library to the page with the following directive:

<%@ taglib prefix="s"
 uri="http://jakarta.apache.org/struts/tags-faces" %>

5 Enclose all component tags in an <f:view> tag.

6 Convert all tags to equivalent Struts-Faces or standard JSF component
tags (using tables 14.2 and 14.3).

7 Use HtmlPanelGrid or HtmlDataTable for layout (this is optional).

8 Change any ActionForwards that point to this page in struts-config.xml
to use the FaceServlet prefix (/faces/). So, for example, the line

<forward name="success" path="/mainMenu.jsp"/>

would be changed to

<forward name="success" path="/faces/mainMenu.jsp"/>

The converted page is shown in listing 14.2. What’s great about this process is
that the converted page has identical behavior to the previous page.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib prefix="f"
 uri="http://java.sun.com/jsf/core" %>
<%@ taglib prefix="h"
 uri="http://java.sun.com/jsf/html" %>

<%@ taglib prefix="s"
 uri="http://jakarta.apache.org/
 struts/tags-faces" %>

<f:view>

<s:html locale="true">
<head>
 <title>
 <s:message key="mainMenu.title"/>
 </title>
 <s:base/>
 <s:stylesheet path="/stylesheet.css"/>
</head>

Listing 14.2 mainMenu.jsp converted to use JSF tags

Import JSF
tag libraries

Replace Struts
tag libraries

Add view tag

Replace
Struts tags
<body>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 585

 <h:panelGrid columns="1"
 headerClass="list header"
 rowClasses="list row even,
 list row odd"
 styleClass="list">
 <f:facet name="header">
 <h:panelGroup>
 <s:message key="mainMenu.heading"/>
 <h:outputText value="#{user.username}"/>
 </h:panelGroup>
 </f:facet>

 <h:outputLink value="editRegistration.do"
 styleClass="link">
 <f:param name="action" value="Edit"/>
 <s:message key="mainMenu.registration"/>
 </h:outputLink>

 <h:outputLink value="logoff.do" styleClass="link">
 <s:message key="mainMenu.logoff"/>
 </h:outputLink>

 </h:panelGrid>

</body>
</s:html>
</f:view>

As listing 4.2 shows, updating the page is a combination of simply changing the
tag library prefix and replacing or adding new tags. It’s also important to note
that we’re building direct links to the appropriate Struts Actions (editRegistra-
tion.do and logoff.do). This means that when a user clicks on one of those links,
the request will be processed directly by the Struts ActionServlet, not JSF’s Face-
Servlet. These are what we called Struts requests in section 14.3.

 Now that we’ve examined a simple example, let’s look at something a bit more
complicated.

Converting a more complicated page with client-side validation
Our second example is the Edit Registration page of the Struts sample applica-
tion. It’s shown in figure 14.5. The standard Struts JSP source for this page is shown
in listing 14.3.

Use HtmlPanelGrid
for layout

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

586 CHAPTER 14
Integrating JSF with Struts and existing applications

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<html:html>
<head>
<logic:equal name="registrationForm"
 property="action"
 scope="request" value="Create">
 <title><bean:message key="registration.title.create"/></title>
</logic:equal>
<logic:equal name="registrationForm" property="action"
 scope="request" value="Edit">
 <title><bean:message key="registration.title.edit"/></title>
</logic:equal>
<html:base/>
</head>
<body bgcolor="white">

<html:errors/>

<html:form action="/saveRegistration"
 onsubmit="return validateRegistrationForm(this);">
<html:hidden property="action"/>
<table border="0" width="100%">

Listing 14.3 The original registration.jsp page from the Struts sample application

Figure 14.5 Our second example is the registration page of the Struts example
application.

Logic tags used
for conditionals

 b

HTML table c
 <tr>
used for layout

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 587

 <th align="right">
 <bean:message key="prompt.username"/>:
 </th>
 <td align="left">
 <logic:equal name="registrationForm" property="action"
 scope="request" value="Create">
 <html:text property="username" size="16" maxlength="16"/>
 </logic:equal>
 <logic:equal name="registrationForm" property="action"
 scope="request" value="Edit">
 <html:hidden property="username" write="true"/>
 </logic:equal>
 </td>
 </tr>

 <tr>
 <th align="right">
 <bean:message key="prompt.password"/>:
 </th>
 <td align="left">
 <html:password property="password" size="16" maxlength="16"/>
 </td>
 </tr>

 <tr>
 <th align="right">
 <bean:message key="prompt.password2"/>:
 </th>
 <td align="left">
 <html:password property="password2" size="16" maxlength="16"/>
 </td>
 </tr>

 <tr>
 <th align="right">
 <bean:message key="prompt.fullName"/>:
 </th>
 <td align="left">
 <html:text property="fullName" size="50"/>
 </td>
 </tr>

 <tr>
 <th align="right">
 <bean:message key="prompt.fromAddress"/>:
 </th>
 <td align="left">
 <html:text property="fromAddress" size="50"/>
 </td>

 </tr>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

588 CHAPTER 14
Integrating JSF with Struts and existing applications

 <tr>
 <th align="right">
 <bean:message key="prompt.replyToAddress"/>:
 </th>
 <td align="left">
 <html:text property="replyToAddress" size="50"/>
 </td>
 </tr>

 <tr>
 <td align="right">
 <html:submit>
 <bean:message key="button.save"/>
 </html:submit>
 </td>
 <td align="left">
 <html:reset>
 <bean:message key="button.reset"/>
 </html:reset>

 <html:cancel>
 <bean:message key="button.cancel"/>
 </html:cancel>
 </td>
 </tr>
</table>
</html:form>

<html:javascript formName="registrationForm"
 dynamicJavascript="true"
 staticJavascript="false"/>
<script language="Javascript1.1"
 src="staticJavascript.jsp"></script>

</body>
</html:html>

Note that in addition to Struts HTML and Bean tags, this page uses Logic tags
(b) and HTML tables (c) for layout. Consequently, the conversion process requires
a little more effort. The integration with the Struts Validator (d) doesn’t require
any extra conversion work, but we wanted to show how easy it is to integrate Struts
validation. The declaration assumes that the ValidatorPlugin is configured in
struts-config.xml, and that a rule for registrationForm has been declared in the
plug-in’s configuration file, validator.xml.

 Here’s the conversion process for this page:

JavaScript from
Struts Validator

 d
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 589

1 Remove the Struts tag libraries.

2 Add the JSF standard tag libraries with the following directives:

<%@ taglib prefix="f"
 uri="http://java.sun.com/jsf/core"%>
<%@ taglib prefix="h"
 uri="http://java.sun.com/jsf/html"%>

3 Add the Struts-Faces tag library to the page with the following directive:

<%@ taglib prefix="s"
 uri="http://jakarta.apache.org/struts/tags-faces"%>

4 To replace the Struts Logic tags with the equivalent JSTL tags, add the JSTL
tag library to the page: <%@ taglib prefix="c" uri="http://java.sun.com/
jstl/core" %>

5 Enclose all component tags in an <f:view> tag.

6 Convert all Struts HTML or Bean tags to the equivalent Struts-Faces or
standard JSF component tags (see tables 14.2 and 14.3).

7 Convert all Struts Logic tags to the equivalent JSTL tags. This is optional
but recommended by the Struts team.

8 Change any ActionForwards that point to this page in struts-config.xml
to use the FaceServlet prefix (/faces/). So, for example, the line

<forward name="success" path="/mainMenu.jsp"/>

would be changed to

<forward name="success" path="/faces/mainMenu.jsp"/>.

The converted page is shown in listing 14.4.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib prefix="c"
 uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core" %>
<%@ taglib prefix="h" uri="http://java.sun.com/jsf/html" %>
<%@ taglib prefix="s"
 uri="http://jakarta.apache.org/struts/tags-faces" %>

<f:view>

<s:loadMessages var="messages"/>

Listing 14.4 registration.jsp after conversion to JSF

Add JSTL
tag library Import JSF

tag libraries

Replace
Struts tag
libraries

Add view tag

Load b

<s:html locale="true">
<head>

MessageResourcesReplace
Struts tags

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

590 CHAPTER 14
Integrating JSF with Struts and existing applications

 <title>
 <c:choose>
 <c:when test="${registrationForm.action == 'Create'}">
 <s:message key="registration.title.create"/>
 </c:when>
 <c:when test="${registrationForm.action == 'Edit'}">
 <s:message key="registration.title.edit"/>
 </c:when>
 <c:otherwise>
 UNKNOWN ACTION
 </c:otherwise>
 </c:choose></title>
 <s:base/>
 <s:stylesheet path="/stylesheet.css"/>
</head>
<body>

<s:errors/>

<s:form id="registration"
 action="/saveRegistration"
 focus="username"
 onsubmit="return validateRegistrationForm(this);"
 styleClass="center form">

 <h:inputHidden id="action"
 value="#{registrationForm.action}"/>

 <h:panelGrid columns="2"
 styleClass="grid"
 headerClass="grid.header"
 columnClasses="grid.column0,
 grid.column1">

 <%-- Grid header element --%>

 <f:facet name="header">
 <h:panelGroup>
 <c:choose>
 <c:when test="${registrationForm.action == 'Create'}">
 <s:message key="registration.header.create"/>
 </c:when>
 <c:when test="${registrationForm.action == 'Edit'}">
 <s:message key="registration.header.edit"/>
 </c:when>
 <c:otherwise>
 <h:outputText id="unknownActionTitle"
 value="UNKNOWN ACTION"/>

Replace Struts Logic tags
with equivalent JSTL tags

Replace HTML table
with HtmlPanelGrid

 c
 </c:otherwise>
 </c:choose>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 591

 </h:panelGroup>
 </f:facet>

 <%-- Grid data elements --%>

 <h:outputLabel for="username"
 styleClass="label">
 <s:message key="prompt.username"/>
 </h:outputLabel>

 <h:panelGroup>
 <c:choose>
 <c:when test="${registrationForm.action == 'Create'}">
 <h:inputText id="username"
 size="16"
 styleClass="field"
 value="#{registrationForm.username}"/>
 </c:when>
 <c:when test="${registrationForm.action == 'Edit'}">
 <h:panelGroup id="usernameGroup">
 <s:write filter="true"
 styleClass="value"
 value="#{registrationForm.username}"/>
 <h:inputHidden id="username"
 value="#{registrationForm.username}"/>
 </h:panelGroup>
 </c:when>
 <c:otherwise>
 <h:outputText id="unknownActionMessage"
 styleClass="value"
 value="UNKNOWN ACTION"/>
 </c:otherwise>
 </c:choose>
 </h:panelGroup>

 <h:outputLabel for="password"
 styleClass="label">
 <s:message key="prompt.password"/>
 </h:outputLabel>

 <h:inputText id="password"
 size="16"
 styleClass="field"
 value="#{registrationForm.password}"/>

 <h:outputLabel for="password2"
 styleClass="label">
 <s:message key="prompt.password2"/>
 </h:outputLabel>
 <h:inputText id="password2"

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

592 CHAPTER 14
Integrating JSF with Struts and existing applications

 size="16"
 styleClass="field"
 value="#{registrationForm.password2}"/>

 <h:outputLabel for="fullName"
 styleClass="label">
 <s:message key="prompt.fullName"/>
 </h:outputLabel>

 <h:inputText id="fullName"
 size="50"
 styleClass="field"
 value="#{registrationForm.fullName}"/>

 <h:outputLabel for="fromAddress"
 styleClass="label">
 <s:message key="prompt.fromAddress"/>
 </h:outputLabel>

 <h:inputText id="fromAddress"
 size="50"
 styleClass="field"
 value="#{registrationForm.fromAddress}"/>

 <h:outputLabel for="replyToAddress"
 styleClass="label">
 <s:message key="prompt.replyToAddress"/>
 </h:outputLabel>

 <h:inputText id="replyToAddress"
 size="50"
 styleClass="field"
 value="#{registrationForm.replyToAddress}"/>

 <h:commandButton id="submit"
 type="SUBMIT"
 styleClass="submit"
 value="#{messages['button.save']}"/>

 <h:panelGroup>
 <h:commandButton id="reset"
 type="RESET"
 styleClass="reset"
 value="#{messages['button.reset']}"/>
 <h:commandButton id="cancel"
 type="SUBMIT"
 styleClass="cancel"
 value="#{messages['button.cancel']}"/>
 </h:panelGroup>

Don’t
reference
Struts Action

 d
 </h:panelGrid>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 593

</s:form>

<s:javascript formName="registrationForm"
 dynamicJavascript="true"
 staticJavascript="false"/>
<script language="Javascript1.1" src="staticJavascript.jsp"></script>

</body>
</s:html>
</f:view>

The biggest task with this page was converting the HTML table into an <h:panel-
Grid> component tag with a facet for the header, and child components (c).
Doing so, however, gives you some powerful possibilities for layout, and allows you
to access UIComponent properties for the entire panel (like rendered, which lets
you control whether or not a component is visible).

NOTE When you use the <s:form> tag, you can also register normal JSF event
listeners (such as action listener or value-changed listener methods).
Struts Actions are used as a replacement for JSF action methods—they
don’t interfere with the rest of the JSF event-processing model.

Curiously, when tags are converted to <h:commandButton>, no action attribute is
specified (d). This is because when the button is clicked, the Struts Action asso-
ciated with the <s:form> element will be executed.

 Also, note that we used the <s:loadMessage> tag to store the default Message-
Resources bundle under the key bundle (b), and that the UICommand components
(d) use this bundle to localize their text.

 It’s also important to note that integrating Struts validation was as simple as
converting any other tag (e)—we just changed the <html:javascript> tag to
<s:javascript>). So, if you’re used to the way the Struts Validator works and you
want to take advantage of its support of client-side JavaScript, you can do so in
conjunction with JSF (as long as your form still subclasses Struts’ ValidatorForm).

 This is all that’s required for converting most of your Struts JSP pages to use
JSF. However, things are slightly more complicated in the world of Tiles, which we
cover next.

Converting Tiles pages
Tiles is a powerful JSP templating system that’s tightly integrated with Struts, but

Replace Struts
validation tag

 e
can also be used separately. If your JSP pages have Tiles tags, integrating them

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

594 CHAPTER 14
Integrating JSF with Struts and existing applications

with JSF requires an extra two steps (assuming you’ve already configured the
FacesTilesRequestProcessor as described in section 14.4.1):

1 For any JSPs that use Tiles tags, surround each <t:insert> tag with a
Struts-Faces <s:subview> tag.

2 Add the /faces prefix to all references to that page (either in a Tiles XML
file or a JSP).

So, let’s assume you had a base layout JSP like the one shown in listing 14.5.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<%@ taglib prefix="t" uri="/WEB-INF/struts-tiles.tld" %>

 <html:html locale="true">
 <head>
 <title>
 <bean:message key="layout.title"/>
 </title>
 </head>
 <body>
 <table border="1" width="100%" cellspacing="5">
 <tr>
 <th colspan="2" align="center">
 <t:insert attribute="header" flush="false"/>
 </th>
 </tr>
 <tr>
 <td width="140" valign="top">
 <t:insert attribute="menu" flush="false"/>
 </td>
 <td align="left" valign="top">
 <t:insert attribute="body" flush="false"/>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <t:insert attribute="footer" flush="false"/>
 </td>
 </tr>
 </table>
 </body>
 </html:html>

Listing 14.5 The original Struts version of layout.jsp
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 595

All we need to do replace the Struts tag libraries with Struts-Faces and JSF tag
libraries, and then surround each of the <t:insert> tags with an <s:subview> tag.
The result is shown in listing 14.6.

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core" %>
<%@ taglib prefix="h" uri="http://java.sun.com/jsf/html" %>
<%@ taglib prefix="s"
 uri="http://jakarta.apache.org/struts/tags-faces" %>
<%@ taglib prefix="t" uri="/WEB-INF/struts-tiles.tld" %>

<f:view>
 <s:loadMessages var="messages"/>
 <s:html locale="true">
 <head>
 <title><s:message key="layout.title"/></title>
 <s:stylesheet path="/stylesheet.css"/>
 </head>
 <body>
 <table border="1" width="100%" cellspacing="5">
 <tr>
 <th colspan="2" align="center">
 <f:subview id="header">
 <t:insert attribute="header"
 flush="false"/>
 </f:subview>
 </th>
 </tr>
 <tr>
 <td width="140" valign="top">
 <f:subview id="menu">
 <t:insert attribute="menu" flush="false"/>
 </f:subview>
 </td>
 <td align="left" valign="top">
 <f:subview id="body">
 <t:insert attribute="body" flush="false"/>
 </f:subview>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <f:subview id="footer">
 <t:insert attribute="footer" flush="false"/>
 </f:subview>
 </td>

Listing 14.6 Layout.jsp converted to use Struts-JSF tags

Load
MessageResources

 b

Surround with
<f:subview> tags

 c
 </tr>
 </table>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

596 CHAPTER 14
Integrating JSF with Struts and existing applications

 </body>
 </s:html>
</f:view>

Note that we added the Struts-Faces <s:loadMessages> tag (b) so that we can
expose the MessageResources to all pages that use this template.

 You may have noticed that each <f:subview> tag (c) has an identifier that
happens to match the name of the Tiles attribute it surrounds. The names don’t
have to match, but the <f:subview> tag does require an identifier.

 Since the layout now uses Faces components, its definition must be updated to
use the /faces/ prefix so that the JSF servlet will process the page. So, if this layout
is defined in a Tiles configuration file, the updated entry would look like this:

<definition name=".base" page="/faces/layout.jsp">
 <put name="header" value="/header.jsp"/>
 <put name="footer" value="/footer.jsp"/>
 <put name="menu" value="/blank.jsp"/>
 <put name="body" value="/blank.jsp"/>
</definition>

The only change here is the addition of the prefix before the filename of the def-
inition. If this definition were in a JSP as opposed to in a Tiles configuration file,
the change would have been made there instead. The bottom line is that anytime
you use Struts-Faces or Faces tags on a page, the path must be updated with the /
faces/ prefix, unless the file is inserted as part of a Tiles template. The inserted
files header.jsp, footer.jsp, and blank.jsp don’t require the prefix because they’re
included in a definition for a page that already has the prefix.

NOTE A side effect of converting a Tiles definition is that all JSPs inserted in the
base template will also be processed by JSF. So if you add JSF compo-
nents to the inserted pages, there’s no need to update their Tiles defini-
tions to have the /faces/ prefix (or the .faces suffix); only the file with the
Tiles <t:insert> tags needs to have the prefix.

As you can see, Struts-Faces was designed to make integration with JSF easy. In
most cases, all you have to do is replace Struts tags with Struts-Faces and JSF tags,
and change paths that reference the JSP to include the proper prefix.

 Just updating the JSPs gives you access to JSF’s rich component model and its
standard components. It also opens the door for developing custom components

as well as using third-party ones. In many cases, this may be the extent of integra-
tion you want between Struts and JSF. You can continue to use the Struts Action

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 597

classes and take full advantage of its controller functionality. However, if you want
to take more advantage of JSF’s functionality, that’s entirely possible too. We take
a look at some possibilities in the next sections.

14.4.3 Using JSF action methods and managed beans

So far, we’ve focused on updating JSPs to use JSF components. All of the proce-
dures we’ve discussed integrate smoothly with Struts Actions; as a matter of fact,
the process should allow you to avoid changing your Struts Actions at all.

 One of the limitations of Struts, however, is that Actions and ActionForms are
separate. JSF has no such limitation—backing beans can contain both properties
and methods. Another nice JSF feature is the Managed Bean Creation facility.
The ability to declare objects and have them created automatically can be quite
useful.

 Fortunately, Struts-Faces allows you to use these features in Struts applications,
too. You can use ordinary action methods and managed beans just as you would
in a pure JSF application. In order to access JSF event listeners, all you have to
remember is not to use the Struts-Faces variant of the <form> tag. You can, how-
ever, mix both Struts-enabled forms and regular JSF forms:

<f:view>
...
 <s:form action="/hitMe">
 ...
 <h:commandButton value="Hit me with those digits!"/>
 </s:form>

 <h:form>
 ...
 <h:commandButton value="Hit me with those digits!"
 action="#{myBean.hitMe}"/>
 </h:form>
</f:view>

In this snippet, the top form submits to the Struts Action /hitMe, while the bot-
tom form submits to the JSF action method myBean.hitme. myBean could have been
configured and created by the Managed Bean Creation facility as usual.

 Of course, you don’t have to mix the two types of forms on the same page. You
can always use one or the other. And remember, you can still use normal JSF event
handlers (value-changed listeners, action listeners, and any custom listeners) on
any page that has been converted to use JSF components.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

598 CHAPTER 14
Integrating JSF with Struts and existing applications

 You may be wondering what happens if you use a JSF action method with a
converted Struts application. The answer depends on what you want to happen.
One option is to forward control to a Struts action; we discuss this next.

Invoking Struts Actions from JSF event handlers
Struts has no notion of server-side event handlers (other than Struts Actions
themselves) for UI components. So, let’s say you had an enhanced UISelectOne
component that generated a ValueChangedEvent every time the user selected a
new value. (We assume that the control generates client-side JavaScript to auto-
matically submit the form.) If you wanted to forward control to a different Struts
Action based on the value of the UISelectOne component, you could do so in a
ValueChangedListener.

 Also, if you’ve decided to migrate from Struts Actions to JSF action methods,
you can start by simply wrapping existing Struts actions. Later, you can incremen-
tally move the functionality from Struts Actions to JSF actions (presumably migrat-
ing the navigation rules as well).

 Fortunately, it’s easy to invoke Struts Actions from JSF event handlers. All
that’s necessary is to forward the request to the Struts Action using the External-
Context. For example, let’s say you wanted to forward control to a Struts Action
called hitMe with a request parameter called digits that had the value “23”. You
could do so like this:

public String hitMe()
{
 FacesContext context = FacesContext.getCurrentInstance();
 String url = "/hitMe.do?digits=23";
 try
 {
 context.getExternalContext().dispatch(url);
 }
 catch (IOException e)
 {
 throw new FacesException(e);
 }
 finally
 {
 context.responseComplete();
 }
 return null;
}

All we’re doing here is creating a URL to call the Struts Action directly, and then

calling the dispatch method of the ExternalContext to actually forward the URL.
In servlet environments, this just calls RequestDispatcher.forward, which internally

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Integrating JSF with Struts applications 599

forwards the request to the named resource. Since the Struts ActionServlet will
process the forwarded request, we’ve given control back to the world of Struts,
directing it to a specific Struts Action.

 This example is an action method, but the same block of code (minus the
return statement) could be used inside a ValueChangedListener or any other JSF
event handler. This is a handy way to integrate JSF event handling with the nor-
mal Struts controller architecture.

 If you’re more interested in sharing business logic between the two controller
architectures, then you’re better off having the two different types of Actions call
the same business logic directly. (If your business logic resides inside of a Struts
Action, this is a good time to refactor it into separate classes.) We discuss the idea
of using both controller architectures in the next section.

14.4.4 Who’s controlling whom?

When you convert Struts JSPs to use JSF components, you’re integrating with JSF’s
component model, but the back-end still uses Struts controller architecture, com-
plete with its Action classes, ActionForwards, and so on. In the previous section,
we showed how to call Struts Actions from JSF event handlers, but in that sce-
nario, Struts is still controlling the final outcome.

 With the Struts-Faces library, you can actually use the Struts controller archi-
tecture, JSF’s controller architecture, or both at the same time. The general rule is
that if you use the normal JSF <h:form> tag on a JSP page, the request will be han-
dled like a normal JSF request. If you use the Struts-Faces <s:form> tag, the
request will be handled as a JSF request, and then as a Struts request (instead of
invoking action methods). When the request is handled as an ordinary JSF
request, your JSP can either integrate with Struts (as shown in the previous sec-
tion) or use standard JSF navigation features.

 The primary reason for supporting both architectures is ease of migration. If
you wanted to migrate your entire application to JSF, for example, you could start
with the JSPs, and then slowly migrate the Actions and ActionForwards one by
one. At some point, half your application would be using the Struts controller and
the other half would use the JSF controller architecture. When you finished, your
entire application’s Action logic and navigation would be based on JSF.

 In general, you should stick with one controller architecture or the other. If
you begin to mix the two, your application could become messy and hard to
decipher. Just imagine joining a project with a bunch of Struts Actions and Action-

Forwards intermixed with JSF action methods and navigation rules—it would
be quite hard to figure out the application’s logical flow. Restricting the core

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

600 CHAPTER 14
Integrating JSF with Struts and existing applications

functionality—Actions and navigation—to one of the two architectures will make
your applications easier to maintain.

14.5 Integrating JSF with non-Struts applications

All of our discussions about integrating Struts is fine and dandy, but what if you’re
not using Struts? What if you’re using another foundation framework or no frame-
work at all? We can make some observations from the way Struts-Faces is written.

 Recall from section 14.4 that Struts-Faces works by allowing an application to
use either JSF’s FacesServlet or Struts’ ActionServlet to process requests. This
underscores a key fact about web applications—they can have multiple, cooperat-
ing servlets. If you think of JSF as “just another servlet,” then things become a lit-
tle clearer. As long as you’ve exposed your application objects in the proper web
application scope, a JSF event handler can access it. Conversely, any objects your
JSF code (or the Managed Bean Creation facility) create can be accessed by your
non-JSF application logic, as long as it’s all packaged in the same web application.
Figure 14.6 shows an example of this.

 Figure 14.6 shows that both your existing application and new JSF code can
access the same application beans and business logic. Of course, if all of your
business logic isn’t packaged into easily accessible objects, this scenario won’t
work. (So, if you have all of your business logic in one big servlet, now might be
the time to do some refactoring.)

Figure 14.6 The key to integrating with JSF is understanding that you can have multiple servlets, and

that application logic in a JSF environment and a non-JSF environment can access the same objects,
as long as they’re in the same web application.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 601

The most important thing to keep track of is when a Faces request is being cre-
ated, and when a Non-Faces request is being created. The rules are simple; see
section 14.3 for details.

 As is the case with Struts integration, we highly recommend that you use JSF’s
controller architecture or your existing one. Only use both while performing a com-
plete migration. It is, however, acceptable to mix and match on a module basis.

 So, if you have a new Order Tracking application that was built with JSF, it’s
perfectly logical to integrate it with a User Management module that was written
using plain old servlets and WebMacro [WebMacro] for templating a few years
ago and is widely deployed throughout your organization. This level of flexibility
is one of the core design goals of JSF—it plays well with the existing servlet world,
while simultaneously making that world more powerful.

 Also, remember that JSF is an extensible architecture—just about every feature,
from managed bean creation to displaying views—can be easily customized. Struts-
Faces takes advantage of this extensibility to integrate the two frameworks seam-
lessly. See online extension appendix C for more information on extending JSF.

14.6 Summary

In this chapter, we took a look at integrating JSF with existing applications and
frameworks. There are two different levels to JSF integration: using UI compo-
nents (and associated event handlers, validation, converters, and so on), and
using action methods and navigation (the controller functionality). Your level of
integration will depend on the services your application currently provides and
how they supplement the services JSF provides.

 A concrete integration example is the Struts-Faces library [ASF, Struts-Faces],
which allows you to use JSF within existing Struts applications. It provides a JSP
tag library that replaces many Struts tags, and allows you to use UI components
on pages that ultimately execute Struts Actions. It’s also possible to use JSF
actions and navigation in the same application.

 Struts-Faces integrates with Struts by enhancing JSF’s functionality, allowing
both the Struts servlet and the JSF servlet to coexist. This is the approach you can
use to integrate JSF with applications that don’t use Struts. The important thing
to remember is that since your application logic and business logic objects reside
in normal web application scopes, they can be accessed by code that’s executed by
JSF actions or your existing application.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Part 4

Writing custom components,
renderers, validators,

and converters

In part 4, we show you how to create your own components, renderers, val-
idators and converters. We explain the JSF APIs from a component devel-
oper’s perspective, and also examine issues such as JSP integration and
component packaging. Part 5 expands upon this foundation with several
concrete examples. You will find part 5 in the online extension available for
download at www.manning.com/mann.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

http://www.manning.com/mann
http://www.manning.com/mann

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The JSF environment:
a component

developer’s perspective
This chapter covers
■ How to write custom components, renderers,

validators, and converters
■ When to write a component or a renderer
■ Internationalizing components
■ Packaging components
605

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

606 CHAPTER 15
A component developer’s perspective

As we’ve shown throughout this book, JavaServer Faces has several services that
enable you to build web applications quickly. The real power of JSF, however, isn’t
the fact that it has some standard components available out of the box, or that IDE
vendors provide additional components. The power lies in its component model
and an extensible architecture that allows you and third parties to create your own
user interface (UI) extensions—components, renderers, validators, and converters.

 In this chapter, we’ll introduce you to the classes and interfaces that you’ll
encounter when you build UI extensions, and give you advice for typical use
cases. This chapter builds on the application environment details we discussed in
chapter 11, so we highly recommend you read that chapter first. We also cover
the more mundane side of the picture—configuration, and integration with a dis-
play technology like JSP.

NOTE This chapter provides an overview of how to create UI extensions and
refers to detailed examples that are part of the online extension (http://
www.manning.com/mann).

15.1 Three steps to UI extension nirvana

Implementing a custom JSF UI extension requires three key steps:

1 Subclassing the appropriate classes and/or implementing the neces-
sary interfaces: Usually there is a specific class or interface you have to
subclass. You may also need to implement additional interfaces or use
other helper classes for additional functionality.

2 Adding the proper configuration entries to a JSF configuration file:
Like most things in the world of JavaServer Faces, you can configure UI
extensions in a JSF XML configuration file. As a matter of fact, this is how
all of the default UI extensions are defined in the reference implementa-
tion [Sun, JSF RI]. For every extension you develop, you must have a cor-
responding configuration entry.1

The configuration entries are used to initialize the Application instance,
and also by tools for useful things like displaying an icon and a descrip-
tive name on a component palette. In this chapter, we describe the basic
entries required to register UI extensions; online extension appendix D
covers every element in detail.

1
 You can also configure them in code, but this is rarely done by anyone other than those writing the
code to parse the configuration files.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 607

3 Integrating your new class with a display technology such as JSP: The
last step is integrating your class with the display technology. Usually this
means relating some set of XML tags, or special tokens, to a specific UI
component, UIComponent/Renderer pair, Validator, or Converter instance.
In the world of JSP, this means implementing custom tags. The tags map
their attributes to user extension properties and attributes, and create
new UI extension instances if necessary.

Because JSP is required by the JSF specification, we’ll examine JSP inte-
gration in detail. This involves writing a tag handler class and updating a
tag library descriptor (TLD). (We won’t cover the ins and outs of develop-
ing tag handlers—only enough for you to begin developing JSF-specific
tags; see Web Development with JavaServer Pages, 2nd Edition [Fields] for a
deep discussion of the topic.) Even though we focus on JSP, integrating a
UI class with another display technology is as simple as implementing
the equivalent of a custom tag for that technology.

NOTE JSF was designed to work with JSP 1.2. In order to ensure that this code
works with the multitude of environments that still use JSP 1.2, all of the
JSP integration code presented in this book is based on JSP 1.2. You can
develop JSF applications with JSP 2.0, but you cannot integrate UI exten-
sions using JSP 2.0 tag files unless you duplicate the functionality of the
JSP 1.2 base classes included with JSF.

In the rest of this chapter, we cover classes, interfaces, and configuration elements
you’ll need to perform these three steps for UI components, renderers, valida-
tors, and converters.

15.2 Developing UI components

The standard JSF components serve a larger purpose than just providing basic UI
controls; they give you a base from which you can develop your own components.
If you’re as anxious as I am to avoid reinventing the wheel, then understanding
how to leverage the work that Sun and its partners have done with JSF will save
you a lot of time.

 Before we begin, it’s worthwhile to note that the skill set for UI component
development is somewhat different than the skill set required for developing UIs
or writing application code. Component development requires more detailed

knowledge of HTTP, the Servlet API, and most important, the underlying markup

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

608 CHAPTER 15
A component developer’s perspective

language (in this case, HTML, and CSS). Remember, the purpose of developing a
component is to hide the complexity of a particular piece of UI functionality. In
other words, you, as a component writer, must deal with that complexity so that a
front-end developer can happily drag the component from a tool palette and
drop it onto a form.

 The development process itself is relatively straightforward: write your UI
component, register it in a JSF configuration file, and then integrate it with a dis-
play technology. Your UI component will usually subclass one of the existing com-
ponents, such as UIInput, UIOutput, or UIData. These classes will typically subclass
UIComponentBase (at some level) and implement one or more additional inter-
faces. (See chapter 11, figure 11.2 for a class diagram of the core UI component
classes and interfaces.) If you want to provide strongly typed properties for ren-
derer-dependent attributes, you can also write a renderer-specific component,
like the standard HTML components. If you’re using JSP, integrating a new com-
ponent involves writing the tag handler and registering it in a TLD. All of the dif-
ferent pieces are pictured in figure 15.1.

 So, now it should be clear what expertise you need, and what possible classes
and files you need to work with. But when should you write a new component?

15.2.1 Deciding when to write a UI component

If you think you need to write a UI component, the first question you should ask
yourself is “What, exactly do I need to do?” Writing a new UI components is a
good solution for the following:

■ Supporting standard HTML features, like frames or file uploads, that are
not supported by the standard components.

■ Providing nonvisual added functionality to an existing UI component, such
as making the columns in UIData sortable automatically. (The MyFaces JSF
implementation [MyFaces] has such a component.) If your changes are
purely cosmetic, consider using a renderer instead. Our RolloverButton-
Renderer (online extension chapter 17) is in this category—the only change
it makes to UICommand is augmenting its output with JavaScript for rollovers.

■ Creating a new type of component, like an RSS headline viewer (online
extension chapter 18), a date input field with three drop-down listboxes
(online extension chapter 16), a toolbar (online extension chapter 19),
menus, tabbed panes, tree views, and so on.

■ Supporting component functionality for another markup language that

isn’t supported in the standard component set. For example, some wireless

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 609

devices can visualize tickers and progress bars, which aren’t supported by
the standard components. You would typically develop a new renderer in
this scenario as well. However, if you need to support a standard UI control
(like a text field) for another device, then you’re better off just writing a
renderer and using an existing component (like UIInput).

Figure 15.1 Class diagram of UI component development elements. Your UI component class will
usually subclass one of the standard components, such as UIInput or UIOutput, which will
subclass UIComponentBase and implement interfaces such as ValueHolder. You can optionally
create a markup-specific subclass, like the standard HTML components (HtmlOutputText,
HtmlDataTable, and so on). The component also must be registered in a JSF configuration file. If
you’re integrating with JSP, you need to write a custom component tag handler, which can subclass
either UIComponentTag or UIComponentBodyTag, and must be configured in a tag library
descriptor (TLD).
You also should answer this question: “Can I do this any other way?” Remember,
you can do all of these things without writing a new component:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

610 CHAPTER 15
A component developer’s perspective

■ Use any of the standard components, or third-party components from your
IDE vendor or elsewhere. Make sure there isn’t an existing component you
can use before you write a new one. To keep track of the third-party compo-
nent market, visit JSF Central [JSF Central], which is a community site with
an extensive product directory.

■ Format an existing component. Remember, CSS can do a lot.
■ Display an existing component on a different device, or add additional dis-

play behavior to an existing component. This can be done with a renderer
instead (see section 15.3).

■ Perform special business logic for a component. See if you can do this with
one or more event listeners first.

■ Add event listeners to a UI component. You can do this either with an event
listener class or an event listener method in a backing bean; both can be
configured through JSP.

■ Display an object in a specific way—this can be performed with a converter.
■ Check to make sure the user’s input is acceptable—you can do this with a

validator or validator method.

If you are still anxious to develop your own component (or at least interested in
knowing how), read on.

15.2.2 Classes and interfaces

In chapter 11, we covered a good amount of the UI component world. There
are some additional bits and pieces we omitted, however, that are helpful for
component development—some UIComponent methods, and details on interfaces
like StateHolder and NamingContainer, and so on. In the following sections, we
provide additional information about the UI component classes and interfaces
that will aid you on your component development journey.

UIComponent and UIComponentBase
All UI components descend from the javax.faces.component.UIComponent abstract
base class. We covered the basic UIComponent methods in chapter 11, so we won’t
repeat them here; instead, we’ll concentrate on the ones that pertain to compo-
nent development.

 Before we continue, however, it is important to repeat the distinction between
attributes and properties. Recall that UI components can have renderer-indepen-

dent properties (like layout) and renderer-specific attributes like cellpadding.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 611

Both attributes and properties can be retrieved through the attributes property
of UIComponent. The HTML component subclasses provide strongly typed prop-
erties for renderer-specific attributes, but doing so is not required.

 Even though UIComponent isn’t an interface, subclassing it directly isn’t trivial—
it has quite a few methods and has no default method implementations. Unless
you have a lot of time on your hands, you’re better off subclassing UIComponent-
Base, which provides default implementations of every method (except one). This
means it already has support for managing event listeners, events, value-binding
expressions, and so on. You can also subclass an existing component that has most
of the functionality you desire; all of the standard components subclass UIComponent-
Base either directly or indirectly.

 The remainder of this section refers to UIComponentBase, as opposed to UICom-
ponent. Let’s start with the clientId property:

public String getClientId(FacesContext context);

The getClientId method returns the component’s client identifier. Recall that
the client identifier is derived from the component identifier (the id property),
and is the name used on the client. You should use this method any time you’re
outputting a client-side identifier, like the name or id attribute of an HTML ele-
ment. (See chapter 2 for a thorough discussion of client identifiers.)

 As we discussed in chapter 11, every component has a type, which is a standard
name by which it can be referenced. For example, UIOutput’s type is javax.faces.
Output, and HtmlDataTable’s type is javax.faces.HtmlDataTable. This type is con-
figured in a JSF configuration file (see section 15.2.4). So that developers don’t
have to memorize each component’s type, it is normally available as a constant:

public static final String COMPONENT_TYPE = "myNamespace.myComponentType";

This allows developers to use the constant to create new instances of your com-
ponent through the Application class. You should declare this constant even if
you subclass a concrete UI component class, since your new class is a new type of
component (assuming that you’re not trying to replace an existing component
with your own implementation, which is what happens if you use an existing
type). There is no property that exposes the type.

 Throughout this book, we’ve grouped UI components into different families.
The family is exposed as a read-only property:

public abstract String getFamily();
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

612 CHAPTER 15
A component developer’s perspective

This is the only method that UIComponentBase doesn’t implement. Usually you
just return the COMPONENT_FAMILY constant:

public static final String COMPONENT_FAMILY = "myNamespace.myComponentFamily";

Families are used to help renderers decide if they know how to handle a particu-
lar component. They often map to the superclass—in other words, a UI compo-
nent and all of its subclasses are usually in the same family because they have
similar characteristics. Consequently, if you subclass a concrete UI component,
there’s no need to change the family unless you know that existing renderers
won’t be able to display your component.

NOTE For both family and type, the prefix “javax.faces.” is reserved for stan-
dard JSF components. When you develop your own components, you
can use the standard families if your component has similar behavior.
This will allow JSF to select the proper renderer based on family and
component type. You should not, however, create new families with the
“javax.faces.” prefix.

Once you’ve defined the type and family, it’s time to implement the methods to
perform the actual work. In simpler cases, this simply requires overriding one or
more of the following methods:

public void encodeBegin(FacesContext context) throws IOException;
public void encodeChildren(FacesContext context) throws IOException;
public void encodeEnd(FacesContext context) throws IOException;
public void decode(FacesContext context);

The first three methods are for displaying (encoding) the component, and the latter
is for interpreting browser input and updating the component accordingly (decod-
ing). The encoding process starts with a call to encodeBegin. After encodeBegin
completes, encodeChildren is called if the getRendersChildren method returns
true. (It returns false by default, so you should override it and return true if your
component wants to displays its own children. Otherwise, the child components
will display themselves normally through calls to their own encoding methods.)
Next, encodeEnd is called. If your component does not have children, you can put
all of your encoding logic in encodeBegin.

TIP You should only begin encoding if the rendered property is true.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 613

So, what is encoding logic? Basically just outputting markup directly to a Response-
Writer instance. Here’s an example that outputs an <input> element:

public void encodeBegin(FacesContext context) throws IOException
{
 if (!isRendered())
 {
 return;
 }

 String clientId = getClientId(context);
 ResponseWriter writer = context.getResponseWriter();

 writer.startElement("input", this);
 writer.writeAttribute("name", clientId, "id");
 String value = (String)getValue();
 ...
 writer.writeAttribute("value", value, "value");
 ...
 writer.writeAttribute("type", "submit", "type");
 ...
 writer.endElement("input");
}

This code checks to make sure that the component should be rendered, and then
writes an HTML input element with the component’s current value. Note that the
client identifier is output as the value of the name attribute. The output would look
something like "<input name='id01' value='Click me!' type='submit'>". As you
can see, this code retrieves a ResponseWriter instance from the FacesContext,
which it uses to output data. The ResponseWriter is suitable for all text output,
and has useful methods for generating markup. Its startElement method’s last
parameter is the UI component itself; this is used by tools to associate output with
your component. (Use ResponseStream, also available from the FacesContext, for
binary output.)

If you’re thinking you should be able to declare the component’s out-
put in a template (like a JSP page or an XML file), you’re not alone.
This currently isn’t supported in JSF 1.1, but will most likely be added
in a future version of the specification.

All interpretation of client input is handled through the solitary decode method.
If your component doesn’t accept user input, this method will do nothing. Other-
wise, you might use it to grab one or more response parameters and then apply

BY THE
WAY
them to your component’s local value, performing conversions if necessary. You
also might translate a request value into an event. Here’s a sample decode method:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

614 CHAPTER 15
A component developer’s perspective

public void decode(FacesContext context)
{
 if (!disabled())
 {
 String type = (String)getAttributes().get("type");
 String clientId = getClientId(context);
 Map requestParameterMap =
 context.getExternalContext().getRequestParameterMap();

 /* If the type is not "reset", and there's a request
 parameter equal to the client id. The "x" and "y" are sent
 by the browser if an image was clicked for the button. We
 don't care what the values are, since no value is actually
 changed. We just want to make sure the request parameter
 is there, which means that the button was clicked. */
 if (type == null || !type.equalsIgnoreCase("reset")) &&
 ((requestParameterMap.get(clientId) != null) ||
 (requestParameterMap.get(clientId + ".x") != null) ||
 (requestParameterMap.get(clientId + ".y") != null)))

 {
 queueEvent(new ActionEvent(this));
 }
}

This code first checks to make sure that the component is disabled. If not, the
method looks for a request parameter that starts with the component’s client
identifier, and then creates and enqueues a new ActionEvent if it finds the right
parameter (we cover queueEvent later in this section). Note that we use the cli-
ent identifier in both the encoding and decoding methods. That’s the whole
point—to allow us to relate the client’s representation of the component to the
server instance.

TIP Do not decode a component if it has been disabled. A component is con-
sidered disabled if the rendered property is false. With HTML com-
ponents, a component is also considered disabled if its disabled or
readonly attribute is true. Non-HTML components may have different
renderer-specific attributes that indicate whether they are disabled.

These four methods are the primary ones you’ll use to encode or decode your
component. You can, however, delegate rendering to a separate Renderer class
instead of implementing it directly. As a matter of fact, this is what UIComponent-
Base does by default, so there’s no need to override them if that is the behavior
you desire. The renderer is determined by its type (like UI components):
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 615

public String getRendererType();
public void setRendererType(String rendererType);

UI components usually set their default renderers in their constructors. For exam-
ple, here’s the constructor for UIInput:

public UIInput()
{
 super();
 setRendererType("javax.faces.Text");
}

Note that unlike UI components, renderers usually don’t declare constants, sim-
ply because you never know exactly what their concrete class is.

 You can retrieve an instance of the current renderer (if one is available) from
the current RenderKit based on the component’s type and family. UIComponent-
Base has a convenience method that does this for you:

protected Renderer getRenderer(FacesContext context);

Renderers are quite powerful, but they’re not really necessary for simpler compo-
nents that you don’t intend to use with other markup languages or redistribute.
In these cases, you can just override the previous methods. (We discuss renderers
in section 15.3.)

 The following methods are used for event handling:

protected void addFacesListener(FacesListener listener);
protected FacesListener[] getFacesListeners(Class clazz);
protected void removeFacesListener(FacesListener listener);
public void queueEvent(FacesEvent event);
public boolean broadcast(FacesEvent event, PhaseId phaseId)
 throws AbortProcessingException;

addFacesListener, getFacesListeners, and removeFacesListeners are convenience
methods for adding event listeners to your component. UIComponentBase man-
ages the list of listeners for you, so you can support new types of listeners by just
delegating to these methods. For example, here’s how UINavigator (covered in
online extension chapter 19) uses these methods:

public void addActionListener(ActionListener listener)
{
 addFacesListener(listener);
}

public void removeActionListener(ActionListener listener)
{
 removeFacesListener(listener);

}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

616 CHAPTER 15
A component developer’s perspective

public ActionListener[] getActionListeners()
{
 return (ActionListener[])getFacesListeners(ActionListener.class);
}

As you can see, these are just type-safe wrappers for the UIComponent methods,
but they’re required for ActionSource components like UINavigator. You will have
to write these three for every type of event you need to support.

 UIComponentBase also manages a list of all of the events currently enqueued
on the component; the queueEvent method can be used to add a new event to
this list. This is typically done during decoding, as shown earlier. The broadcast
method dispatches an event to all interested listeners with a specific PhaseId
value. Usually there’s no need to override any of these methods, but you’ll often
use them.

UIComponentBase also has several methods that are called for each
phase in the Request Processing Lifecycle. They provide all component-
based processing for each phase, recursively walking through the entire
component tree. Usually, there is no need to override or call these meth-
ods directly, so we won’t cover them here. For more information, see the
JavaDocs included with your JSF implementation.

In addition to overriding these methods, your custom component will usually
expose its own set of new properties such as layout or pattern. These are normal
JavaBean properties that affect the component’s behavior. You can enable value-
binding expressions by using the getValueBinding and method of UIComponent,
which we covered in chapter 11. As an example, here’s the required property of
the UIInput in the JSF reference implementation [Sun, JSF RI]:

private boolean required = false;
private boolean requiredSet = false;

public boolean isRequired()
{
 if (this.requiredSet)
 {
 return (this.required);
 }
 ValueBinding vb = getValueBinding("required");
 if (vb != null)
 {
 return (Boolean.TRUE.equals(vb.getValue(getFacesContext())));
 }

BY THE
WAY
 else

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 617

 {
 return (this.required);
 }
}

public void setRequired(boolean required)
{
 this.required = required;
 this.requiredSet = true;
}

For retrieving the property, the basic algorithm is simple: if the value has been
set, return it; otherwise, attempt to retreive its value-binding expression, evaluate
it, and return that value instead. (The value-binding expression is set with the
setValueBinding method, which is usually called in the JSP component tag han-
dler.) Setting the property is basically the same as setting a normal property,
except you must be able to determine whether or not it has been set. With prim-
itives you can use a flag such as requiredSet in this example; with objects, you can
check for null. (To avoid using a flag, you can also use the object wrappers for the
primitive types.)

TIP It’s generally best to support value-binding expressions for any property
you expect to be used by a front-end or application developer; this en-
sures that your UI component is as flexible as possible. (If you don’t
want to type this code repeatedly, it can easily be moved into a static
utility method.)

In order to ensure that all UI components can manage saving their properties
and any other state (either on the server or the client), this class also implements
the StateHolder interface, which we cover next.

StateHolder
As we’ve discussed throughout this book, JavaServer Faces manages a tree of com-
ponents for each view the user sees. It wouldn’t be a good idea if it kept all of
these trees hanging out in memory all the time—a single user could generate
dozens of component trees, and with a lot of users, JSF would have to manage
hundreds of trees simultaneously. That wouldn’t be terribly performant.

 To avoid this ghastly scenario, JSF has facilities for storing and retrieving a
component’s state. An implementation may remove views altogether or imple-
ment some sort of pooling mechanism and restore a component’s state only when

the original user needs to see the view again. Usually, the state is either stored on

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

618 CHAPTER 15
A component developer’s perspective

the server in the session or serialized and stored in the client (perhaps through a
hidden field, as is the case with the standard render kit).

 Regardless of how the JSF implementation handles this process, you usually
only have to worry about the javax.faces.component.StateHolder interface, which
has methods for saving and restoring state. UIComponentBase implements State-
Holder (and provides default implementations of its methods). Any converters or
validators that need to save their state should implement this interface as well.

 A component’s state is not saved if its transient property is set to true:

public boolean isTransient();
public void setTransient(boolean newTransientValue);

UIComponentBase’s default value for this property is false.
 There are two additional methods that do the actual work of saving and restor-

ing a component’s state:

public Object saveState(FacesContext context);
public void restoreState(FacesContext context, Object state);

The saveState method should return a Serializable object that represents the
current object’s state. The restoreState method should use the Serializable
object returned by saveState to restore the current object’s state. As an example,
let’s look at how our example UIHeadlineViewer component (covered in online
extension chapter 18) implements saveState:

public Object saveSate(FacesContext context)
{
 Object[] values = new Object[8];
 values[0] = super.saveState(context);
 values[1] = url;
 values[2] = showChannelTitle;
 values[3] = showItemTitle;
 values[4] = showItemCreator;
 values[5] = showItemPublishedDate;
 values[6] = showItemReceivedDate;
 values[7] = showItemDescription;

 return values;
}

There are a few things to point out here. First, we are returning an array of Object
instances. We said before that we should be returning a Serializable object—
fortunately, arrays are serializable. The first element of the array is set to equal
the value of the superclass’s saveState method.
 UIHeadlineViewer subclasses UIData, so calling super.saveState returns all of
the state associated with UIData’s functionality, as well as its superclass’s (all the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 619

way up to UIComponentBase). When we say state, we mean the value of all properties
and attached objects. For UIData, this means properties like first and rows, as well
as any attached validators, value-change method bindings, and so on; for UICom-
ponentBase this means the clientId, id, rendered, and rendererType properties,
as well as any associated event listeners. The general rule of thumb is that each
component should save the state of any properties or attached objects that it has
added to its superclass.

 All of the instance variables refenced in this method are exposed as properties
of the UIHeadlineViewer component. The code simply returns an array of objects
that contain the values of each variable that is exposed as a property.

 If you need to save the state of a more complicated object, you can use UICom-
ponentBase’s saveAttachedState helper method:

public static Object saveAttachedState(FacesContext context,
 Object attachedObject);

This method can be used to save any associated Object, List, or null value. These
objects should either implement the StateHolder interface themselves or be seri-
alizable. For example, UIComponentBase in the JSF reference implementation [Sun,
JSF RI] uses this method to save all associated event listeners:

values[7] = saveAttachedState(context, listeners);

Here, the result of saveAttachedState is stored in the array created by the saveState
method (the listeners instance variable is a List of FacesListener instances).

 The most important thing to remember when writing restoreState is that
you’re unwrapping the same data stored during the saveState method. Here’s
the corresponding restoreState method:

public void restoreState(FacesContext context, Object state)
 throws java.io.IOException
{
 Object[] values = (Object[])state;
 super.restoreState(context, values[0]);
 showDay = ((Boolean) values[1]).booleanValue();
 showMonth = ((Boolean)values[2]).booleanValue();
 showYear = ((Boolean)values[3]).booleanValue();
 showTime = ((Boolean)values[4]).booleanValue();
 startYear = ((Integer)values[5]).intValue();
 endYear = ((Integer)values[6]).intValue();
}

As you can see, restoreState is the opposite of saveState. We know that saveState

returned an array of Object instances, so we can cast appropriately. We then call
super.restoreState to ensure that the state of all of the superclass’s properties

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

620 CHAPTER 15
A component developer’s perspective

and attached objects is restored. Finally, we retrieve each instance variable value
directly from the array index in which it was originally stored.

 If you saved an object with saveAttachedState, you can retrieve it with its oppo-
site, restoreAttachedState, which is also a static method of UIComponentBase:

public static Object restoreAttachedState(FacesContext context,
 Object stateObj)
 throws IllegalStateException;

Like saveAttachedState, restoreAttachedState works with Objects, Lists, and
null values. Here’s another example from the reference implementation’s
UIComponentBase:

List restoredListeners =
 (List)restoreAttachedState(context, values[7]);
if (restoredListeners != null)
{
 if (listeners != null)
 {
 listeners.addAll(restoredListeners);
 }
 else
 {
 listeners = restoredListeners;
 }
}

In this snippet, we retrieve a List of listeners using restoreAttachedState. If it
isn’t null, we either add its values to the existing listeners instance variable, or
set listeners to equal the restored value if it was null.

TIP Because saveState and restoreState are called often, it pays to make
sure they’re efficient. Avoid using getters or setters if possible. Also,
during development, you may end up with ClassCastExceptions if you
change the type of an object and JSF attempts to reconstitute a saved
object of the old type. This can happen if your implementation is saving
state in the client. To avoid this, just make sure you reload the page (as
opposed to posting to it).

So, the bottom line is that if your component, converter, validator, or listener has
state—even something like a simple flag—you should implement the StateHolder
interface. Renderers don’t need to use this interface because they are stateless. If
you’re subclassing an existing Faces class, that class may already implement the

interface (this is the case for all standard components because they all inherit from
UIComponentBase). If so, you must call the superclass’s saveState and restoreState

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 621

methods and store their return values in the Serializable object you return from
saveState. Conversely, you must also call the superclass’s restoreState method
to retrieve the superclass’s state from the Object you returned from saveState.
Usually, it’s best just to use arrays, because they’re fast and easy to use.

NOTE Usually saveState and restoreState are called when the Faces-
Servlet is configured to store state on the client. When state is stored
on the server, your UI objects might just be stored in the session. Because
your object’s behavior may change depending on whether these methods
are called, it’s important to test it with both state saving options (client
and server).

That’s all there is to say about StateHolder. Let’s move on to the next interface,
EditableValueHolder.

EditableValueHolder
All input controls should implement the javax.faces.component.EditableValue-
Holder interface (as does UIInput). We covered this interface in chapter 11, but
there are a few additional methods that are important for writing components.

 These methods center around handling component values. Recall that input
controls actually have two types of values: a submitted value and a local value. The
submitted value is the value entered by the user, before any conversions or valida-
tions have occurred. The local value is the real value of the component, after suc-
cessful conversion and validation, before any associated model object is updated
through a value-binding expression.

 The user’s input is stored directly in the submittedValue property:

public Object getSubmittedValue();
public void setSubmittedValue(submittedValue);

This is typically the value retrieved from the incoming request, and is usually set
by the component or renderer in its decode method:

Map requestMap = context.getExternalContext().
 getRequestParameterMap();
if (requestMap.containsKey(clientId))
{
 setSubmittedValue((String) requestMap.get(clientId);
}

Here, we simply retrieve a Map of the request parameters, grab the user’s input

(which is the request parameter for the component’s client identifier), and set the
submittedValue property. As you can see, no conversion takes place whatsoever.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

622 CHAPTER 15
A component developer’s perspective

 We have already discussed the value property, but let’s take another look at it:

public Object getValue();
public void setValue(Object object);

This is a bit of a strange property. Whenever you call setValue, you are setting the
local value directly. However, when you call getValue, you will receive the local
value if it is non-null. Otherwise, you’ll receive the value of any associated value-
binding expression.

 In order to determine if the local value has been set, you can use the local-
ValueSet property:

public boolean isLocalValueSet();
public void setLocalValueSet(boolean localValueSet);

UI components usually update the local value during the Process Validations
phase of the Request Processing Lifecycle, or the Apply Request Values phase (if
the immediate property is set to true). When the local value is set (via setValue),
this flag is set to true. If a model object is updated during the Update Model Val-
ues phase, the local value is set to null, and localValueSet is set to false.

 Keeping track of this value-chain can be somewhat confusing, so this is the
basic pattern:

■ The submittedValue property is set during decoding.
■ The value property (the local value) is set after successful validation, and

the submittedValue property is cleared.
■ If there is a value-binding for the value property, the value property is

cleared after successfully updating the model.
■ During encoding, the submittedValue is displayed if it is non-null, and the

value property is displayed otherwise. This ensures that users see the last
value they entered.

UIInput, which is the superclass of all standard input controls, handles all of this
processing, so you won’t need to implement it yourself as long as you subclass a
standard input control. You will, however, need to know what is going on.

NOTE You should only access submittedValue when decoding and validating
the component.

Now that you know all there is to know about UI component values, let’s look at

something simpler: the NamingContainer interface.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 623

NamingContainer
A naming container ensures that all of its child components have a unique client
identifier. In practice, this usually means that the client identifiers of the children
are prefixed by the client identifier of the parent. So, if the parent’s client
identifier is “foo,” its children’s might be “foo.id01,” “foo.id02,” and “foo.id03.”
(For more on identifiers and naming containers, see chapter 3.)

 Normally your component won’t be a naming container unless it processes
child components. For example, UIData and UIForm are standard components
that are naming containers. Often your component will subclass one of the
standard components that already implements this interface. For example, the
UIHeadlineViewer component (covered in online extension chapter 18) subclasses
UIData, so it’s automatically a naming container.

 If your component doesn’t subclass an existing naming container, it must imp-
lement the javax.faces.component.NamingContainer interface, which is a marker
interface [Grand] (and consequently has no properties or methods) located in
the javax.faces.component package. UIComponentBase recognizes parent naming
containers by default, so usually implementing this interface is enough. Alternatively,
you can subclass the javax.faces.component.UINamingContainer class, which adds
a default type and family (which you would normally override anyway).

 NamingContainer is not only the simplest component interface we’re covering—
it’s also the last. There is, however, one other code-related issue we should cover.

15.2.3 Event handling with method bindings

There are two interfaces that fire events: ActionSource (for action events) and
EditableValueHolder (for value-change events). Recall from chapter 11 that these
interfaces maintain a list of event listeners, but also allow you to specify an addi-
tional event listener via a method-binding expression.

 For ActionSource, the additional listener is specified with the actionListener
property:

public MethodBinding getActionListener();
public boid setActionListener(MethodBinding actionListenerMethod);

For EditableValueHolder, it is the valueChangeListener property:

public MethodBinding getValueChangeListener();
public void setValueChangeListener(MethodBinding valueChangeMethod);

The normal event listeners are handled automatically by UIComponentBase, but
these method bindings must be handled separately, unless you’re subclassing a con-

crete class like UICommand or UIInput that has already performed this work for you.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

624 CHAPTER 15
A component developer’s perspective

 Because these are MethodBinding instances, they can’t be added to the event lis-
tener list. Instead, they must be executed by your component’s broadcast method
for integration with the normal event-handling process. Here’s an example for
an ActionSource:

public void broadcast(FacesEvent event)
 throws AbortProcessingException
{
 super.broadcast(event);
 MethodBinding binding = getActionListener();
 if (binding != null &&
 (isImmediate() &&
 event.getPhaseId().equals(PhaseId.APPLY_REQUEST_VALUES) ||
 (!isImmediate() &&
 event.getPhaseId().equals(PhaseId.INVOKE_APPLICATION))))
 {
 FacesContext context = FacesContext.getCurrentInstance();
 binding.invoke(context, new Object[] { event });
 }
}

First, note that we call the superclass’s broadcast method. This calls all of the
ordinary event listener instances. Next, we check to see if the actionListener
property is non-null. If so, we check to see if the immediate property is true. If it
is, we execute the method after the Apply Request Values phase; otherwise, we
execute it during the Invoke Application phase. Executing the method-binding
expression simply involves calling its invoke method with the event as the
parameter in a single-element array. (See chapter 11 for coverage of the Method-
Binding class.)

 With this simple bit of code, we support listener methods in addition to lis-
tener classes. That’s it for the world of UI component base classes and interfaces.
Now, let’s move on to the exciting world of component configuraton.

15.2.4 Registration

Inside an application configuration file, you declare a component with the
<component> element:

<component>
 <component-type>UIInputDate</component-type>
 <component-class>org.jia.components.UIInputDate</component-class>
</component>

The <component-type> element specifies the component’s type, and <component-

class> specifies the concrete implementation class. With this definition, we can
retrieve a new UIInputDate instance with a simple call to the Application class:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 625

UIInputDate myInputDate = (UIInputDate)application.
 createComponent(UIInputDate.COMPONENT_TYPE);

Usually, this type will match the component’s COMPONENT_TYPE constant, which is
"jia.InputDate" in this case. So the following code would have the same effect:

UIInputDate myInputDate = (UIInputDate)application.
 createComponent("jia.InputDate");

Those two elements are all the Application instance needs to create your compo-
nent. However, you can fully describe a component, including icons, attributes,
and properties. The more information you provide, the better your component
will function with tools. Listing 15.1 shows most of the possible <component>
child elements.

<component>
 <description>A simple date entry component.</description>
 <display-name>Input Date</display-name>
 <component-type>jia.InputDate</component-type>
 <component-class>
 org.jia.components.UIInputDate
 </component-class>
 <property>
 <description>CSS Style</description>
 <display-name>styleClass</display-name>
 <icon>
 <small-icon>icons/styleClass.jpg</small-icon>
 </icon>
 <property-name>styleClass</property-name>
 <property-class>String</property-class>
 </property>
 <property>
 <description>
 True if the year is to be displayed.
 </description>
 <display-name>showYear</display-name>
 <icon>
 <small-icon>icons/showYear.jpg</small-icon>
 </icon>
 <property-name>showYear</property-name>
 <property-class>Boolean</property-class>
 <default-value>false</default-value>
 </property>
 <property>
 <description>
 True if the day of the week should be displayed.

Listing 15.1 A more complete example of registering a component with JSF
 </description>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

626 CHAPTER 15
A component developer’s perspective

 <display-name>showDay</display-name>
 <icon>
 <small-icon>icons/showDay.jpg</small-icon>
 </icon>
 <property-name>showDay</property-name>
 <property-class>Boolean</property-class>
 <default-value>true</default-value>
 <suggested-value>true</suggested-value>
 </property>
 <property>
 <description>
 True if the month should be displayed
 </description>
 <display-name>showMonth</display-name>
 <icon>
 <small-icon>icons/showMonth.jpg</small-icon>
 </icon>
 <property-name>showMonth</property-name>
 <property-class>Boolean</property-class>
 <default-value>true</default-value>
 <suggested-value>true</suggested-value>
 </property>
 <property>
 <description>
 True if the time should be displayed.
 </description>
 <display-name>showTime</display-name>
 <icon>
 <small-icon>icons/showTime.jpg</small-icon>
 </icon>
 <property-name>showTime</property-name>
 <property-class>Boolean</property-class>
 <default-value>false</default-value>
 </property>
</component>

In addition to the component’s type and class, this entry provides a display name,
description, and small and large icons. It also tells the tools that the component
accepts a single attribute called styleClass of type String, and that it has four
properties of type Boolean: showYear, showDay, showMonth, and showTime. You can
see that both the <attribute> and <property> elements also accept a display
name, description, icon, name, class, default value, and required value. Only the
name and class are required.

 If you’re not particularly interested in creating such a complete component
definition, remember that many of the elements are optional, and that tools like

the Faces Console [Holmes] simplify the process greatly.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 627

NOTE JSF IDEs often require additional metadata in order to import custom
components. Unfortunately, the details vary between vendors. This will
be standardized in a future version of the specification.

Now that you know how to register components with JSF, let’s take a look at how
to integrate them with JavaServer Pages.

15.2.5 JSP integration

JavaServer Faces provides two abstract base classes you can use for writing JSP
component tags: UIComponentTag and UIComponentBodyTag. Most of the time, you
can subclass UIComponentTag directly. If you need to process the body of the tag,
you must subclass UIComponentBodyTag instead. The only standard component
tags that do this are the <f:view> and <f:verbatim> tags (in the JSF in the refer-
ence implementation [Sun, JSF RI]). The <f:view> tag processes the body to save
its state properly, and <f:verbatim> outputs its body (almost) literally. Most of the
time, subclassing UIComponentTag will be sufficient.

 In addition to subclassing the appropriate base class, you’ll need to declare the
tag inside a tag library definition (TLD), which is an XML file that defines a set of tags.

UIComponentTag
In the simplest cases, you can create a new component tag by just subclassing
javax.faces.webapp.UIComponentTag and associating it with a component/renderer
pair. This association is performed by overriding two read-only properties: com-
ponentType and rendererType. Here’s how UIComponentTag defines the component-
Type property:

public abstract String getComponentType();

All you have to do is return a String representing the component’s type. For
example, the HeadlineViewer_TableTag class, which integrates our custom UIHead-
lineViewer component with JSP, defines this read-only property as follows:

public String getComponentType()
{
 return UIHeadlineViewer.COMPONENT_TYPE;
}

This associates the HeadlineViewer_TableTag class with a UIHeadlineViewer’s
component type.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

628 CHAPTER 15
A component developer’s perspective

NOTE The fact that the componentType property is a single String means that
a JSF component tag is usually associated with a single component. A
component, however, can be associated with many different tags.

In addition to specifying the component type, you must specify the renderer type
by overriding the rendererType property:

public abstract String getRendererType();

This property is a String that maps to a specific renderer type. If the component
renderers itself, this method should return null. However, if rendering should be
delegated to a renderer, you’ll need to specify a value. For example, our UIHead-
lineViewer component uses the standard Table renderer, so here’s how the
Navigator_ToolbarTag class implements this method:

public String getRendererType()
{
 return "javax.faces.Table";
}

TIP Note that the name of the tag handler class, HeadlineViewer_Table-
Tag, includes the component type and renderer types that the tag sup-
ports. This is a convenient way to name tag handler classes, since they
are usually associated with a single component/renderer pair.

If no renderer type is associated with the tag class, you can just use the
component type itself in the name of the tag handler. For example, the
tag handler class for UIInputDate is named InputDateTag.

Tag handlers can have properties, which are exposed as element attributes when
used in JSP. For example, here’s an example of using the component tag for our
UIInputDate component:

<jia:inputDate showDay="false"/>

The attribute showDay maps to a Boolean property of the InputDateTag class. Input-
DateTag must map the showDay property to an attribute or property of UIInputDate.
UIComponentTag supports a few basic component properties by default: id, render-
erType, and rendered. If your custom component doesn’t add any properties and
the associated renderer (if any) doesn’t require any special attributes, then there’s
no need to override any other methods.

 However, if your component has its own properties (as is usually the case), you
also need to override the setProperties method:
protected void setProperties(UIComponent component);

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 629

This is where you map properties of your tag class to properties or attributes of
your component. The first thing to remember when implementing this method is
to call the superclass’s implementation, or else the basic properties like renderer-
Type and renderer won’t be updated properly. (This will also be true if you create
tag handler class hierarchies; you always want to ensure that the superclass’s
properties are properly transferred to the component instance.)

 Other than that, for each property or attribute you’d like to expose via your
custom tag, you need to

■ Add the property to the tag handler class
■ Associate the tag handler property with the appropriate component prop-

erty or attribute in the setProperties method

For example, our UINavigator component has a headerLabel property, and its
renderer also uses a headerClass attribute. Both of these are exposed as proper-
ties of the Navigator_ToolbarTag class:

public String getHeaderLabel()
{
 return headerLabel;
}
public void setHeaderLabel(String headerLabel)
{
 this.headerLabel = headerLabel;
}

public String getHeaderClass()
{
 return headerClass;
}

public void setHeaderClass(String headerClass)
{
 this.headerClass = headerClass;
}

Here’s how setProperties uses these two properties:

protected void setProperties(UIComponent component)
{
 super.setProperties(component);
 UINavigator navigator = (UINavigator)component;

 ...
 if (headerLabel != null) { navigator.setHeaderLabel(headerLabel); }
 ...

 Map attributes = navigator.getAttributes();

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

630 CHAPTER 15
A component developer’s perspective

 if (headerClass != null)
 {
 attributes.put("headerClass", headerClass);
 }
 ...
}

We’ve left out additional details for the sake of clarity, but you can see that this
snippet does a few things. First, it calls the superclass’s setProperties method,
which is a requirement in most cases. Then, if the tag handler’s headerLabel
property isn’t null, we set the component’s headerLabel property to be equal to
the tag handler’s headerLabel property. Because headerClass is actually a renderer-
specific attribute, we set the component’s headerClass attribute to be equal to the
tag handler’s headerClass property (if the tag handler’s property isn’t null). This
can be done by retrieving the component’s attributes property, which is a Map,
and simply adding a new name/value pair for the headerClass property.

 In most cases, this is basically what you’ll do with setProperties—set compo-
nent properties or attributes based on the properties of the tag handler class
itself. Think of this method as an initialization method—it’s only called when the
associated component is first created.

 If you add properties to your tag handler, you’ll need to override the release
method as well:

public void release();

This is a standard method of the javax.servlet.jsp.tagext.Tag interface (which
UIComponentTag implements) that is guaranteed to be called before the tag is gar-
bage collected. In it, you should release any resources you’ve acquired.

 So, to continue with the Navigator_ToolbarTag example, here’s an abbreviated
version of its release method:

public void release()
{
 headerClass = null;
 ...
 headerLabel = null;
 ...
}

All we’re doing here is setting the instance variables for the tag’s properties to null.
 These are all of the methods you generally have to override when developing

a new component tag. If, however, your tag is for a facet, you must also override
getFacetName:
protected String getFacetName();

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 631

All you have to do is return a String that represents the facet’s name, like “header”.
 UIComponentTag also has some useful utility methods:

public UIComponent getComponentInstance();
public static UIComponentTag
 getParentUIComponentTag(PageContext context);
protected boolean isSuppressed();
protected boolean isValueReference(String value);

As its name suggests, getComponentInstance returns the UIComponent instance that
is related to this tag (the results are valid only while the tag, or its children, are
being executed). The static method getParentUIComponentTag retrieves the par-
ent UIComponentTag instance, whose associated UIComponent is often the parent of
the UIComponent associated with the current tag.

 The boolean suppressed property returns true if the component should not be
displayed. A component shouldn’t be displayed if its rendered property is false,
it’s the child of a component whose rendersChildren property is false, it is a facet
(facets are displayed by their parents), or its parent component’s suppressed
property is true.

 If you need to determine whether or not a tag’s property is a value- or method-
binding expression, call isValueReference. This method is essential if you’d like to
support value-binding expressions in your tag properties, like the standard com-
ponent tags. You’ll often find yourself using isValueReference like this:

if (immediate != null)
{
 if (isValueReference(immediate))
 {
 navigator.setValueBinding("immediate",
 app.createValueBinding(immediate));
 }
 else
 {
 navigator.setImmediate(Boolean.getBoolean(immediate));
 }
 }

Here, we check to see if immediate is a value-binding expression. If so, we retrieve
a ValueBinding instance from the Application and set the value-binding for that
property; otherwise, we just set the property directly. This is code you’ll typically
write inside setProperties.

NOTE Any tag property you want to support value-binding expressions must be

of type String.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

632 CHAPTER 15
A component developer’s perspective

You may remember that UIComponent (and also Renderer) both have three key
methods for displaying a component—encodeBegin, encodeChildren, and encode-
End. UIComponentTag has these methods as well:

protected void encodeBegin() throws IOException;
protected void encodeChildren() throws IOException;
protected void encodeEnd() throws IOException;

These methods perform the same functions as their counterparts in the other
classes; as a matter of fact, by default, they simply call UIComponent’s method of
the same name. These methods are called internally by UIComponentTag; you only
need to override them if you’d like to augment or replace the default functional-
ity. (If you do override them, be sure to check the suppressed first.)

WARNING Avoid the temptation to put rendering logic in these methods; such work
should be handled by the UI component or renderer.

If you’ve developed JSP custom tags before, you know that output starts with the
doStartTag method and completes with the doEndTag method of the Tag interface.
In UIComponentTag, the associated UIComponent instance is created and initialized
in doStartTag and encodeBegin is also called if the component doesn’t render its
own children. In doEndTag, the list of child components or facets is updated, both
encodeBegin and encodeChildren are called if the component renders its children,
and then encodeEnd is called.

 Because a significant amount of default processing takes place in these meth-
ods, you usually won’t need to override them. You can, however, modify their
return values with the following two methods:

protected int getDoStartValue() throws JspException;
protected int getDoEndValue() throws JspException;

UIComponentTag’s implementation of doStartTag returns the value of getDoStart-
Value upon successful completion. By default, getDoStartValue returns Tag.EVAL_
BODY_INCLUDE, which tells the JSP implementation to evaluate the body of the tag,
processing any custom tags it may have and outputting any other text. If you don’t
want the body to be processed, override getDoStartValue to return Tag.SKIP_BODY.

 The default implementation of doEndTag returns the value of getDoEndValue if
there are no errors. getDoStartValue returns Tag.EVAL_PAGE by default, which tells
the JSP implementation to continue processing the rest of the page normally. If
you want to skip processing the rest of the page, override getDoEndValue to return

Tag.SKIP_PAGE instead.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 633

 For most cases, this is all you need to know about UIComponentTag; just add the
appropriate properties, override a few methods, and you’re ready to go. Now, let’s
look at UIComponentBodyTag, a subclass of UIComponentTag that processes its body.

UIComponentBodyTag
UIComponentBodyTag, in the package javax.faces.webapp, is an abstract class that
subclasses UIComponentTag that also implements the javax.servlet.jsp.tagext.
BodyTag interface. There’s no need to subclass it unless you need to process the
body content of the tag. For example, the <f:verbatim> JSF core tag processes its
body; it simply sets the value of the associated UIOutput instance to equal the
String value of the body.

 Instead of evaluating the body of a tag and including it in the page’s primary
output stream, BodyTags buffer the results and store them in a separate javax.
servlet.jsp.tagext.BodyContent instance. In order to accomplish this, UICompo-
nentBodyTag overrides the getDoStartValue method of UIComponentTag and returns
BodyTag.EVAL_BODY_BUFFERED instead of Tag.EVAL_INCLUDE_BODY.

 The BodyContent instance can be retrieved via the getBodyContent method:

public BodyContent getBodyContent();

The BodyContent class has some methods for accessing the evaluated content of
the tag’s body, including methods for retrieving the associated Writer, and the
body as a String.

 The BodyTag lifecycle involves two additional methods in addition to the
doStartTag and doEndTag defined in the Tag interface:

public void doInitBody() throws JspException;
public int doAfterBody() throws JspException;

The doInitBody method is called before the body is evaluated, and doAfterBody is
called after it is evaluated. These methods won’t be called unless the tag’s body is
nonempty. The default implementation of doInitBody does nothing, and do-
AfterBody simply returns the value of this method:

protected int getDoAfterBodyValue() throws JspException;

As with getDoStartValue and getDoEndValue, you can override this method to
change the return value of doAfterBody. By default, this method returns BodyTag.
SKIP_BODY, which tells the JSP implementation to end processing of the body and
move on to the doEndTag method. If you want your tag to process the body multiple
times, override this method to return IterationTag.EVAL_BODY_AGAIN.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

634 CHAPTER 15
A component developer’s perspective

 Most of the time, you’ll override the doAfterBody method to process the tag’s
body, and modify the component’s value accordingly. There are at least two
things you can do with the tag’s body. First, you can set the value of the associated
component based on its contents. This is what the <f:verbatim> tag does. You can
also output new content based on the body; this is what the <f:view> tag does. If
the state saving method is client, it will output the state of the page (which is sent
in the form of hidden fields for the HTML render kit). This state is, of course,
based on the body of the page.

Tag library integration
JSP custom tags are grouped into tag libraries through a TLD, which is an XML file
that’s usually located in the WEB-INF/lib directory in a web application, or the
META-INF directory of a JAR file. A TLD simply maps a custom tag handler class
to a JSP tag and declares which properties should be exposed as JSP tag attributes.

 For example, all of the custom component tag handlers from this book are
declared in the jia.tld file. Here’s a snippet:

<!DOCTYPE taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>
 JSF in Action Custom Tags
 </short-name>
 <uri>jsf-in-action-components</uri>
 <description>
 Sample custom components, renderers,
 validators, and converters from
 JSF in Action.
 </description>
...
 <tag>
 <name>headlineViewerTable</name>
 <tag-class>
 org.jia.components.taglib.HeadlineViewer_TableTag
 </tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>url</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

Tag library
description

 b

Tag description c

New properties
or attributes

 d
...
 <attribute>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing UI components 635

 <name>showItemTitle</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
...
 <attribute>
 <name>id</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
...
 <attribute>
 <name>binding</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
...
 <attribute>
 <name>onclick</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
...
 <attribute>
 <name>width</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
...
</taglib>

As the listing shows, all TLDs start with the library’s description (b). Pay attention
to the <uri> node; this is what must be included in any JSPs that use these com-
ponents, like so:

<%@ taglib uri="jsf-in-action-components" prefix="jia" %>

After the tag library description (which is, essentially, that library’s header), each
TLD has one or more tag descriptions (c). The description maps a tag name to a
tag handler class, and also describes each valid attribute. Here, there are a set of
attributes specific to this custom component (d), as well as attributes inherited
from the parent component (e). In either case, some of these may also be HTML
pass-through attributes (f). The key is that you must declare every single attribute
your tag will support, regardless of its purpose or origin. If you expect someone
to type it into a JSP, it must be declared. Also note that all declared attributes must

New properties
or attributes

 d

Inherited
properties or
attributes

 e

 f HTML
attributes
have <rtexprvalue> set to false.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

636 CHAPTER 15
A component developer’s perspective

 Once you have registered your tag handler with a tag library and included it as
shown, you can access it in JSP, like so:

<jia:headlineViewerTable url="http://www.jsfcentral.com/jsfcentral.rss"
 styleClass="hviewer"
 channelTitleClass="hviewer-channel-title"
 itemTitleClass="hviewer-item-title"
 itemClasses="hviewer-item-even, hviewer-item-odd"
 rows="5"/>

(We left out some of the declarations for these attributes, but you get the idea.)
 We’ve now fully covered the JSF component environment. However, the world

of UI components isn’t complete without their siblings, renderers.

NOTE Integrating UI components with JSP can be tedious if the extension has
several properties. Most of the standard components fall into this cate-
gory, because there are so many HTML attributes for each element.
(Each attribute must be exposed as a property of your JSP component
tag.) To deal with this issue, both the reference implementation [Sun,
JSF RI] and MyFaces [MyFaces] include tools that automatically generate
tag handlers based on component and renderer definitions in a JSF con-
figuration file. These tools aren’t quite user-friendly or polished (for in-
stance, the RI’s tool is available only if you download the source), but
they do exist, and will likely be officially released in the future.

15.3 Developing renderers

When we covered UIComponentBase in section 15.2.2, we discussed four methods
for encoding and decoding. When a component encodes and decodes itself, it’s
said to use the direct implementation rendering model. In many cases, this model
works well. Another technique is the delegated implementation model, which off-
loads rendering duties to an associated Renderer instance.

 All of the standard components use delegated implementation, and UICompo-
nentBase does this by default. The chosen Renderer instance is defined by the com-
ponent’s rendererType property. That property is used by a RenderKit instance to
look up the proper Renderer instance. (A RenderKit manages a set of Renderer
instances; JSF ships with one for HTML 4.01 by default.)

 The indirect association between components and renderers is important; it
allows the same component to be displayed by the proper Renderer instance as
long as the current RenderKit knows about the specified renderer type. For exam-

ple, UIGraphic’s rendererType property is set to “javax.faces.Image” by default. If
an HTML render kit is currently in use, it will return a Renderer instance of type

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing renderers 637

javax.faces.Image, which will display an HTML tag. If another render kit,
such as one that outputs normalized XML, is selected, a different Renderer instance
with the same type will be selected, and may display a <graphic_image> tag instead.

 All of the renderer-related classes are shown in figure 15.2. As you can see, a
RenderKitFactory is responsible for managing RenderKit instances. Each Render-
Kit can contain one or more Renderers, and the current RenderKit can be
retrieved from the FacesContext.

 You may have noticed that there are no concrete classes in this figure—only
abstract ones. The JSF specification has no requirements in this area—it defines
only the renderer types and behavior for the standard HTML RenderKit; nothing
more. This means that you can’t portably subclass an existing Renderer class,
because there are no standard class names or methods.

 Renderers are associated with a UI component type and family; table 15.1 lists
all of the renderer types in the standard HTML render kit, and their correspond-
ing UI components and families.

Table 15.1 Renderer types for the standard render kit. Each renderer type is associated directly
with an HTML-specific component.

Familya Component
Renderer

Typeb HTML Rendering Behavior

Command UICommand,
HtmlCommandButton

Button A form button that is an action source and
can execute an action method.

HtmlCommandLink Link A hyperlink that is an action source and can
execute an action method.

Data UIData,
HtmlDataTable

Table A table with customizable headers, footers,
and other properties.

Form UIForm,
HtmlForm

Form An input form; must enclose all input
components.

Figure 15.2
Renderer instances are managed by a RenderKit,
which in turn is managed by a RenderKitFactory.
You can retrieve the current RenderKit instance
from the FacesContext.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

638 CHAPTER 15
A component developer’s perspective

Image HtmlGraphicImage Image Displays an image based on its URL.

Input HtmlInputHidden Hidden An input field of type “hidden”.

HtmlInputSecret Secret An input field of type “password”.

UIInput,
HtmlInputText

Text An input field of type “text”.

HtmlInputTextarea Texte-
area

A text area (multiline input field).

Message UIMessage,
HtmlMessage

Message Displays messages for a specific component.

Messages UIMessages,
HtmlMessages

Messages Displays all messages (component-related
and/or application-related).

Output HtmlOutputFormat Format Outputs parameterized text.

HtmlOutputLabel Label A text label for an input field.

HtmlOutputLink Link A hyperlink that’s not associated with a user
command.

UIOutput,
HtmlOutputText

Text Plain text, with optional CSS formatting.

Panel HtmlPanelGrid Grid A table with customizable headers, footers,
and other properties.

HtmlPanelGroup Group Groups components together for use inside of
other components, and to apply common
styles or hide/display a group of components.

Checkbox HtmlSelectBoolean-
Checkbox

Checkbox A single checkbox.

SelectMany HtmlSelectMany-
Checkbox

Checkbox A table with a list of checkboxes, grouped
together.

UISelectMany,
HtmlSelectMany-
Listbox

Listbox A listbox that allows you to select multiple
items.

HtmlSelectManyMenu Menu A listbox of size one.

Table 15.1 Renderer types for the standard render kit. Each renderer type is associated directly
with an HTML-specific component. (continued)

Familya Component
Renderer

Typeb HTML Rendering Behavior
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing renderers 639

You may have noticed that there are similar tables in chapters 4 and 11. There are
a few key differences, however. This table only lists components with visual repre-
sentations, since these are the ones that use renderers. Also, we’ve listed base UI
component classes, since each one has a default renderer type. There’s one other
important point: the description we’ve been using for the HTML components is
basically the renderer behavior. That doesn’t mean the renderer performs all of
the work—it just means that people normally think in terms of a visual represen-
tation, so it’s easier to explain what the component looks like—and that is the job
of the renderer.

TIP It’s actually possible to replace a default renderer, so if you created and
registered a new renderer with the type javax.faces.Listbox, it would
be used instead of the standard renderer.

Writing a new renderer requires that you subclass the Renderer class and register
your new class with JSF through an application configuration file. If you write
your own renderer from scratch, it can require a reasonable amount of work to
support features like pass-through HTML attributes. Sometimes it’s possible to
delegate to an existing Renderer instance in order to take advantage of the work
that JSF implementations already perform (we show this technique in online exten-
sion chapter 17). JSP integration for renderers is the same as it is for UI compo-
nents because the JSP component tags represent a component/renderer pair.
Figure 15.3 shows the different elements required for developing a new renderer.

 One important point figure 15.3 makes clear is that renderers require UI com-

SelectOne HtmlSelectOneRadio Radio A table of radio buttons, grouped together.

HtmlSelectOne-
Listbox

Listbox A listbox that allows you to select a single
item.

UISelectOne,
HtmlSelectOneMenu

Menu A drop-down listbox that allows you to select
a single item.

a Standard families have the prefix “javax.faces”.
b Standard renderer types have the prefix “javax.faces”.

Table 15.1 Renderer types for the standard render kit. Each renderer type is associated directly
with an HTML-specific component. (continued)

Familya Component
Renderer

Typeb HTML Rendering Behavior
ponents to function. A given renderer can (and often does) work with one or
more types of components, but they have an intimate relationship with each one

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

640 CHAPTER 15
A component developer’s perspective

(or at least with a particular superclass). UI components, on the other hand, usu-
ally don’t know much at all about their renderers; this makes it easy to swap in
new renderers.

 Now that we’ve discussed exactly what renderers are, let’s talk about when it’s
necessary to write one.

15.3.1 Deciding when to write a renderer

To determine when it’s necessary to develop a new renderer, ask yourself the
quintessential question once again: “What, exactly, do I need to do?” Writing a
renderer is a good solution if you want to do the following:

■ Augment or enhance the display of an existing component. Our Rollover-
Button renderer is a good example of this—all it does is add a little bit of
JavaScript to the standard Button renderer behavior. This is best achieved
by decorating [GoF] an existing renderer.

■ Display the same component in different ways (perhaps to different client
devices). Suppose you wanted to display a UIData component via scalable
vector graphics (SVG). The solution is to write a new renderer just for that

Figure 15.3 A diagram representing the different classes and elements required for developing a
custom renderer. You start by subclassing the Renderer class, and optionally delegating to an
existing Renderer. Renderers work directly with specific UI components, and are integrated with
JSP via custom tags that work with a component/renderer pair.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing renderers 641

device. (You would probably write a set of Renderer classes for that device
and group them into a RenderKit.)

■ Consolidate rendering duties for different types of components (usually
with the same superclass). For example, you may write three different types
of components that can be displayed as a list of bulleted items. You would
only need one bulleted list renderer.

If you’re still not sure, take a look at section 15.2.1, which discusses when to write
a UI component. Often, it’s not clear at first which one you should be develop-
ing; in some cases, you need both. Also, remember that you can always use the
standard renderers with your own custom components, provided that the ren-
derer understands your component’s superclass (see online extension chapter 18
for an example).

 We discuss the rendering classes in the next sections; all of these classes are
located in the javax.faces.render package.

15.3.2 Renderer

Renderer is an abstract class in the javax.faces.render package that knows how
to display one or more components to a specific client type. It can also translate
responses from the client into component values.

WARNING There’s only a single instance of each Renderer type available through-
out the life of an application, so they must be thread-safe.

Four of Renderer’s methods are also found in UIComponent:

public void decode(FacesContext context, UIComponent component)
public void encodeBegin(FacesContext context, UIComponent component)
public void encodeChildren(FacesContext context,
 UIComponent component)
public void encodeEnd(FacesContext context, UIComponent component)

The only difference between these signatures and the ones in UIComponent is that
they take the actual UIComponent as a parameter in addition to the context. This is
because a single Renderer instance is used to render all components that have its
renderer-Type. These methods serve the same function as those in UIComponent;
as a matter of fact, UIComponentBase just passes the call directly to the appropriate
Renderer, if there is one. (See section 15.2.2 for an overview of these methods.)
Renderer has default implementations of these methods that do not perform any

processing, except for encodeChildren, which iterates through any child compo-
nents and calls their encoding methods.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

642 CHAPTER 15
A component developer’s perspective

 The Renderer class also duplicates UIComponent’s rendersChildren property:

public boolean getRendersChildren()

The default implementation returns false. Override this method to return true if
your Renderer will display its children.

 Every UIComponent has a clientId property, which represents their name in
the client’s world. Sometimes these simple strings may not make sense to the cli-
ent. For those cases, Renderer has a convertClientId method:

public String convertClientId(FacesContext context, String clientId);

This method gives the renderer a chance to translate the component’s clientId
property into something that makes sense for the particular requirements of the
client. By default, this method just returns the clientId unmodified.

 This class also exposes a method that performs the conversion process during
the Process Validations phase:

public Object getConvertedValue(FacesContext context,
 UIComponent component,
 Object submittedValue);

If you override this method, it should convert submittedValue to a form suitable
for the component (using any converter retrieved from the component parameter,
if necessary) and return the converted value. The default implementation per-
forms no conversion; it simply returns submittedValue.

 If you override decode, you should call this method (and implement it if nec-
essary). This way, subclasses of your Renderer can simply override getConverted-
Value to change that part of the decoding process.

NOTE If you’re wondering where to put properties your renderer can use to
display a component, remember that UIComponent has an attributes
property where you can store renderer-dependent name/value pairs.
These attributes are usually set by the tag handler (or its equivalent if
you’re not using JSP) or in code. Renderers access information through
UIComponent attributes because there’s only one Renderer instance avail-
able and there could be dozens of UIComponent instances using that single
Renderer instance. (The strongly typed renderer-dependent proper-
ties of the standard HTML components are really aliases for renderer-
dependent attributes.)

That’s all there is to the Renderer class. In simpler cases, you only need to over-

ride the encodeBegin method.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing renderers 643

 You may have noticed that a Renderer’s type isn’t a property of the class. It’s
actually a key that’s usually configured in a JSF configuration file and passed into
its RenderKit, which we describe in the next section.

15.3.3 RenderKit

A RenderKit represents a collection of Renderer instances, keyed by their type. All
of the Renderers within a particular RenderKit instance are usually related in
some way. For example, the default RenderKit has Renderer instances that only
know how to output HTML. Other render kits may display different dialects of
HTML (perhaps DHTML with lots of JavaScript), or some other type of markup
altogether, like SVG. Render kits can also be used to provide different “skins” that
use the same type of markup with a different look and feel. As a matter of fact,
there’s an open source skinning toolkit, called Xkins, that makes use of this con-
cept [Xkins].2

 The pattern-conscious will note that this is more or less an Abstract Factory
[GoF], and is also conceptually similar to the java.awt.Toolkit class, which creates
different instances of components tailored for specific platforms. RenderKits don’t
actually create Renderer instances, though; they merely store a single instance of
each type. (The instances are usually created when a JSF implementation parses its
configuration files and registers them with the appropriate RenderKit.)

 There is rarely a need to subclass RenderKit, since you can add new Renderer
instances to it through a configuration file, so we’ll focus on how to use it in your
code. The class, located in the javax.faces.render package, is an abstract base
class; you must retrieve a concrete implementation from a RenderKitFactory (de-
scribed next). It has one method for adding a Renderer instance, and one for
removing it:

public void addRenderer(String rendererType, Renderer renderer);
public Renderer getRenderer(String rendererType);

Usually you won’t be calling addRenderer directly; Renderer instances can be
added to a RenderKit declaratively in a JSF configuration file. As a matter of fact,
you can create new RenderKit instances via configuration as well; we cover config-
uration in section 15.3.4.

 getRenderer is useful in cases where you need to retrieve a Renderer instance
but you only have the type. (If you’re working inside a UIComponentBase subclass,

2
 Using more than one RenderKit at a time isn’t currently supported by the reference implementation
[Sun, JSF RI]. That doesn’t mean other implementations won’t support this feature, however.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

644 CHAPTER 15
A component developer’s perspective

you can use its getRenderer method instead.) All of the literal renderer type val-
ues are listed in table 15.1. If no Renderer instance can be found, the method
returns null.

 When you’re developing custom components and renderers, you need to
worry about only two RenderKit methods. Usually you’ll be adding your own ren-
derers to an existing RenderKit via a configuration file.

 Just like Renderers, each RenderKit is associated with an identifier. The identi-
fier isn’t a property of the RenderKit itself; it’s a key used to retrieve an instance
from a RenderKitFactory. The key for the standard RenderKit is defined in the
RenderKitFactory class itself. You can retrieve a RenderKitFactory instance from
the FactoryFinder class. Here’s how you retrieve the default RenderKit:

RenderKitFactory rkFactory =(RenderKitFactory)FactoryFinder.
 getFactory(FactoryFinder.RENDER_KIT_FACTORY);
RenderKit defaultRenderKit =
 rkFactory.getRenderKit(RenderKitFactory.DEFAULT_RENDER_KIT,
 facesContext);

This code retrieves a RenderKitFactory instance from the FactoryFinder, and
then gets the default RenderKit from the RenderkitFactory. This is a useful tech-
nique if you want to access a specific RenderKit. If you’re interested in the current
RenderKit instance, you can get from FacesContext:

RenderKit currentRenderKit = facesContext.getRenderKit();

This code retrieves the current RenderKit instance by using the renderKitId
property of the UIViewRoot instance retrieved form the current FacesContext.
Remember, an application developer can change the current RenderKit at any
time, as long as the JSF implementation supports that capability.

 That’s all you need to know in order to write your own renderers. Now, let’s
examine how you can register them with JSF.

15.3.4 Registration

Configuring renderers is quite similar to configuring components; it’s just a mat-
ter of declaring the renderer in an application configuration file. Instead of a
<component> element, you use a <renderer> element, but you can specify the dis-
play name, icon, description, and so on as well. The main difference is that you
must nest a <renderer> element inside a <render-kit> element. So, if you wanted
to add a custom renderer to the default render kit, you could do it like so:

<render-kit>

 <renderer>
 <renderer-type>jia.Toolbar</renderer-type>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing renderers 645

 <renderer-class>
 org.jia.components.ToolbarRenderer
 </renderer-class>
 </renderer>
</render-kit>

This specifies a renderer of type jia.Toolbar whose Java class is org.jia.compo-
nents.ToolbarRenderer. We could get a handle to this Renderer via the default
RenderKit like so:

Renderer toolbarRenderer = (ToolbarRenderer)
 defaultRenderKit.getRenderer("jia.Toolbar");

You can also associate a Renderer with a specific RenderKit:

<render-kit>
 <render-kit-id>org.foobar.WML</render-kit-it>
 <renderer>
 <renderer-type>jia.Toolbar</renderer-type>
 <renderer-class>
 org.jia.components.ToolbarRenderer
 </renderer-class>
 </renderer>
</render-kit>

This associates the Toolbar renderer with a RenderKit that has the identifier org.
foobar.WML. You can also associate renderers with a render kit by its class name:

<render-kit>
 <render-kit-class>org.foobar.WMLRenderKit</render-kit-class>
 <renderer>
 <renderer-type>jia.Toolbar</renderer-type>
 <renderer-class>
 org.jia.components.ToolbarRenderer
 </renderer-class>
 </renderer>
</render-kit>

This associates the renderer with an instance of the org.foobar.WMLRenderKit class.
 So far, we’ve been showing the simplest definition of a Renderer. Like custom

components, tools will work better with your custom renderer if you provide addi-
tional information. Listing 15.2 shows a more complicated example that includes
most of the possible elements.

<renderer>
 <description>

Listing 15.2 A more complete example of registering a renderer with JSF
 A Toolbar renderer.
 </description>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

646 CHAPTER 15
A component developer’s perspective

 <display-name>Toolbar</display-name>
 <icon>
 <small-icon>icons/toolbar_small.gif</small-icon>
 <large-icon>icons/toolbar_large.gif</large-icon>
 </icon>
 <component-family>jia.Navigator</component-family>
 <renderer-type>jia.Toolbar</renderer-type>
 <renderer-class>
 org.jia.components.ToolbarRenderer
 </renderer-class>
 <attribute>
 <description>The CSS style for the header.</description>
 <display-name>headerClass</display-name>
 <icon>
 <small-icon>icons/toolbar_css.gif</small-icon>
 </icon>
 <attribute-name>headerClass</attribute-name>
 <attribute-class>String</attribute-class>
 </attribute>
 <attribute>
 <description>The CSS style for each item.</description>
 <display-name>itemClass</display-name>
 <icon>
 <small-icon>icons/toolbar_css.gif</small-icon>
 </icon>
 <attribute-name>itemClass</attribute-name>
 <attribute-class>String</attribute-class>
 </attribute>
 <attribute>
 <description>
 The CSS style for the selected item.
 </description>
 <display-name>selectedItemClass</display-name>
 <icon>
 <small-icon>icons/toolbar_css.gif</small-icon>
 </icon>
 <attribute-name>selectedItemClass</attribute-name>
 <attribute-class>String</attribute-class>
 </attribute>
 <attribute>
 <description>
 The CSS style for the each item's icon.
 </description>
 <display-name>iconClass</display-name>
 <icon>
 <small-icon>icons/toolbar_css.gif</small-icon>
 </icon>
 <attribute-name>iconClass</attribute-name>
 <attribute-class>String</attribute-class>

 </attribute>
 <attribute>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing renderers 647

 <description>
 Direction – either HORIZONTAL or VERTICAL
 </description>
 <display-name>layout</display-name>
 <icon>
 <small-icon>icons/toolbar_layout.gif</small-icon>
 </icon>
 <attribute-name>layout</attribute-name>
 <attribute-class>String</attribute-class>
 <default-value>VERTICAL</default-value>
 <suggested-value>VERTICAL</suggested-value>
 </attribute>
</renderer>

This example adds a display name, description, and icon. It also specifies the
component family that the renderer supports. In addition, the entry defines five
attributes of type String: headerClass, itemClass, selectedItemClass, iconClass,
and layout. Each <attribute> element can have a description, display name,
and icon, a name, a class, a default value, and a suggested value. Only the name
and class are required. Note that there are no <property> elements as there are
with components.

 That’s all there is to configuring renderers. Generally, it’s best to start out with
the simple case (only specify the type and class name) and then add more infor-
mation as necessary. If you’re going to be redistributing your components or ren-
derers for use by people you don’t know, we highly suggest you provide as much
metadata as possible, and even include icons if possible. This will make your com-
ponents appear more professional.

NOTE Just as with components, JSF IDEs often require additional metadata in
order to import custom renderers. Unfortunately, the details vary between
vendors. This will be standardized in a future version of the specification.

Now, let’s see how JSP fits into the picture.

15.3.5 JSP integration

Integrating a renderer with JSP is part of the same process as integrating a com-
ponent with JSP. This is because the base JSP tag classes, UIComponentTag and
UIComponentBodyTag, are both designed to work with a component/renderer pair.
Consequently, you’ll need to write a new tag handler for every unique component/
renderer combination. See section 15.2.5 for details on subclassing UIComponent-

Tag and UIComponentBodyTag.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

648 CHAPTER 15
A component developer’s perspective

 This completes our discussion of the rendering environment. Next we exam-
ine validation.

15.4 Developing validators

We’ve discussed validation—the act of verifying a component’s local value—
throughout this book. JSF includes a few standard validators—LengthValidator,
DoubleRangeValidator, and LongRangeValidator, and so on. Each input control can
have one or more validators associated with it. You can also handle validation
directly in backing beans with a single validator method. (For more information
on validation, see chapter 6.)

 Validation in backing beans (which make use of EditableValueHolder’s validator
property) is useful for application-specific logic that’s tied to the backing bean
itself. (See chapters 11 and 13 for more information.) However, if you’d like to
write reusable validation logic that isn’t specific to a backing bean, or you’d like to
associate multiple validation routines with a single input control, you’ll need to
create a custom validator.

 The process is simple enough: it requires implementing the Validator inter-
face, registering the validator’s class with JSF, and optionally creating a custom
tag handler. This is depicted in the class diagram shown in figure 15.4. If your

Figure 15.4 To create a new validator, you must implement the Validator interface and
register the new class in a JSF configuration file. If your validator maintains any state, it can
also implement the StateHolder interface. To integrate with JSP, you must also write a tag
handler class and register it in a tag library descriptor; this is only necessary if you have
developer-configurable properties or you prefer that developers use a custom tag as

opposed to the generic <f:validator> tag.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing validators 649

Validator has properties that it would like to save between requests, it must also
implement the StateHolder interface.

 Now, let’s examine the Validator interface.

15.4.1 Validator

Creating a custom validator requires implementing a single interface: javax.
faces.validator.Validator. Every EditableValueHolder maintains a collection of
Validator instances. New instances can be added to the collection either in code
or declaratively (in JSP or another display technology). During the Request Pro-
cessing Lifecycle, JSF will call the input control’s validate method, which exe-
cutes each associated Validator instance.

 Every Validator has an identifier that is configured in a JSF configuration file
(and isn’t exposed as a property). However, it is customary to store the default
identifier in a constant, as it is with custom components:

 public final String VALIDATOR_ID =
 "jia.RegularExpressionValidator";

This specifies a default validator identifier of jia.RegularExpressionValidator.
 The Validator interface has a single method:

public void validate(FacesContext context, UIComponent component,
 Object value)
 throws ValidatorException;

When you implement this method, first check to see if the component’s value is
correct. If it’s not, throw a new ValidatorException instance. ValidatorException
has two constructors: one that simply accepts a FacesMessage instance, and one that
excepts a FacesMessage instance and the original Throwable that caused the problem.

 For example, here’s the validate method for our RegularExpressionValidator
(online extension chapter 20). It checks to see if an input control’s value matches
a regular expression:

public void validate(FacesContext context,
 UIComponent component, Object value)
 throws ValidatorException
{
 ...
 if (!isValid(value))
 {
 ...
 throw new ValidatorException(new FacesMessage(messageText, null));
 }

}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

650 CHAPTER 15
A component developer’s perspective

You can see how simple the main algorithm is—check to see if the component’s
value is valid, and if not throw a ValidatorException. If an exception is thrown,
JSF will automatically add the FacesMessage instance to the message queue. Other-
wise, the component’s valid property will be set to true. The actual validation
happens in the isValid method, which is a simple helper method:

protected boolean isValid(String value)
{
 ...
 return pattern.matcher(value).matches();
}

This method simply returns true if the value matches the validator’s pattern,
which is a precompiled regular expression.

TIP Placing your primary validation-checking algorithm in another method
makes unit testing easier, because the method won’t require JSF-specific
objects like FacesContext.

Your validator may have additional properties that affect how it performs its
work. RegularExpressionValidator has an expression property that contains the
actual regular expression the isValid method uses. Validators can also store and
retrieve attributes on the UI component instance. If your validator does have
properties, you’ll need to implement the StateHolder interface (covered in sec-
tion 15.2.2). Otherwise, you can’t guarantee that the value of the properties will
be remembered between requests. (Validators themselves are automatically saved
by UIInput.) A validator should also have a no-argument constructor so that it can
be created by the Application object’s createValidator method.

 That’s all there is to writing a validator. Now, let’s look at how to register one
with JSF.

15.4.2 Registration

Registering a validator is similar to registering a component or a renderer. It just
requires a little bit of XML in a JSF configuration file. In the simplest case, all you
need to specify is the identifier and class:

<validator>
 <validator-id>jia.RegularExpressionValidator</validator-id>
 <validator-class>
 org.jia.validators.RegularExpressionValidator
 </validator-class>

</validator>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing validators 651

This registers a validator called with the identifier jia.RegularExpressionVali-
dator, whose class is org.jia.validators.RegularExpressionValidator.

 Now that the class has been registered, we can create a new instance in code
like so:

Validator validator =
 application.createValidator("jia.RegularExpressionValidator");

If the validator has a constant for its identifier, you would normally use that instead:

Validator validator = application.createValidator(
 RegularExpessionValidator.VALIDATOR_ID);

It’s also possible to provide additional elements in the validator declaration, such
as a description, and supported properties and attributes. These are usually used
by tools, although adding a description is certainly not a bad thing. An example is
shown in listing 15.3.

<validator>
 <description>
 Validates an input control based on a regular expression.
 </description>
 <display-name>RegularExpressionValidator</display-name>
 <icon>
 <large-icon>images/regex_large.gif</large-icon>
 <small-icon>images/regex_small.gif</small-icon>
 </icon>
 <validator-id>jia.RegularExpressionValidator</validator-id>
 <validator-class>
 org.jia.validators.RegularExpressionValidator
 </validator-class>
 <property>
 <description>Regular expression.
 </description>
 <icon>
 <small-icon>images/regex.gif</small-icon>
 </icon>
 <property-name>expression</property-name>
 <property-class>java.lang.String</property-class>
 </property>
 <property>
 <description>
 Error message to be dispayed (optional).
 </description>
 <property-name>errorMessage</property-name>

Listing 15.3 A more complete example of registering a validator with JSF
 <property-class>java.lang.String</property-class>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

652 CHAPTER 15
A component developer’s perspective

 </property>
</validator>

As you can see, the listing includes additional elements like a description, and an
icon, and also describes each of its properties. The <property> elements for vali-
dators are the same as the <property> element for UI components and renderers;
they have several possible elements, including an icon, a default value, and a sug-
gested value.

 That’s all the work required for registering a validator with JSF. Now, let’s
examine JSP integration.

15.4.3 JSP integration

If your validator doesn’t have any properties, you can use the JSF core <f:validator>
tag instead of writing your own custom tag handler. This tag just takes a validator
identifier as a parameter. So, if our RegularExpressionValidator didn’t have any
properties, we could use it like this:

<h:inputText>
 <f:validator validatorId="jia.RegularExpressionValidator"/>
</h:inputText>

This works fine for simple cases. However, if your validator has properties, or
you’d rather have front-end developers use a specific tag instead of remembering
a validator identifier, you can create your own validator custom tag. All such tags
must subclass the ValidatorTag class, which happens to be the same class used by
the JSF core tag library.

 In addition to subclassing the ValidatorTag, you’ll need to declare the tag
inside a tag library definition (TLD).

ValidatorTag
ValidatorTag is a class in the javax.faces.webapp package that implements
most of the core functionality you’ll need. The first thing you’ll do when you sub-
class ValidatorTag is decide which of your validator’s properties your tag should
support. All of these properties should be exposed as attributes in the tag lib-
rary definition.

 Once you’ve created getters and setters for the tag’s properties, there are three
methods you need to worry about. The first is setValidatorId:

public void setValidatorId(String validatorId);
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing validators 653

This method associates your tag handler with a specific validator. You usually call
it in your constructor like this:

public RegExpValidatorTag()
{
 super();
 setValidatorId(RegularExpressionValidator.VALIDATOR_ID);
}

This associates a tag handler called RegExpValidatorTag with RegularExpression-
Validator. This is the same identifier defined during the registration process (see
section 15.4.2.)

 All of the work happens in the createValidator method:

protected Validator createValidator() throws JspException;

This is where the Validator instance is actually created and configured based on
the tag handler’s properties, so you’ll need to override it if you’re setting any of
the validator’s properties. The most important thing to remember is to call the
superclass’s createValidator method first:

protected Validator createValidator() throws JspException
{
 RegularExpressionValidator validator =
 (RegularExpressionValidator)super.createValidator();
 ...
 validator.setExpression(expression);
 ...
 validator.setErrorMessage(errorMessage);
 ...
 return validator;
}

In this example, we retrieve the Validator instance from the superclass and then
proceed to set its properties (based on properties of the tag handler).

 Finally, as with any tag handler, you must override the release method:

public void release();

All that’s necessary here is to reset any instance variables to the default value,
which is typically null:

public void release()
{
 super.release();
 expression = null;
 errorMessage = null;

}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

654 CHAPTER 15
A component developer’s perspective

Note that we call the superclass’s release method as well.
 Once you’ve written the custom tag handler, you’ll need to integrate it with a

tag library, as shown in section 15.2.5.
 That’s all there is to creating custom validators. For a detailed example, see

online extension chapter 20. Now, let’s examine the world of custom converters.

15.5 Developing converters

Type conversion is a critical, but often overlooked, feature of any good web
framework. In JSF, type conversion is handled by a converter, which is a simple
class that converts a Java object to and from a string for display. A UI component
can be associated with a single converter, and converters can be registered by type
or by identifier.

 JSF ships with converters for all of the basic data types (boolean, Short, int,
and so on) that are registered by type. It also includes two other converters—Num-

ber and DateTime—that are registered by identifier. When a component or ren-
derer displays its value, it looks for a registered converter, and if it can’t find one,
it will use the converter for the value’s type. (For more on type conversion, see
chapter 6.)

 You can easily write your own converters, and just like the standard ones,
they can be registered by type or identifier. All you need to do is implement the
Converter interface, register the converter with JSF, and optionally create a JSP
custom tag handler. (If your converters have properties that must maintain their
state, you must also implement the StateHolder interface.) These elements are
depicted in figure 15.5. Writing a new converter is similar to writing a new vali-
dator—just compare figures 15.4 and 15.5.

 Let’s begin our type conversion tour with the Converter interface.

15.5.1 Converter

A ValueHolder can be associated with a single converter (either in code or declar-
atively). All converters must implement the Converter interface, found in the
javax.faces.convert package. Like validators, converters have identifiers that
are registered in a JSF configuration file, and often exposed through a constant:

public final static String CONVERTER_ID = "jia.User";

This constant can be used to create new instances of your converter through the
Application.createConverter method.
 The Converter interface only has two methods:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing converters 655

public Object getAsObject(FacesContext facesContext,
 UIComponent uIComponent, String string)
 throws ConverterException;
public String getAsString(FacesContext facesContext,
 UIComponent uIComponent, Object object)
 throws ConverterException;

The getAsObject method should convert an Object into a String, and is executed
during the Process Validations phase, or the Apply Request Values phase if the
component implements EditableValueHolder and the immediate property is true.

 The getAsString method is the opposite of getAsObject: it translates an
Object into a String. It is executed during the Render Response phase, when the
component is displayed.

 If possible, these methods should be symmetrical, so the following code should
return true:

Foo foo = new Foo(...);
String string = fooConverter.getAsString(context, component, foo);
Foo convertedFoo = (Foo)converter.getAsObject(context,
 component, string);
return foo.equals(convertedFoo);

This may not always be possible, however. For example, our example UserConverter
(covered in online extension chapter 20) may convert a User object into a String

Figure 15.5 To write a converter, you implement the Converter interface, and then register the
converter in an application configuration file. If your converter has properties that must be
remembered in between requests, it must implement the StateHolder interface. If your
converter is registered by identifier and has configurable properties, or you want to make life
easier for end users, you can also create a JSP custom tag, which must be registered with a TLD.
that includes only the first name. So if any User property other than firstName was

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

656 CHAPTER 15
A component developer’s perspective

non-null, conversion from the first name back into a User object would lose the
value of the remaining properties.

TIP If you write unit tests for your converter (which, as always, we recom-
mend), be sure to write a test that ensures that the two methods are sym-
metrical. Even if you don’t expect complete symmetry, you can test
partial symmetry.

In either method, you throw a new ConverterException if conversion is not pos-
sible. Here’s how UserConverter implements the getAsObject method:

public Object getAsObject(FacesContext context,
 UIComponent component, String displayString)
{
 User user = new User();
 FacesMessage message = getStringAsUser(user, displayString);
 if (message != null)
 {
 throw new ConverterException(message);
 }
 return user;
}

The algorithm is simple: convert the value, throw an exception if there is an error,
and return the converted value otherwise. As you can see, one of Converter-
Exception’s constructors (it has many) takes a FacesMessage as a parameter. This
FacesMessage instance will be added to the message queue and possibly displayed
to the user. The actual conversion process has been delegated to the getString-
AsUser method.

TIP Placing the core conversion logic in a separate method that doesn’t use
JSF classes makes unit testing easier.

Converters can also have additional properties that affect the conversion process.
For example, UserConverter has a style property that helps it decide whether or
not to display the first name, the last name, or both. If your converter has prop-
erties whose state you would like to save between requests, it should implement the
StateHolder interface. Converters can also make use of attributes stored on the UI
component instance. They should also have a no-argument constructor so that
they can be created by the Application object’s createConverter method.

 This concludes our tour of the Converter interface; once you’ve implemented

and tested it properly, you’ll need to register your new converter with JSF.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing converters 657

15.5.2 Registration

Registering a new converter requires a <converter> entry in a JSF configuration
file. You can register a converter by identifier and/or by type. Here’s an example
of registering it by identifier:

<converter>
 <converter-id>jia.User</converter-id>
 <converter-class>
 org.jia.converters.UserConverter
 </converter-class>
</converter>

This relates a converter called jia.User with the class org.jia.converters.
UserConverter.

 Here’s an example of registering the converter by type:

<converter>
 <converter-for-class>java.lang.Boolean</converter-for-class>
 <converter-class>
 javax.faces.convert.BooleanConverter
 </converter-class>
</converter>

This is the way the reference implementation [Sun, JSF RI] registers the Boolean-
Converter for Boolean objects. Anytime JSF encounters a component value of type
Boolean and there is no specific converter registered, it will use the BooleanConverter.

 As is the case with all custom components and component helpers, there are
additional elements you can define that make it easier for tools to work with your
converters. A more complete example is shown in listing 15.4.

<converter>
 <description>
 Converts a User object to and from a String.
 </description>
 <display-name>UserConverter</display-name>
 <icon>
 <small-icon>images/user_small.gif</small-icon>
 <large-icon>images/user_large.gif</large-icon>
 </icon>
 <converter-id>jia.User</converter-id>
 <converter-class>
 org.jia.converters.UserConverter
 </converter-class>
 <property>

Listing 15.4 A more complete example of registering a converter with JSF
 <description>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

658 CHAPTER 15
A component developer’s perspective

 The display style for the user's name.
 </description>
 <property-name>style</property-name>
 <property-class>java.lang.String</property-class>
 </property>
 <property>
 <description>
 Determines whether or not the user's role should be shown.
 </description>
 <property-name>showRole</property-name>
 <property-class>java.lang.String</property-class>
 <default-value>false</default-value>
 </property>
</converter>

Listing 15.4 shows additional elements like the description, a display name, an
icon, and details about specific properties. For the complete range of possibilities,
see online extension appendix D.

 Now that you have seen how to register a new converter with JSF, let’s look at
integrating it with JavaServer Pages.

15.5.3 JSP integration

If you registered your converter by type only, then there’s no need to worry about
JSP integration at all. JSF will automatically use your converter when it tries to
convert the registered type and the associated component doesn’t have another
converter registered. If, however, your converter is registered by identifier, front-
end developers will want to associate it with a component using JSP.

 Like validators, there is a tag in the JSF core tag library that you can use for
associating a converter with a component. This tag works fine when your con-
verter has no properties, so we could use it with our User converter like so:

<h:inputText>
 <f:converter converterId="jia.User"/>
</h:inputText>

Of course, in cases where your converters have properties, or you prefer that
front-end developers use a specific tag as opposed to a generic tag and an identi-
fier, you’ll need to develop your own custom tag handler. You can do this by sub-
classing the ConverterTag class.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing converters 659

ConverterTag
ConverterTag is a concrete class in the javax.faces.webapp package; it’s the same
class used to implement the <f:converter> tag. When you subclass it, in addition
to overriding its methods, you’ll want to provide properties that map to the set
of properties and/or attributes that your converter supports. Its interface is
similar to that of ValidatorTag; there are three methods of importance. The
first is setConverterId:

public void setConverterId(String converterId);

Use this method to specify the identifier of the converter that’s associated with
this tag. Usually, you’ll call this method in the constructor, and the converterId
should match the identifier registered for the converter in an application config-
uration file. Here’s an example from the tag handler for UserConverter:

public UserConverterTag()
{
 super();
 setConverterId(UserConverter.CONVERTER_ID);
}

This associates the tag handler with a converter registered under the identifier
jia.User (which is the same identifier we chose in section 15.5.2).

 The method where all of the magic occurs is createConverter:

protected Converter createConverter() throws JspException;

This is where a new Converter instance is created (based on the identifier set by
setConverterId). It’s also where any properties of the converter instance should
be configured. So, if your converter has additional properties, you’ll need to
override it. Here’s an example:

protected Converter createConverter() throws JspException
{
 UserConverter converter = (UserConverter)super.createConverter();
 ...
 converter.setStyle(styleType);
 ...
 converter.setShowRole(Boolean.valueOf(showRole).booleanValue());
 ...
 return converter;
}

First, we retrieve a new UserConverter instance from the superclass’s createConverter
method. Then, we simply set the appropriate properties of the UserConverter

based on properties of the tag handler. Finally, we return the newly created object.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

660 CHAPTER 15
A component developer’s perspective

 ConverterTag also has a release method, like all JSP tag handlers:

public void release();

You should override this method to reset any instance variables to their default values:

public void release()
{
 super.release();
 style = null;
 showRole = null;
}

Once you’ve created a new ConverterTag, you’ll need to add it to a JSP custom tag
library, as shown in section 15.2.5.

 Converters, along with the other UI extensions—validators, renderers, and UI
components—form JSF’s powerful component model. But what about interna-
tionalization and localization?

15.6 Handling internationalization

UI extensions have two primary sources of text that a user may see: strings declared
as properties or attributes of UI components, and messages. Internationaliza-
tion of properties and attributes is usually performed by the application or
front-end developer, often with value-binding expressions (see chapter 6), so this
is not a concern for the component developer. Messages, however, should be
fully internationalized.

 Fortunately, we examined the process of internationalizing messages in chap-
ter 13. Messages for UI extensions have the same requirements: load a resource
bundle (checking the default application’s bundle first), grab the proper localized
string based on the view’s current locale, and then create a new FacesMessage
instance with the localized string. This is best implemented using a factory
method, as we did in chapter 13.

15.7 Packaging UI extensions

We’ve walked through all of the different UI extensions: components, renderers,
validators, and converters. When you write extensions, you can either include all
of their configuration information and classes with your application code, or
package one or more extensions in a separate JAR file. The first choice makes
sense if you don’t intend to redistribute the extensions separately. Otherwise, you

should create a separate JAR file with all of the required classes, an application

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 661

configuration file, and any TLDs. This way, anyone can drop this JAR in any appli-
cation’s library path (such as WEB-INF/lib) and the application has immediate
access to your components.

 The structure of the JAR file is simple: place your class and resource bundles in
their normal directories, and place your configuration file (which must be called
faces-config. xml), and any tag libraries, in the META-INF directory. Figure 15.6
shows the directory structure for a fictional UIFoo component with a Bar renderer
and a JSP tag handler.:

 As you can see, the only real issue is making sure that there’s a faces-con-
fig.xml file in the META-INF directory. This should contain all registration infor-
mation for the UI components in the JAR file only—no need to worry about any
application-level information. When a JSF application initializes, it will load that
application’s configuration file, and also search for faces-config.xml in all of the
JARs in the web application’s resource path.

15.8 Summary

In this chapter, we surveyed the component developer’s landscape. A component
developer deals with UI components, renderers, validators, and converters. Col-
lectively, these are known as user interface extensions.

 No matter which type of object you’re developing, there are three specific
developmental steps: write the class, register the class with JSF via a configura-
tion file, and integrate it with a display technology. For JSP, integration usually
includes developing a custom tag handler and registering the tag handler with a
JSP tab library.

 JSF provides base classes and interfaces for all UI components and helpers, as
well as base JSP custom tag implementations. Internationalization is only necessary
for messages that an extension may generate, and is similar to internationalizing

Figure 15.6
A directory structure for UI extensions packaged together
inside a JAR. The only requirement is that faces-
config.xml and any TLDs be in the META-INF directory. All
class files should be placed in their usual directories.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

662 CHAPTER 15
A component developer’s perspective

messages in applications. You can also package any number of UI extensions in a
JAR file, which can be dropped into any JSF application’s library path.

 Congratulations! You have reached the end of the print edition of JavaServer
Faces in Action. If you’re thirsty for more, don’t worry—there are five additional
chapters and four appendices available online. The additional material isn’t just
fluff either—it’s chock-full of information that includes:

■ Several in-depth examples of writing custom UI components and render-
ers: a date input control, a rollover button, an RSS viewer, and a toolbar

■ Examples of developing a validator and a converter
■ More than 80 pages showing how to build part of the case study using RAD-

style, drag-and-drop support for JSF inside Oracle JDeveloper [Oracle,
JDeveloper], IBM WebSphere Studio [IBM, WSAD], and Sun Java Studio
Creator [Sun, Creator]

■ Details on extending JSF by decorating or replacing pluggable classes for
evaluating expressions, displaying views, and more

■ Extensive listing of time zones, country codes, and language codes

If any of these topics sound appealing, check out the JSF in Action online exten-
sion (available exclusively to those who have purchased this book) at http://www.
manning.com/mann.

 Now that we’ve finished the plug, here are a few key points about JSF you
should remember:

■ JSF is a standard, best-of-breed, user interface framework for building web
applications in Java (developed through the Java Community Process [JCP]).

■ With JSF, you program in terms of UI components and events, rather than
HTTP requests and responses.

■ JSF can integrate with Struts [ASF, Struts], Spring [Spring], and other
frameworks.

■ All JSF applications are standard Java web applications built on top of the
Servlet API, and can integrate with other servlet-based applications.

■ You can build JSF applications without JSP, but JSP is the default display
technology (see appendix A for examples of alternatives).

■ You can use JSTL and other custom tags with JSF (with some restrictions).
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 663

■ Integrated development environments (IDEs) have powerful support
for JSF, allowing rapid application development (RAD) via a familiar,
drag-and-drop environment (see online extension appendix B for full-
fledged examples.)

■ JSF has a powerful and extensible architecture (see online extension appen-
dix C for more information).

Thanks for reading JavaServer Faces in Action.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF without JSP
665

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

666 APPENDIX A
Using JSF without JSP

Throughout this book, we’ve made a point of saying that JSF can be used without
JSP. Given the fact that all of our examples were based on JSP, it may be hard to see
how another display technology would fit into the picture. Supporting different dis-
play technologies is possible because of JSF’s core feature: the component model.
UI components are pure objects, and a view is just a tree of UI components. So, as
long as the tree is created, it doesn’t matter how.

 There is also another, subtler aspect: terminology. For example, the canonical
term for a page is view, and each view has a view identifier, not a page name or URL.
By default, a view identifier is just the filename, but it could be something else,
like “TradeCaptureScreen.” The identifier could map to a template (like JSP), or it
could map to something else entirely, like a Java class.

 In this appendix, we’ll examine how JSF can be used without JSP, and then sur-
vey examples of building views with pure Java and the XML User Interface Lan-
guage (XUL) [XUL]. We’ll then discuss some other possibilities for using JSF
without JSP.

A.1 How JSF handles display technologies

One of the most powerful features of JSF is its pluggable architecture. Nearly
every feature—from action handling to resolving EL variables—can be replaced
or extended. The view handler is responsible for creating and displaying a view as
well as restoring it when the user requests the same view again. The default view
handler displays views simply: it forwards the request to the web container, ensur-
ing that it has a proper JSP filename. (Of course, it’s not quite that simple, but you
get the idea.) When the JSP container processes the page, the JSP tags perform
the real work of creating the view.

 Other display technologies can be supported just by replacing the view han-
dler, which is configured in an application configuration file. The view handler has
a simple interface, and as long as you implement it properly, it doesn’t matter
how you do it. A view handler can parse an entirely different type of template, or
it can load a Java class, as long as it subclasses the ViewHandler abstract base class.
(For an example ViewHandler implementation, see online extension appendix C.)

 Fair enough—it’s possible. But what does JSF look like without JSP?

A.2 Creating views with class-based pages

If you’ve done any Swing programming, you should be familiar with creating and

configuring UI components in code. We showed some examples of manipulating

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating views with class-based pages 667

JSF UI components in code, but it’s always been in conjunction with a JSP tem-
plate. As it turns out, you can use the same techniques to create the entire view in
Java code.

 Exploiting this possibility is the goal of the Smile open-source JSF implemen-
tation [Smile]. Smile’s goal isn’t to implement every feature of the JSF specification;
it’s intended to provide support for class-based pages (CBP) to other implemen-
tations. CBPs are views that are created entirely in Java; as a matter of fact, a view
identifier maps directly to a specific Java class, and no JSP is involved.

NOTE This section is based on Smile [Smile] 0.32, which is based on JSF 1.0 be-
ta. This version does not implement many core features of the specifica-
tion. The project goal is, however, to provide support for CBP on top of
any JSF implementation, with MyFaces [MyFaces] as the default. (As of
this writing, the Smile site states that they will be merging with MyFaces,
which, according to mailing list discussions, is no longer true.)

Let’s examine a simple login view, as shown in figure A.1. To create this view in
Smile, all that’s necessary is to implement an interface and write a single method, as
shown in listing A.1.

Figure A.1 Sample view: a form that displays an image and collects a username. This view can be
created by the Smile code in listing A.1 or the XUL definition in listing A.2.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

668 APPENDIX A
Using JSF without JSP

package org.jia.smile;

import javax.faces.component.*;
import javax.faces.component.html.*;
import javax.faces.context.*;

import net.sourceforge.smile.component.Screen;
import net.sourceforge.smile.context.Page;
import net.sourceforge.smile.context.PageUtils;

public class Login implements Page
{
 public Login()
 {
 }

 public void init(FacesContext ctx,
 UIComponent root)
 {
 Screen screen = new Screen();

 PageUtils.addChild(root, screen);

 screen.setId("getName");

 HtmlGraphicImage graphic = new HtmlGraphicImage();
 graphic.setId("logoGraphic");
 graphic.setURL("/images/logo.gif");
 PageUtils.addChild(screen, graphic);

 HtmlOutputText outputText = new HtmlOutputText();
 outputText.setId("userNameLabel");
 outputText.setValue("Welcome! Please enter your name:");
 PageUtils.addChild(screen, outputText);

 HtmlInputText inputText = new HtmlInputText();
 inputText.setId("userNameInput");
 inputText.setValue("Oleus");
 PageUtils.addChild(screen, inputText);

 HtmlCommandButton commandButton = new HtmlCommandButton();
 commandButton.setId("userNameButton");
 commandButton.setValue("Go!");
 PageUtils.addChild(screen, commandButton);
 }
}

Listing A.1 The Smile code for the view in figure A.1

Implement
Page interface

 b

Implement
init method

 c

Instantiate
Smile form

 d

Add to root
of view

 e
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Creating views with class-based pages 669

Smile views are defined in page descriptors, which implement the Page interface
(b). All that’s necessary is to implement the init method (c) and build the com-
ponent tree. The root component for Smile views is the Screen class (d), which
subclasses UIForm. Creating the view is simply a matter of creating the proper com-
ponents and adding them to the view, starting with the Screen (e). Smile also has
a useful class to assist in the process of building the tree, called PageUtils.

 In this example, we create the concrete HTML components, but this certainly
isn’t a requirement. The concrete components are, however, simpler to manipu-
late in code. This code generates the component tree shown in figure A.2.

This code is based on JSF 1.0 beta because that is the latest version sup-
ported by Smile. Code written for an updated version of Smile would
most likely use the Application class’s factory methods.

As the figure shows, this is an ordinary JSF component tree that can be created
with JSP as well (although Screen is a Smile-specific component).

 Creating views in code has some specific consequences:

Figure A.2 The JSF component tree generated by the code in listing A.1. The UIViewRoot contains
a Screen instance (which is a subclass of UIForm), which has child HtmlGraphicImage,
HtmlOutputText, HtmlInputText, and HtmlCommandButton components.

BY THE
WAY
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

670 APPENDIX A
Using JSF without JSP

■ Manipulating code with Java is accessible to developers who aren’t familiar
with HTML or other markup languages.

■ View templates can be created by subclassing or composing different objects.
■ There are no dependencies on JSP or any other template engine.
■ Views are pure JSF and pure Java (no template text, HTML, or JSP custom tags).

It will be interesting to see how the Smile project progresses, and if other organi-
zations or companies will implement different approaches to building JSF views
in code. The bottom line, however, is that this is a viable alternative to JSP, and
while immature, Smile exists today.

A.3 Creating views with XUL

Users of the Netscape web browser, or its open-source cousins Mozilla, Firefox,
and Camino, may know that underneath the snappy browser lies a powerful plat-
form for building web applications. At the heart of it is XUL [XUL], which allows
you to define views using plain XML files. XUL is quite powerful in its own right, but
the key is the fact that it defines a standard language for describing user interfaces.

 Because XUL defines an XML dialect, it’s entirely possible to integrate it with
JSF. All that’s necessary is to write a new view hander that can map JSF compo-
nents to XUL elements. The JSF reference implementation [Sun, JSF RI] has an
example that provides support for a few XUL elements.

NOTE This example uses XUL as a replacement for JSP, but still uses the stan-
dard HTML render kit to output HTML to a web browser. It’s also possi-
ble to output XUL directly to a Mozilla-based browser, which can be done
by writing a new render kit.

As an example, let’s create the simple view shown in figure A.1 with XUL instead
of JSP. The XUL behind this view is shown in listing A.2.

<?xml version="1.0"?>

<page>
 <window id="getName">
 <image id="logoGraphic" url="/images/logo.gif" />
 <label id="userNameLabel"

Listing A.2 Sample XUL view for page shown in figure A.1
 value="Welcome! Please enter your name:" />

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Other options 671

 <textbox id="userNameInput" value="" />
 <button id="userNameButton" action="next" value="Go!"/>
 </window>
</page>

You can see from the listing that XUL has an entirely different set of XML ele-
ments than JSP component tags. However, the XUL view handler knows how to
translate these elements into JSF components. Table A.1 shows how these tags
map to JSF components.

The sample XUL view handler only creates the base objects, but it certainly could
create concrete HTML components such as HtmlForm and HtmlOutputText. Once it
has parsed the XML view definition, the view handler creates the ordinary JSF
component tree shown in figure A.3. This could have been created with JSP (or
Java code) as well.

 The XUL example included with the JSF RI [Sun, JSF RI] is rudimentary—it is
intended to be an example, and has only partial XUL support. However, it pro-
vides a concrete example of how JSF can be used with other template formats.

 XUL is quite powerful—it is, after all, the basis of Mozilla’s cross-platform
user interface. We hope to see more complete integration between JSF and XUL
in the future.

A.4 Other options

Class-based pages and XUL are only a couple possibilities for alternate display
technologies. The possibilities are pretty endless, and include:

Table A.1 Each JSF component maps to an XUL tag.

JSF Component XUL Tag

UIViewRoot <page>

UIForm <screen>

UIGraphic <graphic>

UIOutput <label>

UIInput <textbox>
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

672 APPENDIX A
Using JSF without JSP

■ Other template languages such as Velocity [ASF, Velocity]
■ XML scripting engines like Jelly [ASF, Jelly]
■ XML processing frameworks like Cocoon [ASF, Cocoon]
■ Custom XML dialects
■ Scripting languages like Jython [Jython] or Groovy [Groovy]
■ Custom HTML templates (similar to Tapestry [Tapestry])

One of these options—namely, Cocoon integration—is already under way through
the Keel meta-framework [Keel], which is lead by Michael Nash, a JSF Expert
Group member. He’s even written an article on the topic [Nash].

 For an example of custom HTML templates, see Hans Bergsten’s article on
using JSF without JSP [Bergsten].

 Also, if you’re concerned about how well JSP works with JSF, keep in mind that
the community is working toward tighter integration between the two technolo-
gies. This is the goal of the next major releases of JSP and JSF, which will work to
align the expression languages and improve interoperability with custom tags,
among other things. As of this writing, both of these releases are currently sched-
uled to be included in the next release of J2EE (5.0), which is due out in late 2005.

Figure A.3 JSF component tree generated by markup in listing A.2.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Other options 673

NOTE If you require tools support, you may not have many alternatives to JSP.
Check with your vendor to make sure it supports your desired alternative
before committing.

As the JSF landscape evolves, more options will become available; you can find all
of the latest developments at the JSF Central community site [JSF Central].
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

references
[Alur, Crupi, Malks] Alur, Deepak, John Crupi, and Dan Malks. 2003. Core J2EE Patterns.

Upper Saddle River, NJ: Prentice Hall.

[ASF, Cocoon] Apache Software Foundation. “Cocoon XML web application framework.”
http://cocoon.apache.org.
[ASF, Digester] Apache Software Foundation. “Jakarta Commons Digester (reads XML
files into Java objects).” http://jakarta.apache.org/commons/digester.

[ASF, Jelly] Apache Software Foundation. “Jakarta Commons Jelly Java and XML-based
scripting and processing engine.” http://jakarta.apache.org/commons/jelly.

[ASF, Struts] Apache Software Foundation. “Struts web application framework.”
http://struts.apache.org.

[ASF, Struts-Faces] Apache Software Foundation. “Struts-Faces integration library.”
http://cvs.apache.org/builds/jakarta-struts/nightly/struts-faces.

[ASF, Tapestry] Apache Software Foundation. “Tapestry web application framework.”
http://jakarta.apache.org/tapestry/index.html.

[ASF, Tiles] Apache Software Foundation. “Tiles JSP templating framework.”
http://jakarta.apache.org/struts/userGuide/dev_tiles.html.

[ASF, Tomcat] Apache Software Foundation. “Tomcat web container.”
http://jakarta.apache.org/tomcat/index.html.

[ASF, Velocity] Apache Software Foundation. “Velocity template engine.”
http://jakarta.apache.org/velocity/index.html.
675

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

676 REFERENCES

[Barcia Series 2004] Barcia, Roland. 2004. “Developing JSF Applications Using WebSphere
Studio V5.1.1 (5-part series).”
http://www-106.ibm.com/developerworks/websphere/techjournal/0401_barcia/barcia.html.

[Bayern] Bayern, Shawn. 2002. JSTL in Action. Greenwich, CT: Manning.

[BEA, WebLogic] BEA. “WebLogic J2EE application server.”
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/server.

[Bergsten] Bergsten, Hans. 2004. “Improving JSF by Dumping JSP.”
http://www.onjava.com/pub/a/onjava/2004/06/09/jsf.html.

[Friedl] Friedl, Jeffrey E. F. 2002. Mastering Regular Expressions. Sebastopol, CA: O’Reilly &
Associates, Inc.

[Fowler, Dependency Injection] Fowler, Martin. 2004. “Inversion of Control Containers and the
Dependency Injection Pattern.” http://www.martinfowler.com/articles/injection.html.

[Fowler, Enterprise] Fowler, Martin. 2003. Patterns of Enterprise Application Architecture. Boston:
Addison-Wesley.

[GoF] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.

[Grand] Grand, Mark. 1998. Patterns in Java, Vol. 1. New York: John Wiley & Sons.

[Groovy] “Groovy Java scripting language.” http://groovy.codehaus.org.

[Hunter] Hunter, Jason. 2001. Java Servlet Programming. Sebastopol, CA: O’Reilly & Associates.

[Husted] Husted, Ted. 2003. Struts in Action. Greenwich, CT: Manning.

[Holmes] Holmes, James. “Faces Console JSF configuration editor.”
http://www.jamesholmes.com/JavaServerFaces/console.

[IBM, WAS] IBM. “WebSphere Application Server.”
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv.

[IBM, WSAD] IBM. “WebSphere Studio Application Developer J2EE IDE.”
http://www.306.ibm.com/software/awdtools/studioappdev.

[Informa] “Informa Java RSS library.” http://informa.sourceforge.net.

[JBoss, Hibernate] JBoss. “Hibernate object/relational persistence and query engine.”
http://www.hibernate.org.

[Jython] “Jython Java-based Python implementation.” http://www.jython.org.

[JSF Central] “JSF Central JavaServer Faces community and FAQ.” http://www.jsfcentral.com.

[JSR 227] “Java Specification Request 227: A Standard Data Binding & Data Access Facility
for J2EE.” http://www.jcp.org/en/jsr/detail?id=227.

[Keel] “Keel meta-framework for server-side applications.” http://www.keelframework.org.

[Kobrix] “Kobrix Software. Tag Interface Component Library.” http://www.kobrix.com.
[Microsoft, ASP.NET] Microsoft. “ASP.NET web application framework.” http://www.asp.net.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

REFERENCES 677

[MyFaces] “MyFaces open source JSF implementation.” http://www.myfaces.org.

[Nash] Nash, Michael. 2004. “Spinning Your Code with XSLT and JSF in Cocoon.”
http://www.developer.com/lang/article.php/10924_3348311_1.

[New Atlanta, ServletExec] New Atlanta Communications. “ServletExec web container.”
http://www.newatlanta.com/products/servletexec/index.jsp.

[OpenSymphony, SiteMesh] OpenSymphony. “SiteMesh web-page layout and decorating
framework.” http://www.opensymphony.com/sitemesh.

[OpenSymphony, WebWork] “WebWork web application framework.”
http://www.opensymphony.com/webwork.

[Oracle, ADF] Oracle. “Application Development Framework.”
http://otn.oracle.com/products/jdev/index.html.

[Oracle, ADF UIX] Oracle. “ADF UIX components.”
http://otn.oracle.com/products/jdev/collateral/papers/9.0.5.0/adfuix_roadmap/
adfuix_roadmap.html.

[Oracle, AS] Oracle. “Oracle Application Server.”
http://otn.oracle.com/products/ias/index.html.

[Oracle, JDeveloper] Oracle. “JDeveloper J2EE IDE.”
http://otn.oracle.com/products/jdev/index.html.

[Salmon, SOFIA] Salmon. “Salmon Open Framework for Internet Applications.”
http://www.salmonllc.com/website/Jsp/vanity/Sofia.jsp.

[Schalk] Schalk, Chris. 2004. “How to Use JSF with JDeveloper 10g.”
http://otn.oracle.com/products/jdev/howtos/10g/jsf_howto/jsf.html.

[Smile] “Smile open source JSF implementation (with Java views).”
http://smile.sourceforge.net.

[Spring-Faces] “JSF integration code for Spring (open source).” http://jsf-spring.sourceforge.net.

[Sun, Creator] Sun Microsystems. “Java Studio Creator JSF IDE.”
http://wwws.sun.com/software/products/jscreator/index.html.

[Sun, i18n] Sun Microsystems. “Java Tutorial, Internationalization Trail.”
http://java.sun.com/docs/books/tutorial/i18n/index.html.

[Sun, JDO] Sun Microsystems. “Java Data Objects specification.”
http://java.sun.com/products/jdo/index.jsp.

[Sun, JRL] Sun Microsystems. “Java Research License.” http://www.java.net/jrl.html.

[Sun, JSF Spec] Sun Microsystems. “JavaServer Faces specification.”
http://java.sun.com/j2ee/javaserverfaces.

[Sun, JSF RI] Sun Microsystems. “JSF reference implementation.”
http://java.sun.com/j2ee/javaserverfaces.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

678 REFERENCES

[Sun, JSP] Sun Microsystems. “JavaServer Pages specification.”
http://java.sun.com/products/jsp/index.jsp.

[Sun, JSAS] Sun Microsystems. “Java System Application Server.”
http://wwws.sun.com/software/products/appsrvr/home_appsrvr.html.

[Sun, JSTL] Sun Microsystems. “JavaServer Pages Template Library.”
http://java.sun.com/products/jsp/jstl/index.jsp.

[Sun, Portlet] Sun Microsystems. “Portlet specification.” http://www.jcp.org/en/jsr/detail? id=162.

[Sun, Servlet] Sun Microsystems. “Servlet specification.”
http://java.sun.com/products/servlet/index.jsp.

[Syndi8] “Syndic8 RSS and Atom news feed aggregator.” http://www.syndic8.com.

[Szyperski] Szyperski, Clemens. 2002. Component Software, Beyond Object-Oriented Programming.
New York: Addison-Wesley.

[TheServerSide] The Middleware Company. “TheServerSide.com enterprise Java community.”
http://www.theserverside.com.

[W3Schools] Refsnes Data. “W3Schools web technology tutorial site.” http://www.w3schools.com.

[WebMacro] Semiotek. “WebMacro open source template language.” http://www.webmacro.org.

[XUL] The Mozilla Organization. “XML User Interface Language.”
http://www.mozilla.org/projects/xul/.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

index
Symbols

???<key>??? 243

A

Abstract Factory (GoF) 643
accessibility 42
accessor methods (getters) 14,

463
Action class 410
action events

action sources 51, 129, 433
execution through

ActionSource instances 448
firing by ActionSource

interface 623
generated by Command

family components 187
generation and firing of 186
handling 432
navigation handler and 129
user command representation

with 428
action listener classes

combining with action
listener methods and action
methods 188

registering 188
action listener methods

action methods compared to
52

activity of 28

combining with action
listener classes and action
methods 188

defined 34
of backing beans

(ProjectTrack) 358
overview 432
registration with an action

source 433
sorting project lists with 371
typical uses 53

action listeners
adding with Java Studio

Creator 926
adding with WebSphere

Studio 904
default 51
relationship with action

listeners 66
types of 51

action methods
activity of 29
combining with action

listener methods and action
listener classes 188

defined 34, 51
invocation by the default

ActionListener 433
navigation cases associated

with 133
of backing beans

(ProjectTrack) 358
organized by function 565

overview 433
pages that reference

(ProjectTrack) 359
reducing dependencies

between sets of objects
and 501

referenced by Inbox page
(ProjectTrack) 377

required class 433
storage or retrieval of objects

with 478
typical uses 52
updating data store with 355

action source components 186,
433

ActionEvent class 429, 432
ActionListener interface 938,

944
implementing 809
overview 433

ActionSource interface 623, 803
overview 448

ActiveX (Microsoft) 21
Adapter pattern 485
adapting objects for use with

JSF 485
ADF Faces Components

(Oracle) 875
ADF UIX (Application

Development Framework),
Oracle 7, 19, 874–875

advanced extensions
registration 98
679

Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

680 INDEX

advanced features configuration
99

Apache Software Foundation
Cocoon 15, 672
Jelly 672
Struts. See Struts (Apache

Software Foundation)
Tapestry 19
Tiles. See Tiles (Apache

Software Foundation)
Tomcat 8, 12, 89, 92
Velocity 15, 672

APIs (application programming
interfaces)

Informa 759, 762
Portlet 410, 422, 424
Servlet 410, 422, 424, 511,

536
Application class 411, 413, 936
application configuration (JSF)

attributes of elements 961
basic file structure 94, 959
elements of 98, 960
file specifying parameter 94,

959
location in the META-INF

directory 661
location of 959
managed beans in 357
overview 959
pluggable classes 963
segmenting 101, 959
with web.xml 36, 92

application configuration
categories 98

application configuration entry
application 36
categories 98

application configuration files
defined 97
errors 102
locating 101
specifying 101

Application Development
Framework UIX (ADF),
Oracle 7, 19, 874–875

application environment 357
application errors 501

Application instances,
initializing 606

application layer classes
(ProjectTrack) 477

application layers 457
application logic 51, 288, 411,

434, 457, 840
application messages. See

messages
application scopes 80
<application> element 963
application-related classes (JSF)

411, 413
applications

access to pages 360
adding Cascading Style

Sheets 303
adding JavaScript using pass-

through properties 301
client-side JavaScript

integration with JSF 301
commands, executing 219
configuration. See application

configuration, JSF
connecting views to data

sources 355
consistency enforcement 236
development approaches 355
enhancing pages 300
ensuring access to backing

beans 472
error reporting 422
form-centric development of

small 356
internationalization of 235,

398, 424, 551
layered 457
localization of 402
message bundles for 269
messages. See messages
migrating over time 572
object-oriented development

of large system 356
request and response

handling 572
requirements for JSF 289
resource bundles, creating for

238

simple two-layer 457
small 458
splitting into multi-layers

458
states, encapsulation of 419
Struts-Faces 573
text adaptation to locales 236
text strings for specific locales

238
UI component development

compared to code
development for 607

Apply Request Values phase 69,
428, 622

Approve a Project page
(ProjectTrack)

access authorization 546
beans used for 381
integration with application

382
navigation rule update 384
navigation rules for 337, 384
overview 331
project updating 522
purpose of 379

architectures, application
alternatives and consequences

562
consistency of 459
layers 457

ASP.NET Web Forms (Microsoft)
5, 46, 95, 224, 500

<attribute> element 959, 962
attributes, JSF

accessing 443
defined 441
properties compared to 441,

610
authentication 545
authentication keys

(ProjectTrack) 480
AuthenticationBean backing

bean class (ProjectTrack)
action methods of 500
code for 505
initializing and referencing

509
login method code 550
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 681

AuthenticationBean backing
bean class (ProjectTrack)
(continued)

managed bean configuration
509

properties of 500
Visit object creation and

storage 550
authenticationBean scoped

variable (ProjectTrack)
associated views 359
description 358
header page and 365–366
Login page and 360–361
summary 360

AuthenticationFilter 547, 550
authorization 545, 547

filters 547

B

backing beans 39, 48
action methods implemented

by 433, 564
adapters and property

exposure of 460
advantage of 500
application logic organized

into 411
as adapters 460
association with application

views 355
automatic construction of

460
base class for 494
basic structure of 509
binding to a component

instance 46
binding to a component’s

value 46
business objects compared to

460
component wiring to data-

sources with 355
configuring as managed

beans 110, 472
data layer objects treated as

black boxes 540

data-source association with
355

declaring 501
defined 14, 45
event listener methods and

358
event listeners and 186
exposing as scoped variables

472
exposing, using ValueBinding

objects 473
form-centric development

and 355
initializing 565
JavaDocs for 359
JSF compared to other

frameworks 33
keys 480
Managed Bean Creation

facility and 460, 494
not showing up 368
of Project Track 357
organizing by form 564
organizing by function 563
packaging action methods as

properties of 501
properties of 357
property values, converting to

a String 461
registering methods of single

452
relationship with Update

Model Values phase 66
retrieval of business objects

459
serializability 462
similarity to ASP.NET Web

Forms code-behind classes
46

simple layered architecture
and 457

stored as scoped variables
494

storing in request scopes 538
storing in sessions 538
support for validator methods

in 451
thread safety of 501

UI component manipulation
with 441

UI component
synchronization with Java
objects using 6

validation methods and 245
writing to be stateless 538

Barcia, Roland 895
base classes 441, 627
JSTL in Action 104
Bayern, Shawn 104
Bergsten, Hans 672
binary data output 422
bind, defined 46
blogs 757
Borland

C++Builder 5
Delphi 4–5
Delphi Visual Component

Library 21
broadcast method 624
business layers

access alternative 562
defined 458
interaction with views 459
overview 473

business logic 457, 563, 599
business objects

adapting to work with JSF
components 484

backing beans compared to
460

exposing through backing
beans 472

properties of 466
reusable in non-JSF

applications 485
serializability 462
unit testing of 474

Button renderer 728
buttons

associating model objects
with 323

cancel 448
components used for header

320
configured dynamically 321
creating 219
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

682 INDEX

buttons (continued)
highlighting selected 321
localizing labels for 244
navigation rules for header

323
normal compared to rollover

728
reset 221, 736
rollover-enabled 728
using graphics for 301

C

C++Builder (Borland) 5
Camino open source browser

670
cancel buttons 448
Cascading Style Sheets (CSS) 69

adding to JSF applications
303

browsers and 69
class attribute and 143
editors for 143
UI component integration

with 138
CBP (class-based pages) 666
cell phones 5
ChannelDataModel class 765
ChannelIF interface

DataModel class and 764
Informa API and 761
RSS channel representation

in 761
character class 841
characters, regular expression

841
checkboxes, creating 198, 205
child components

accessing 442, 445
ensuring unique client

identifiers 623
manipulating 445
rendering with encoding

methods 815
using standard components

with 758
child-parent relationships 412
choice formats 163–164

class-based pages (CBP) 666
classes

action methods of 433
adapter 477, 485
application layer 477
application-related (JSF) 411
base 441
base, for backing beans 494
context-related (JSF) 411
converter 416
core JSF 936
enumerated type 476
event 429
event-handling (JSF) 411
infrastructure category of

core JSF 936
JSF set of 410
pluggable category of core

JSF 938
renderer-related 637
UI component 411–412, 439,

441
utility 477

classes, shared 92
client certificate authentication

546
client identifiers

defined 30, 64
derivation of 611
referencing components with

73
rendering of 613

client-side validation, JSF and
245, 840

Cocoon (Apache Software
Foundation) 15, 672

combining with value-change
listener 187

combo box, creating 217
Command family components

187
CommandRolloverButtonTag

adding to the tag library 745
tag validator for 744
writing a 741

Common Object Request Broker
Architecture (CORBA) 13

common/lib directory 92

commons-beanutils.jar files 91
commons-collections.jar files 92
commons-digester.jar files 92
commons-logging.jar files 92
component identifiers

referencing in Java code 76
specifying 442
using with findComponent 75

component palettes 145, 246
component tags, JSF 107, 142,

145
component trees 445
<component> element 970
components

defined 21
user interface (UI). See UI

components
composite components 759
com.sun.faces.NUMBER_OF_

VIEWS_IN_SESSION 96
com.sun.faces.validateXml 96
com.sun.faces.verifyObjects 96
configuration elements 961
configuration, JSF

application. See application
configuration

consistency enforcement 236
constants, storing strings as 478
constructors, no-argument 460
consuming feeds 760
containers 12, 21
context 419
context-related classes (JSF)

access to user request data
with 411

FacesContext class 411
summary of 419

controller architecture, JSF 599
controls. See UI components
convenience wrappers around

methods 424
convertClientId method 642
Converter 450
converter classes 416
converter development

need for 854
registration of 461
writing 488, 654, 854
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 683

Converter interface 654, 856
<converter> element 973
converters

accessing 246
application configuration files

for 98, 970
association with components

252
attributes used by 443
custom 252, 854
defined 48
description 39
development of 840, 854
for formatting 48
identifiers for 450
JSP integration of 658, 840,

866
localization 48
manipulating inside JSF IDEs

254
object assignment caution 254
purpose of 252
registration of 252, 416, 491,

657, 865
relationship with renderers 48
specifying 253
standard (JSF) 252, 255, 854
standard for basic Java types

253
states of 620
third-party vendor 252
type conversion, handling by

654
UI component association

with single 654
unit tests for 656
user input conversion by 252

ConverterTag class 659
cookies 12–13, 81
CORBA (Common Object

Request Broker
Architecture) 13

core tag library 142
country codes (ISO) 236, 994
course-grained components 21
Create a Project page

(ProjectTrack)
access authorization 546

action methods referenced by
386

bean used for 386
CreateProjectBean and 528
integration with application

386
navigation rule update 390
navigation rules for 390
overview 341
project updating 522
purpose of 379

CreateProjectBean backing
bean class (ProjectTrack)

code analysis 528
managed bean configuration

532
createProjectBean scoped

variable (ProjectTrack)
associated views 359
Create a Project page and

386
description 358
header page and 366
summary 386

currency codes (ISO) 1002
custom tag handlers 607, 627
custom tag libraries 102, 634
custom tags 102, 822
customizer 14

D

data format types 163
data grids. See HtmlDataTable

component
data layer objects 540
data model events 41, 53, 428
data sets, displaying 223
data sources

backing beans association
with 355

component wiring to 355
form-centric development

and 355
data store 457
data store logic 457
data-aware controls 356, 759
databases 458

working with 407
DataModel class 53, 764
date collection 706
date format patterns 163, 259
date input controls 706
Date objects 251, 708
DateTime converter

description 256
inputting a Date object with

708
properties 257
usage 253, 256
using with date format

patterns 259
DateTime converters 977
decimal format patterns 266
declarative 46
decode method 613, 729, 820
decoding 43, 636
delegated implementation

rendering model 636
Delphi (Borland) 5, 176, 356
Delphi Visual Component

Library (Borland) 21
Dependency Injection pattern

112
deployment descriptors

(web.xml)
basic requirements 290
updating 397
usage 289

<description> element
113–114, 135

design time 21
development approaches (JSF)

355, 457
development tools 145
direct implementation

rendering model 636,
707

directory structures 289, 360
display strings 552
display technologies 15

JavaServer Pages. See JSP
(JavaServer Pages)

Velocity 15
WebMacro 15
XSLT 15
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

684 INDEX

display technologies, alternative
class-based pages (CBP) 666
other options 671
XUL 670

<display-name> element
113–114, 135

doAfterBody method 633
Document Type Definition

(DTD), JSF configuration
959

documentation for front-end
developers 359

doFilter method 549
doInitBody method 633
DoubleRange validator 248, 250
DynaActionForms, Struts-Faces

support for 581
DynaBeans, Struts-Faces

support for 581
dynamic content 11
dynamic includes 103
dynamic resources 317

E

EAR (enterprise archive) 90
EditableValueHolder interface

438, 451, 621, 708
EJBs (Enterprise JavaBeans) 9,

18–19, 458
EL. See expression language (EL)
encodeBegin method 632, 721,

729, 813
encodeChildren method 632,

813
encodeEnd method 632, 813
encodeIcon method 819
encodeItem utility method 816
encoding 43, 636
encoding logic 613
encrypted logins 546
enterprise archive (EAR) 90
Enterprise JavaBeans (EJBs) 9,

18, 458
error messages. See messages
error page (ProjectTrack) 390

adding an 396
navigation rule update 397

navigation rules for 397
errors

classes of 501
handling 501
methods for logging 428
reporting to UI 422
serious 504

evaluation expressions 417
event classes 429
event handling 39, 55, 428,

615, 623
event listeners 28, 49

adding to UI components
615

description 186
event handling with 428
handling by

UIComponentBase 623
method signatures for 432,

434, 436, 502
referencing type-safe

properties 566
registering 186, 437, 593
superclasses and 441

event/listener pairs 430
event-handling classes 411
events 49

action. See action events
broadcasting of 430
data model. See data model

events
generation with UI

components 142
handling 428
important to JSF

development 186
interfaces that fire 623
phase. See phase events
registering for later

broadcasting 431
representation by subclasses

430
types of 428
value-change. See value-

change events
exceptions, handling 502
expression language (EL), JSF

and quotes 78

associating backing beans
with components via 46

embedding expressions 78
evaluation of 411, 417
hooking objects to

components 357
implicit variables 83
in relation to backing beans 78
in relation to JavaBeans 78
in relation to JSP 2.0 EL 76,

81
in relation to JSTL EL 76, 81
in relation to model objects 78
JSF application development

and 86
JSP 2.0 EL and 27
managed beans used with 107
method-binding expressions.

See method-binding
expressions

nested properties 78
relationship with Update

Model Values phase 66
sharing variables with custom

tags 106
usage in JSF applications 76
using with components 86
value-binding expressions. See

value-binding expressions
expressions, JSF EL. See

expression language (EL),
JSF

expressions, regular. See regular
expressions

eXtensible Markup Language
(XML) 15, 148

eXtensible Style Sheet
Language Transformations
(XSLT) 15

extension mapping 93
external environments, access to

424
ExternalContext 420, 424

F

<f:verbatim> element
<from-action> element 133
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 685

<f:verbatim> element
(continued)

<from-view-id> element
132, 134

nesting custom tags within
105

Faces Console (James Holmes)
97, 959

Faces requests 571
Faces responses 571
Faces servlet 30, 57, 93
.faces suffix 93
faces/prefix 93, 290
faces-config.xml. See application

configuration (JSF)
FacesContext class 82, 420, 936
FacesEvent 429–430
FacesMessage 420, 422
<facet> element 959, 963
facets

compared to child
components 143

defined 42
UIComponent methods for

445
using HtmlPanelGroup inside

183
factories (JSF) 936
factory classes 436
factory configuration 99
factory methods 414–415
<factory> element 975
FactoryFinder class 936
families, UI component

defined 141
exposure of 611
list of 141
renderer types and

corresponding 637
renderers and 612

feeds
caching 764
consuming 760
RSS 759

filters, authentication 360
fine-grained 61
Firefox open source browser 670
formatting 48

form-based authentication 546
form-based development

355–356, 457
forms

adding to ProjectTrack 295
components for submitting

320
creating input 331
creating input. See also

HtmlForm component
foundation frameworks 19, 570
foundation technologies 10
frameworks, web development

18
Application Development

Framework UIX 7, 19, 146
Cocoon 15
JSF and 19
request processing lifecycles

of 571
SOFIA 19
Struts. See Struts
Tapestry 19
types of 18, 570
WebWork 17–18

front-end development 457, 501

G

getAsObject method 655
getAsString method 655
getClientId method 611
getter methods (accessors) 14,

463
GMT (Greenwich Mean Time)

977
GridLayout component (Swing)

176
Groovy scripting language 672

H

header page (ProjectTrack)
action methods referenced by

369
AuthenticationBean class and

505
backing beans for 365

CreateProjectBean and 528
integration with application

366
internationalizing 400
navigation rule update 369
navigation rules for 369
properties of 366
purpose of 365

headers
built as dynamic resource 317
button 320, 323
control of text and graphic

links in 318
navigation 317
spacing of buttons in 318
using custom components for

321
HeadlineViewerTableTag 781
Hello, world! application

backing bean referenced by
32

description 22
goodbye page 31
main page 24

hidden fields, declaring 197
Holmes, James 97, 325, 959
HTML component subclasses

439
HTML JSP custom tag library

(JSF) 27, 102, 142
HTML renderers 441
HTML templates 672
HTML views, components for

building 139
HtmlBaseTag class 738
HtmlCommandButton

component
action events generated by

187
buttons, declaring with 219
description 139
for form submission 321
summary 219
UICommand class and 439
using for Submit button in

forms 295, 298
value-binding expressions

and 301
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

686 INDEX

HtmlCommandLink component
action events generated by

187
action links, creating with 221
column headings and 371
description 139
for header buttons 320
functions performed by 370
re-sorting table data with 328
summary 221
UICommand class and 439
using instead of

HtmlCommandButton 301
HtmlDataTable component

association requirement 324
converting from

HtmlPanelGrid 371, 391
data grids 224, 370
data sets, displaying with 224
data tables

creating blank headings,
component used for
328

prototyping with panels 324
re-sorting data, component

used for 328
spanning columns of 335

description 139
displaying dynamic lists of

data with 324
summary 225
UIData class and 439

HtmlForm component
basic usage 191
description 139, 190, 192
<hidden> field 300
method attribute of 192
requirement for header

buttons 320
summary 190
UIForm class and 439
using for Login page 295, 297

HtmlGraphicImage component
basic usage 169
description 139
displaying images with 168
for header buttons 320
summary 168

UIGraphic class and 439
URL rewriting and 168
use in ProjectTrack 292

HtmlInputHidden component
basic usage 198
converter support by 252
description 139, 192
hidden fields, declaring with

197
summary 197
UIInput class and 439

HtmlInputSecret component
basic usage 196
converter support by 252
description 139
password fields, displaying

with 195
summary 195
UIInput class and 439
using for password in forms

295
HtmlInputText component

basic usage 193
converter support by 252
description 139, 192
registering email validators

247
specifying input fields with

345
summary 193
text fields, declaring with 193
UIInput class and 439
using for username in forms

295, 297
value-change events

generated by 187
HtmlInputTextarea component

converter support by 252
description 139, 192
memo fields, creating with 194
summary 194
UIInput class and 439

HtmlMessage component
basic usage 175
debugging with 175
description 139
displaying application

messages with 173

displaying component
messages with 169

showing detail with styles 172
summary 170, 173
UIMessage class and 439
validation messages displayed

with 245
HtmlOutputFormat component

compared to
HtmlOutputText 160

converter support by 252
description 140
message format patterns and

161
parameterizing strings with

243
relationship with

MessageFormat class 162
simple parameter substitution

162
summary 161
UIOutput class and 440
using choice format for

plurals 165
using date format patterns

with 260
using extended syntax for

message format elements
163

using for parameterized text
160

using with number format
patterns 266

HtmlOutputLabel component
basic usage 160
converter support by 252
creating input labels with 158
description 140
for form submission 321
summary 159
UIOutput class and 440

HtmlOutputLink component
and URL rewriting 165
compared to normal

hyperlinks 167
converter support by 252
description 140
displaying hyperlinks with 165
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 687

HtmlOutputLink component
(continued)

linking to relative URL 166
passing URL parameters to

167
summary 166
UIOutput class and 440

HtmlOutputText component
compared to

HtmlOutputFormat 160
converter support by 252
description 140
displaying ordinary text with

153
for header buttons 320
for text in headers 318
referencing localized strings

with 242
summary 154
turning off text escaping 155
UIOutput class and 440
use in ProjectTrack 292
used as placeholder for

application messages 328
HtmlPanelGrid component

as main container for headers
318, 320

basic usage 180
converting to HtmlDataTable

371, 391
creating footers with 333
creating layouts with 333
creating tables with 178
description 140, 176
GridLayout compared to 176
improving layouts with 308
prototyping data tables with

324
simulation of HtmlDataTable

328
summary 179
UIPanel class and 440
using with headers, footers,

and styles 181
HtmlPanelGroup component

as a placeholder 177
as container for combo box in

headers 318

basic usage 177
creating blank table headings

with 328
description 140, 176
grouping components with

176
summary 177
UIPanel class and 440
using with styles 178

HtmlSelectBooleanCheckbox
component

checkboxes, creating with
198

converter support by 253
description 140
summary 198
UISelectBoolean class and

440
HtmlSelectManyCheckbox

component
checkbox groups, displaying

items with 205, 336
converter support by 253
description 141
specifying input fields with

345
summary 206
UISelectMany class and 440
value-change events

generated by 187
HtmlSelectManyListbox

component
converter support by 253
description 141
listboxes, displaying several

items in 208
summary 208
UISelectMany class and 440

HtmlSelectManyMenu
component

converter support by 253
description 141
listboxes, displaying single

items in 210
summary 210
UISelectMany class and 440

HtmlSelectOneListbox
component

converter support by 253
description 141
for language selection 320
single-select listboxes, using

with 215
specifying input fields with

345
summary 215
UISelectOne class and 440

HtmlSelectOneMenu
component

combo boxes, declaring with
217

converter support by 253
description 141
summary 217
UISelectOne class and 440

HtmlSelectOneRadio
component

converter support by 253
description 141
radio buttons, displaying

items with 212
summary 213
UISelectOne class and 440

HTTP 12
HTTP basic authentication 546
HTTP digest authentication

546
HttpRequest 410
HttpResponse 410
HttpServlet 410
HttpSession 410
Husted, Ted 573

I

i18n (internationalization)
abbreviation 236

IBM
WebSphere Application

Developer. See WebSphere
Application Developeer
(IBM)

WebSphere Application
Server 8, 12, 89

<icon> element 113–114, 135,
959, 961
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

688 INDEX

IDEs (Integrated Development
Environments). See
Integrated Development
Environments (IDEs) for
JSF

image files 289
implementations, JSF 89, 92,

95, 936
implicit includes 103
implicit variables 83, 581
Inbox page (ProjectTrack)

access authorization 546
action methods referenced by

378
data table for 325
directory location 360
integration with application

375
listing projects for 511
navigation rule for 329, 378,

519
navigation rule update 378
overview 325
project information listing 541
SelectProjectBean and 519
toolbar button disabling for

464
inboxBean scoped variable

(ProjectTrack)
Inbox page and 370
summary 370

includes, JSP
directory of 360
functions performed by 382
used by project pages 379
using with JSF 103

Informa API 759, 762
infrastructure JSF classes 936
initial request 63
input controls 194

date 706
disabling 194
EditableValueHolder

interface and 621
generation of value-change

events 186
registration of validators for

246

requirements for 192
types of values of 621
UIInput class and 708
validation method

associations 245
validator acceptance by 248
validators and 648

input errors 501
Input family components 192,

249
input forms 379
input validation. See validation
input values, requirement of

249
InputDateTag 718
Integrated Development

Environments (IDEs) for JSF
component palette of 246
importing custom

components 627
importing custom renderers

647
Java Studio Creator. See Java

Studio Creator (Sun)
JDeveloper. See JDeveloper

(Oracle)
JSF support of 874
manipulating converters

inside 254
WebSphere Studio

Application Developer. See
WebSphere Studio (IBM)

integration
ad hoc performance of 359
defined 569
effect of filtering on 360
JSF with Struts applications

572
integration layers 458, 476
Intercepting Filter pattern 547
International Organization of

Standardization (ISO). See
ISO (International
Organization of
Standardization)

internationalization 235
application 398
defined 235, 398

dynamic text and 244
i18n abbreviation 236
informational resources on

241
supporting in code 552
UI extensions 660

Inversion of Control (IoC)
pattern 112

Invoke Application phase 69
ISO (International Organization

of Standardization)
country codes 994
currency codes 1002
language codes 990

isTrue method 721
isValid method 650, 745
items

creating single 200, 453
defining lists of 199
displaying in checkboxes 205
displaying in listboxes 208
displaying single 200
groups of 199, 453
handling multiple 205
lists of 199, 453

J

J2EE. See Java 2, Enterprise
Edition (J2EE)

Jacobi, Jonas 874
JAR files 660
JAR libraries 90
Java 2, Enterprise Edition (J2EE)

containers 10
implementations shipped

with 90
JDeveloper (Oracle) and 874
JSF applications and 89
JSF as part of 4, 19
manipulation of components

during runtime 21
web applications 12, 36

Java Community Process (JCP)
4, 10, 13, 19

Java Studio Creator (Sun)
adding data sources to

backing beans 356
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 689

Java Studio Creator (Sun)
(continued)

description 8
displaying hyperlinks with 165
dockable component palette

of 146
overview 918
page navigation editing in 130
ProjectTrack Login page,

creating with 920
registering validators with 246
table creation with 178
visual editors for 97

Java System Application Server
(Sun) 12

JavaBeans
accessing properties of 463
accessor methods (getters)

14, 463
adapters 460

JavaDocs 359
JavaScript

component referencing with 27
encapsulating functionality

within components 728
image rollover function 301
integrating JSF applications

with client-side 301
JSF expression language and 76
MyFaces configuration

parameters and 96
UI component integration

with 138
JavaServer Faces (JSF)

architecture, extending core
features of 940

as standard Java web
applications 289

benefits of 438
core classes 936
defined 5
display technologies,

handling 666
EL syntax, flexibility of 357
goals of 874
history of 10
IDE support of 874
IDEs and 19

implementations 171
industry support 10
integration with non-Struts

applications 600
Java Studio Creator used with

918
JSP 1.2 and 607
JSP-based pages and JSF tag

library 294
key concepts 41, 57
libraries 91
limitations in functionality 876
main parts of 569
non-JSP display technologies

with 666
Oracle JDeveloper 10g used

with 874
other web frameworks and 19
pluggable architecture of

666, 936
portability of 147
power of 606
purpose of 5, 570–571
RAD and 10
requirements for applications

289
Struts compared to 564
Struts integration with 573
terminology 666
two primary features of 570
underlying technologies 11
using without JSP 570
WebSphere Studio used with

895
when to integrate with other

frameworks 569
JavaServer Pages (JSP). See JSP

(JavaServer Pages)
JavaServer Pages Standard Tag

Library (JSTL)
API classes 92
<c:out> tag compared to

HtmlOutputText
component 155

constraints when using JSF
tags with 109

controlling component
visibility with 108

custom tags and 15
dependence of JSF on 92
dynamic includes and 103
impact of <fmt setLocale>

tag on 110
information about 105
JSF combined with 110
JSF custom tags

demonstration with 104
managed bean referencing

and 111
mixing with JSF tags 80,

104–105
using JSF tags without 109
using with JSF and backing

beans 106
JavaServer Pages Standard

Template Library (JSTL)
104

javax.faces.CONFIG_FILES 94,
101, 959

javax.faces.DEFAULT_SUFFIX
94

javax.faces.LIFECYCLE_ID 94
javax.faces.STATE_SAVING_

METHOD 94
JDeveloper (Oracle)

child component
manipulation with 225

debugging with 894
design-time benefits of 876
JSF and 7, 146
overview 874
ProjectTrack Login page,

creating with 879
workspace 878

JDK 1.5 (Tiger) 798
Jelly (Apache Software

Foundation) 672
JSF Central community site 10,

959
JSF classes, categories of 411
JSF Console (Holmes) 325
JSF implementations 933
JSF RI (reference

implementations), Sun 10
as standard for all

implementations 89
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

690 INDEX

JSF RI (reference
implementations), Sun
(continued)

description 933
effecting configuration

changes 101
ensuring same behavior 181
internationalization and

localization support with 236
JSF library non-support by 92
language support for 269
quirks of 171
RenderKit support by 448
UI extension defining 606

JSF. See JavaServer Faces (JSF)
jsf-api.jar file 91
jsf-impl.jar file 91–92
JSP (JavaServer Pages)

component integration with
822

controlling access to 360
converter integration with

658, 866
custom tag implementation

607
custom tags 718
defined 15
placement in root directory

289
renderer integration with 647
technical restrictions and

“class” 143
Tiles pages, converting to JSF

593
UI component integration

with 627
UI extension integration with

607
UIHeadlineViewer

component integration with
781

UIInputDate component
integration with 718

validator integration with
652, 847

version 1.2 and JSF 89, 607
version 2.0 and JSF 607
writing component tags for 627

JSP custom tags
goal of Struts-Faces 577
removing components used

with conditional 107
JSP includes 317
JSP integration process 737
JSP page directive 110
jstl.jar file 92
Jython scripting language 672

K

Keel meta-framework 672
<key> element 120
keys, storing as constants

(ProjectTrack) 480

L

l10n (localization) abbreviation
236

language codes (ISO) 236, 990
language of views (localization)

151
languages, support for multiple.

See localization
layers, application

separation of 457
types of 457

LDAP (Lightweight Directory
Access Protocol) 546

Length validator 248, 250–251,
345

libraries (JAR) 91
libraries, resale/distribution 840
Lifecycle class 936
<lifecycle> element 974
links, action 221
listboxes, creating 208
listener classes, support for 624
listener methods, support for 624
listeners

parameterizing 516
states of 620

<list-entries> element 968
lists of data

controls for displaying
dynamic 324

lists of items
configuring dynamically 465
exposing objects from

business tier in 466
selecting items from 465

local values 621
<locale-config> element 964
locales 151

configuration of 237
defined 235–236, 977
determining user 238
displaying numbers for 262
importance of specifying 238
keeping track of supported

414
overriding JSF selected 238
resource bundles and 238

localization 235
application 402
defined 235, 398, 552
informational resources on 241
JSF handling of 447
l10n abbreviation 236

logic
business 457–458, 563, 599
converter 847
data store access 457
encoding 613
intermixing, problems with

458
separating validation logic

from application 840
logical outcomes 34, 129,

132–133
login failures 363
Login page (ProjectTrack)

action listeners, adding with
Java Studio Creator 926

action listeners, adding with
WebSphere Studio 904

AuthenticationBean class and
505

components, binding to
backing beans with
JDeveloper 890

components, binding to
backing beans with
WebSphere Studio 902
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 691

Login page (ProjectTrack)
(continued)

components, binding to
properties with Java Studio
Creator 924

configuration file editing with
JDeveloper 890

creating page with Java
Studio Creator 920

creating page with
JDeveloper 879

creating page with
WebSphere Studio 898

input field requirements 305
integration with application 361
layout 292
layout improvement 308
navigation rule for 364
navigation rule update 364
navigation, adding with Java

Studio Creator 928
navigation, adding with

JDeveloper 892
navigation, adding with

WebSphere Studio 912
outcome possibilities 364
overview 291
testing with Java Studio

Creator 932
testing with JDeveloper 894
testing with WebSphere

Studio 913
validation, adding with Java

Studio Creator 923
validation, adding with

JDeveloper 888
validation, adding with

WebSphere Studio 901
logins, encrypted 546
LongRange validator 248,

250–251

M

Managed Bean Creation
facility 47

automatic bean creation with
460

automatic bean exposure with
472

benefits of 111
combining backing beans

with 494
description 98
initializing backing bean

properties with 565
object creation with 482
purpose of 110

managed beans
at application startup 112
configuration with XML

elements 111
configuring backing beans as

472
converting types used for

map keys 122
defined 35, 47, 110
Dependency Injection pattern

and 112
expressions used with 107
implicit variables associating

with 128
Inversion of Control (IoC)

pattern and 112
JSTL and referencing 111
referenced beans 114
restricted scoped variables,

associating with 128
Setter Injection pattern and

112
web application scopes 113

<managed-bean> element
114, 965

<managed-bean-class>
element 113

<managed-bean-name>
element 113

<managed-bean-scope>
element 113

<managed-property> element
114, 966

<map-entries> element 120,
967

<map-entry> element 120, 967
mapping prefix 93
mapping suffix 93

McClanahan, Craig 19
memo fields, creating 194
message bundles 269
message format elements

161–163
message format patterns 161
message format styles 163
message format types 163
MessageFormat class 162
messages

adding to a user interface 304
application 169–170, 328
conversions and 252
customizing validation 307
description 40
for application errors 55
informational 56
internationalizing 557
localizing for Russian 561
login failures 364
methods for logging 428
overriding default 414
overriding standard 270
properties of 557
reporting to UI 422
severity levels of 169, 269, 423
sources of 55
standard (JSF RI) 307
standard (JSF) 270
user input errors 55
validation and conversion 27,

236, 414
validation error 30

MethodBinding class 413,
417–418

method-binding expressions 79
encapsulation of 415
method-binding expressions 85

methods
action listener. See action

listener methods
component decoding 612
component encoding 612
convenience wrappers around

424
event handling 615
validator. See validator

methods
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

692 INDEX

methods (continued)
value-change. See value-

change methods
Microsoft

ActiveX 21
ASP.NET 5
ASP.NET Web Forms 5, 95,

500
.NET Framework 5
Visual Basic 4, 8, 37, 176
Visual Studio.NET 5, 918

model objects
as managed beans 47
binding to a component’s

value 47
defined 47
HtmlNavigator custom

component and 323
properties exposure 357, 359
relationship with Update

Model Values phase 66
SelectItem class 453
working with UIComponents

compared to 828
Model-View-Controller (MVC)

design pattern
defined 17
enforcing architecture of 41
Model 2 variation 18

Mozilla open source browser
670

mutator methods (setters) 14,
463

MVC. See Model-View-Controller
(MVC) design pattern

MyFaces open-source JSF
implementation 90, 95, 933

myfaces_allow_designmode 96
myfaces_allow_javascript 96
myfaces_pretty_html 96
myfaces.jar files 92

N

naming containers 72–73, 623
NamingContainer interface

439, 623
Nash, Michael 672

navigation
adding with Java Studio

Creator 928
adding with JDeveloper 892
adding with WebSphere

Studio 912
control 188
defined 56
description 40
global rules 134
headers for 317
logical outcomes 41, 51, 129,

132–133
redirecting to the next view

132
separate configuration files

134
similarity to Struts 57
visual configuration in an IDE

130
navigation cases

defined 36, 56
selection of 129
storage of 57

navigation handlers 56, 129
navigation rules

defined 36, 56, 98, 129
global 134
hardcoding 288
union of rules for all pages

329
<navigation-case> element

130, 133
NavigationHandler class 938
<navigation-rule> element

130, 969
Navigator_ToolbarTag custom

tag handler class
configuration via JSP tags

826
properties 822
referencing value-binding

expressions for 826
tag handler for 823
tag library descriptor for 831

NavigatorActionListener
custom component helper
class 809

NavigatorItem custom
component model class 796

NavigatorItemList custom
component model class
798, 834

NavigatorItemTag custom tag
handler class

NavigatorItemList
initialization with 834

tag handler 827
tag library descriptor for 833

nested tags 104–105
.NET Framework (Microsoft) 5,

223
Netscape browser 670
New Atlanta

ServletExec 89
news sites 757
none scope 113
Non-Faces requests 571
Non-Faces responses 571
<null-value> element 114,

117, 120
Number converter 110

description 256
displaying proper currency

signs 265
properties 262
using the 253, 262
using with decimal format

patterns 266

O

object-based development 356
object-oriented development

356
objects

accessed through value-
binding expressions 462

associating with each other
565

business layer 458
conversion into strings for

display 252
custom converters for 461
exposing properties 462
hooking to components 357
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 693

objects (continued)
JavaBean property exposure

and JSF-integrated 460
JSF application 413
property publishing and JSF

interaction 460
reducing dependencies

between action methods and
sets of 501

requirements for sharing or
persisting to disk 462

retrieval by value-binding
expressions 566

retrieval from application
scopes 478, 566

retrieval from data stores 476
storage 428, 478

OpenSymphony
SiteMesh 317
WebWork 17–18

Operation model object
(ProjectTrack) 475

Operations 475
Oracle

access with integration layers
458

Application Development
Framework UIX 7, 19,
874–875

Application Server 8, 89
JDeveloper. See JDeveloper

(Oracle)
view on JSF 875

P

page code 909
panel components 176
parent forms 820
pass-through properties 142,

301
pass-through rule exception

143
password input fields

creating 195
displaying 292

PDA (Personal Digital
Assistant) 5

Perl language 841
phase events 55, 428, 435
phase listener registration 99,

974
PhaseId 430
PhaseListeners 436
phone numbers, expressions for

841
plain old java objects (POJOs)

18, 458
pluggable JSF classes

configuring 942
decorating 943
extending 940
overview 938
replacing 947

POJOs (plain old java objects)
18, 458

portal 13
Portlet API 410, 422, 424
portlets 14
postback 61, 192, 300, 837
PowerBuilder (Sybase) 4
prefix mapping 93
Previous buttons 448
Process Validations phase 69,

622, 642
Project Details page

(ProjectTrack)
bean used for 390
components used by 390
integration with application

390
navigation rule for 352, 395
navigation rule update 395
overview 347
ShowHistoryBean and 390,

534
Project Manager, role of 317
Project model object

(ProjectTrack) 374, 379
ProjectTrack case study

adding a form to 295
adding rollover effects to 301
adding validator error

messages to 304
application layer classes 476
application logic of 434

Approve a Project page. See
Approve a Project page
(ProjectTrack)

backing bean construction
505

backing beans for 357
business (domain) model 283
business layer 473
business object retrieval 459
conceptual model 281
configuration file 290
controlling access to pages

547
converters 491
custom authentication of 505
default page for 290
deployment descriptors 397
directory structure 360
enhancing pages 300
environment segmentation

357
error page 396
formatting text with

Cascading Style Sheets 303
header page. See header page

(ProjectTrack)
Inbox page. See Inbox page

(ProjectTrack)
includes used by 379
initial directory structure 289
input form integration 379
integration layer 476
integration process 357
internationalizing 398, 551
listing projects 511
localizing for Russian 402,

556, 561
Login page. See Login page

(ProjectTrack)
main menu 370
messages of 557
model object properties

exposure 357, 359
model objects of 366, 374,

379, 390
multiple layers of 459
navigation headers 317
object model 475
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

694 INDEX

ProjectTrack case study
(continued)

object-based development
approach 356

operation pages 379
organizing code into backing

beans 500
page requirements 317
paging through history 534
parameterizing listeners for

516
password field for 291
project approval and rejection

511
Project Details page. See

Project Details page
(ProjectTrack)

project lists, views of 324
Project Manager, role of 317
project updating 522
projects, creating new 528
Reject a Project page. See

Reject a Project page
(ProjectTrack)

required functions 290
security for 360, 545
selecting language for 320
Show All page. See Show All

page (ProjectTrack)
storage of constants 478
synchronization and 501
system entities 281
system requirements 278
toolbar used in 795
toString method of business

objects 462
user interface 283
User object converter for 854
views, list of 359
Visit class 492

properties
attributes compared to 610
read-only 464

<property> element 959, 961
<property-class> element 115
<property-name> element 114
PropertyResolver class 938
prototypes (UI) 317

R

RAD. See Rapid Application
Development (RAD)

radio buttons, creating 212
Rapid Application

Development (RAD)
building emphasis 145
developers 288
tools 4

RDF Site Summary. See RSS
(Rich Site Summary)

read-only access 545
read-only properties 464
read-write access 545
<redirect> element 132
reference implementations, JSF.

See JSF RI (reference
implementations), Sun

referenced beans 98, 114
<referenced-bean> element

968
referrer 60
RegexpValidatorTag custom tag

handler class
regular expression validators

and 842
tag library entry for 851
writing the 848

regular expressions
characters for 841
defined 841
expressions, regular 841
JSP tag handler for 842
validator classes needed to

build 842
RegularExpression validator 345
RegularExpression validator

custom validator class
core converter logic 847
JSP integration of 847
properties 843
registration of 842, 847
registration with UIInput

component 852
StateHolder interface and 842
tag handler for 848
using 852

writing the 842
Reject a Project page

(ProjectTrack)
access authorization 546
beans used for 381
integration with application

385
navigation rule for 341, 385
navigation rule update 385
overview 338
purpose of 379

release method 653, 660
render kits

adding renderers to 971
default 414
defined 99
methods for handling 447
renderer types for standard

636
renderers and 44, 148

Render Response phase 69, 421
Renderer class 641, 728
<renderer> element 972
renderer-neutral behavior 42
renderers

adding to render kits 971
application configuration files

for 970
attributes of 730
attributes used by 443
classes and elements required

for custom 639
components with rendering

functionality compared to
729

components, indirect
associations with 636

configuring 644
decorating existing 750
defaults for components 778
defined 43
description 39
encoding and decoding

components with 728
IDEs and importing custom

647
JSP integration 647
overview 636
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 695

renderers (continued)
purpose of 728
registration 644
relationship with converters

48
render kits 44, 148
RenderKit and 643, 936
replacing default 639
retrieving instances of current

615
simple components and 615
single 972
types (list of) for the standard

render kits 637
UI component families and

corresponding 637
UI components compared to

615
when to write new 640
wrapping existing 750
writing new 639

rendering
defined 41
delegated implementation

model 43
direct implementation model

43
rendering models 636, 707
RenderKit class 643, 936
<render-kit> element 971
Request Processing Lifecycle

Apply Request Values phase
59, 64, 428, 622

defined 57
execution with Lifecycle class

936
goal of 571
Invoke Application phase 59,

66–68
methods for component-

based processing 616
phase events 428
possible event listener effects

upon 59
Process Validations phase 59,

65, 622, 642
Render Response phase 59,

68–69

Render View stage 571
request and response faces of

571
Restore View phase 59
Update Model Values phase

66
request scope 501, 538
resource bundle keys 480
resource bundles

components used with 241
configuring application-wide

414
creating in Java 238
creating programmatically

241
defined 238
internationalization with 398,

400
internationalizing text with

552
localization with 402
location of 241
usage 236
utility methods used with 414

resource paths, accessing 424
ResponseWriter class 613
Restore View phase 69
restoreAttachedState method

620
restoreState method 618, 717,

808
result sets, JDBC 541
RI, JSF. See JSF RI (reference

implementations), Sun
rollover buttons 301, 728
rollover function, JavaScript

301
RolloverButton renderer

classes and configuration files
for 728

using the 748
RolloverButtonDecorator-

Renderer custom renderer
class 750

RolloverButtonRenderer
custom renderer class

attributes for 729
decoding 735

encoding 731
JSP integration and 737
registration 736
tag handler for 740

RSS (Really Simple Syndication)
757

RSS feeds
challenges of 760
channels 761
Informa API and 759
multiple versions of 760
third-party libraries for 760
UIHeadlineViewer and

See UIHeadlineViewer
component

runtime 21

S

<s:form> tag 593, 599
saveAttachedState method 619
saveState method 618, 717
Scalable Vector Graphics (SVG)

43–44, 148
scoped variables

changing names of 494
implicit variables for 81
looking up beans stored as

494
overview 80
using with JSP and JSTL 81

scripting languages 672
scrolling, control of 395
SDO (Service Data Objects) 895
Secure Sockets Layer (SSL) 546
security

authentication 545
authorization 545
custom 547
organizing pages for 360
web container-based 546

SelectItem class 453, 465, 468
SelectItemGroup class 454
selectItems scoped variable

(ProjectTrack)
associated views 359
description 358
summary 380
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

696 INDEX

SelectMany family components
200, 248, 380

populating lookup lists for
487

value of instances 468
working with 465

SelectOne family components
200, 212, 380

populating lookup lists for
487

working with 465
SelectProjectBean backing bean

class (ProjectTrack)
code analysis 511
listing project information

with 541
managed bean configuration

519
selectProjectBean scoped

variable (ProjectTrack)
associated views 359
description 358

Service Data Objects (SDO) 895
Servlet API 410, 422, 424, 547,

572
servlet classes 410
servlet container. See web

containers
servlet filter 132

for authorization 547
servlet models 410
ServletContext interface 410
ServletContextListener

interface 112
ServletExec (New Atlanta) 89
servlets

defined 13
entry points for primary 410
lifecycles 289
relationship with JSF 13

session scopes 501
sessions

defined 13
servlet 491
states, visit objects for 491

Setter Injection pattern 112
setter methods (mutators) 14,

463

shared classes 92
Show All page (ProjectTrack)

324, 330, 378, 541
showAllBean scoped variable

(ProjectTrack) 370
showHistoryBean scoped

variable (ProjectTrack)
associated views 359
code analysis 534
description 358
managed bean configuration

538
reusing 538
summary 390

Simplica ECruiser 933
singletons 476, 487
SiteMesh (OpenSymphony) 317
skin (alternate look and feel) 43
Smile 667, 933
social security numbers,

expressions for 841
SOFIA (Salmon) 19
special characters 266
SQL queries 542
SQL Server 458
SSL (Secure Sockets Layer) 546
Standard Widget Toolkit

(SWT) 7
standard.jar file 92
StateHolder interface 439, 617,

717, 842, 856
StateHolder methods 807
stateless protocols 11
StateManager class 938
static content 11
static includes 103
static methods 480
static text 288
strings

accessing from bundles 241
conversion of 461
converting objects into 252
display 552
locale specific text 238
message 552
storing as constants 478
value-binding expressions

and localized 244

Struts (Apache Software
Foundation)

ActionForwards 129, 134
as foundation framework 18
controller architecture 599
HTML and Bean tag

equivalents 578
JSF directory structure

compared to 90
JSF integration with 16, 500,

564, 572
JSF navigation compared to

129
JSF rule setting compared to

134
overlap with JSF 19

Struts Actions, invoking from
JSF event handlers 598

struts implicit variable 581
Struts in Action (Husted) 573
struts-config.xml 90
Struts-Faces example application

adding proper libraries 575
converting complicated pages

585
converting JSP Tiles pages

593
converting simple pages 582
converting Struts JSPs to use

JSF components 599
importing the tag library 577
invoking Struts Actions from

JSF event handlers 598
migrating Struts JSP pages

577
scenarios 573
using JSF action methods 597
using JSF managed beans 597
version 5.0 575

Struts-Faces integration library
decorating functionality of

943
development of 572
extending JSF with 944
goal of 573
tags of 577
versions of 582

submitted values 63, 621
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 697

suffix mapping 93–94
Sun

Java Studio Creator. See Java
Studio Creator (Sun)

Java System Application
Server 12

JSF RI. See JSF RI (reference
implementation), Sun

superclasses and HTML
components 441

SVG (Scalable Vector Graphics)
43–44, 148

Swing
defined 21
event listener interface

requirement 34
JavaBean enabling of 14
JSF compared to 7, 49

SWT (Standard Widget
Toolkit) 7

symbols, date format pattern 260
synchronization, need for 501

T

tag classes 629
tag handler classes 628
tag handlers 628, 630, 718, 741,

822
tag libraries 737, 745
tag library definitions (TLDs)

627, 842
Tapestry (Apache Software

Foundation) 19
template languages 672
template text, using 150
terminology (JSF) 39, 666
text

externalizing into resource
bundles 398

internationalizing from back-
end code 244

internationalizing with
resource bundles 552

JSF applications and static 288
text fields, creating 193
thread safety 501
threading conflicts 501

Tiles (Apache Software
Foundation) 317, 594

Tiles pages, JSP, integrating
with JSF 593

time zone codes 977
time zone identifiers 977
TLDs (tag library definitions)

627, 842
Tomcat (Apache Software

Foundation) 8, 12, 89, 92
ToolbarRenderer class

UINavigator and 811, 822
ToolbarRenderer custom

renderer class
attributes for 811
component tag for 822
decoding 820
encoding 811
registration of 821
sample display of 795
UINavigator and 795, 822

toolbars, componentization of
795

toString method 461
<to-view-id> element 132
two-way editors 145
type conversion

defined 235
handling by converters 654
JSF support for 461
support for 450
web framework feature 654

U

UI component development
adding event listeners 615
application code

development compared to
607

attribute and property
retrieval 610

component configuration 624
component tree management

617
declaring output in a

template 613
decoding methods for 612

defining families and types 611
elements of 609
encoding methods for 612
event handling methods 615
event handling with method-

bindings 623
handling component values

621
interpretation of client input

613
JSP integration 627
overview 607
registration 624
renderers, setting default 615
rendering the client identifier

613
retrieval of current renderer

615
skill set for 607
state saving 617
state saving helper methods

619
subclassing base classes for 627
UI development compared to

607
UIComponentBodyTag and

633
UIComponentTag and 627
value-binding enabling

properties 616
when to write UI components

608
writing properties 616

UI components
accepted types for value

Property 464
accessing properties of 443
action source 186
application configuration files

for 970
associating Date objects with

256
associating validators with 251
association of converters with

252
association with single

converters 654
base class for 440
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

698 INDEX

UI components (continued)
behavior of standard 288
behaviors and property

settings 145
binding a value to a backing

bean 46
binding to backing beans 28,

46
binding to backing beans with

JDeveloper 890
binding to backing beans with

WebSphere Studio 902
binding to properties with

Java Studio Creator 924
binding value properties to

backing beans 469
classes 411–412, 439, 441
client identifiers. See client

identifiers
component identifiers. See

component identifiers
composite 759
conditionally displayed with

JSTL tags 107
created by standard JSP

component tags 438
creating and initializing in

property accessor 470
data-aware 356
defined 21, 41
delegated rendering

implementation of standard
636

development. See UI
component development

development with
ActionListener 433

disabled 614
dynamic building of graphs

471
dynamically creating and

manipulating in views 469
encapsulating JavaScript

functionality within 728
encoding and decoding

methods for 636
encoding and decoding with

renderers 728

families and renderers 612
families of 139
families, exposure of 611
finding on a page 445
handling JavaScript with JSF

302
hooking objects to 357
hooking up directly to data

service objects 541
HTML subclasses 439
identification by client

identifiers 421
IDEs and importing custom

627
importance of 142
integrating Struts

applications with JSF 573
integrating with correct

properties 379
integration with CSS 138, 143
integration with development

tools 145
integration with JavaScript

138
interfaces 438, 441
javax.faces prefix and

standard 612
list of standard 139
localized strings and 244
manipulating in a view 438
manipulating in code 34, 76
manipulation in a view 460
manipulation without JSP 667
model-driven 795
postbacks to 837
properties specific to HTML

141
property associations with

value-binding expressions
142

purpose of 607
referencing on the client 75
registration 99, 970
relationship between classes

and interfaces 441
renderer types and

corresponding families of
637

renderer-independent
attributes of 610

renderer-independent
properties of 610

renderer-neutral behavior 42
renderers (default) for 778
renderers compared to 615
renderers compared to

rendering functional 729
renderers, indirect

associations with 636
replacing default 611
resemblance to standard

HTML controls 138
resource bundles used with 241
setting parameters 151
state 42
state retrieval/change 438
states of, storage and retrieval

617
subclasses of 612
subclassing naming

containers 623
support for 138
tags associated with 142
tree representation 149
trees of 617
type 443, 611
updating of local values 622
using value-binding

expressions for 368
using with expressions 86
using with JavaScript 75
validators and custom 246
validators and third-party 246
value memory between

requests 717
value validity 452
visibility indication 444
with visual representation 138

UI extensions (JSF)
adding configuration entries

to configuration files 606
classes, subclassing the 606
configuration 959
converters 654
corresponding configuration

entries 606
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 699

UI extensions (JSF) (continued)
defined 606
development 96
directory structure 661
implementing interfaces 606
integrating classes with

display technology 607
integrating with JSP 636
internationalization 660
JAR files for 660
key steps to implementation

606
packaging 660
reference implementation

defining for default 606
renderers 636
UI components 607
validators 648

UI frameworks 19, 224, 570
UI layers 457
UIColumn component 139, 439
UICommand component

adding rollover functionality
to 301, 728

image rollover support with
728

UIComponent class
description 439
instance container 412
JavaScript output with 840
overview 442
subclassing UIComponentBase

compared to subclassing 611
UI component attribute and

property retrieval through
610

ValueHolder interface
implementation with 449

working with model objects
compared to 828

UIComponentBase class
439–440, 610, 636

UIComponentBodyTag 627, 633
UIComponentTag 627
UIData component

DataModel object and 541
listing projects with 511
paging through data with 534

UIHeadlineViewer custom
component usage compared
to 758, 789

using Informa API with 762
UIHeadlineViewer custom

component
adding styles to 790
configuration/registration of

780
displaying RSS feeds with 757
encapsulation of declared

components in 764
goal of 768
HeadlineViewerTableTag and

781
implementation elements 759
JSP integration of 781
properties of 769
subclassing UIData

component for 759
UIData component usage

compared to 758, 789
UIHeadlineViewer class for

768
usage 789
using Informa API with 762

UIHeadlineViewer custom
component class 768

UIInput class 708
UIInput component 852
UIInputDate custom component

classes and configuration files
for 707

configuration 718
decoding 715
encoding 709
InputDateTag 718
invoking 724
JSP custom tag for 718
JSP custom tag library 722
JSP integration 718
overview 706
registration 718
state management 717
tag handler for 718
UIInputDate class for 708

UIInputDate custom
component class 708

UINavigator custom
component

benefits of 323
default CSS style for 819
elements for building 795
encoding methods for 813
for headers 321
JSP component tag for 795
layout of 817
model classes for 796
overview 795
parent UIForm for 820
purpose of 834
registration of 810
ToolbarRenderer class for 811
usage 834

UINavigator custom
component class

custom ActionListener for 809
methods for 803
overriding

UIComponentBase
methods 806

state management for 807
writing the 801

UINavigator-ToolbarRenderer
pair

component tag for 822
sample display of 795

UIOutput class 440
UIOutput component

description 140
embedding custom tags and

markups 158
escaping large blocks of body

text 157
summary 156
using with verbatim tag 155

UIParameter class 440
UIParameter component

configuration of 517
description 140
setting component

parameters with 151
summary 151
using inside IDEs 152
using with HtmlOutputLink

167
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

700 INDEX

UISelectItem component
description 140
item list configuration with 453
list specification with 465
requirement of special type

for value-binding properties
485

single items, displaying with
200

summary 201
UISelectItems component

description 140
item list configuration with

453
list specification with 465
required association 453
requirement of special type

for value-binding properties
485

summary 204
UIViewRoot class 412, 446
UIViewRoot component

changing locale for 151
description 141
page control with 110, 149
summary 149

UIX (Oracle) 7, 19, 874–875
Unix command line 841
Update Model Values phase 69
updateProjectBean scoped

variable (ProjectTrack)
associated views 359
code analysis 522
description 358
managed bean configuration

526
summary 381

URLs
encoding with

ExternalContext 427
rewriting 12–13, 165, 168

user commands 432
user input

storage of 621
translating into custom types

488
user interface (UI)

adding validators to 304

binding a value to a backing
bean 46

binding to a backing bean 46
building without Java code

288, 317
component identifier 42
components. See UI

components
creating 145
declaring with display

technology 416
declaring with templates 438
deployment descriptors and

development of 290
developing separately,

benefits of 288
event-firing by 623
extensions 970
family 141
first steps in creating a 288
helpers 840
integration of 356
interaction with 428
internationalizing 398
object display 252
prototypes in JSF 317
referencing on the client 75
renderer-neutral behavior 42
state 42
UI component behaviors and

145
UI component development

compared to development
of 607

using panels for layout 308
using with expressions 86
using with JavaScript 75
without application logic 288

user interface extension
registration 99

User model object
(ProjectTrack) 366

user requests
access to current data 411
processing 410

UserConverter custom
converter class

browser view 854

JSP integration of 866
registration of 865
tag handler for 866
using 870
writing the 856

UserConverterTag class 866
users

authenticated 360
changing status of Projects

475
credential validation 545
disabling toolbar items for

particular 369
resource access authorization

545
roles of 475

V

validation
behavior handling by input

components 249
customizing error messages

307
defined 235, 648
importance of 245
in backing beans 648
integration with Struts 585
JSF support for 304
message displays 245

validation logic 840
Validator interface 648
validator methods 45, 85

backing beans and 245
compared to validator clases

840
support in

EditableValueHolder
interface 451

usage 245
<validator> element 973
validators

accessing 246
adding with Java Studio

Creator 923
adding with JDeveloper 888
adding with WebSphere

Studio 901
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 701

validators (continued)
application configuration files

for 970
associating components with

251
attributes used by 443
combining different 251
component validation 45
custom 247, 251
data entry errors and 501
description 39
developing 840
evaluating value-binding

expressions for 850
external 45
input control acceptance of

248
JavaScript emitting 840
JSP integration of 652, 840
Length 345
order of execution 251
output and 840
overview 648
purpose of 28
registering 650
registering multiple for

controls 251
registration 99
RegularExpression 345
SelectMany family

components and standard
248

setting properties of standard
248

stand-alone 840
standard JSF 245, 247, 840
states of 620
Struts 585, 840
third-party 251
usage 245
using 246
using with form input fields

345
validator methods. See

validator methods
writing 648, 840

ValidatorTag class 652
value property 464, 622

<value> element 114, 117, 120
ValueBinding class

overview 417
storing objects in application

scopes with 428
summary 413

value-binding enabled
properties/attributes 444

value-binding expressions
association of 444
components that accept 244
encapsulation of 415
evaluating for validators 850
object retrieval by 566
objects accessed through 462
property norms for 779
retrieval of 444
support of 444
value property support for

720
value-change events 51

defined 50
firing after the Process

Valiations phase 65
firing by EditableValueHolder

interface 623
generation and firing of

186–187
handling 434
representation of component

value changes 428
value-change listener

method. See value-change
listener methods

value-change listener classes
combining with single value-

change listener methods
187

declaring 187
registering multiple 187

value-change listener methods
50, 434

combining with value-change
listener classes 187

comparing with value-change
listener classes registering
187

writing 434

ValueChangeEvent class 429,
434

ValueChangeListener interface
429, 434

ValueHolder interface 438, 449
VariableResolver class 938
VBScript (Microsoft) 9
Velocity (Apache Software

Foundation) 15, 410, 672
<verbatim> tag 155
view state 95
ViewHandler class 938
views

component organization in
446

component trees for 617
composition of 411
defined 42, 149, 666
forwarding to other 550
identifier 61
implementation of structure

of 444
implicit variable 83
interaction with business layer

459
representation by component

tree 421
state saving options 61

Visit backing bean class
(ProjectTrack) 492

visit scoped variable
(ProjectTrack)

associated views 359
description 357
header page and 365–366
summary 365

Visual Basic (Microsoft) 4, 8, 37,
176

visual editors 959
Visual Studio.NET (Microsoft)

5, 918

W

WAR (web archive) 90
web application scopes 27, 113
web applications

directory structure of 289
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

702 INDEX

web applications (continued)
specifiying default pages for

290
start-up code 483
user information storage in

servlet sessions 491
web archive (WAR) 90
web browsers, open source 670
web containers

Java System Application
Server 12

Oracle Application Server 8,
89

ServletExec 89
Tomcat 8, 12, 89, 92
WebSphere Application

Server 8, 89
web servers

services handled by 19
serving static content with

HTTP 12
web sites, content/headline

syndication of 757
WEB-INF directory 289
WEB-INF/classes directory 241

WEB-INF/faces-config.xml file
959

WEB-INF/lib directory 289
weblogs 757
WebMacro 15
WebObjects (Apple) 5
WebSphere Application Server

(IBM) 8, 12, 89
WebSphere Studio (IBM)

adding parameters with 152
binding components to

backing beans with 902
building JSF pages with 147
CSS style creation with 144
JSF and 895
mixing JSF and JSTL tags in

104
overview 896
ProjectTrack Login page,

creating with 898
setting labels with 166
support for JSF applications 6

WebWork (OpenSymphony)
17–18

web.xml 289

Wireless Markup Language
(WML) 43–44, 148

X

XML (eXtensible Markup
Language) 15, 148, 670

XML configuration files 606,
959

XML dialects, custom 672
XML elements 98
XML processing frameworks

672
XML scripting engines 672
XML, XUL and 670
XSLT (eXtensible Style Sheet

Language Transformations)
15

XUL display technology
(Mozilla) 570, 670

XUL ViewHandler 948
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Part 5

Writing custom components,
renderers, validators,

 and converters: examples

Part 5 builds upon the concepts covered in part 4 with examples of real-
world UI components, renderers, validators, and converters.

The five chapters in this part plus appendixes B through E are not part of the
printed book. These sections are available as on online extension of the print
edition. In this ebook version, however, the chapters and appendixes are
included here.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple
input component
This chapter covers
■ Developing a simple date input component
■ Implementing the direct rendering model
■ Writing a custom tag validator
705

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

706 CHAPTER 16
UIInputDate: a simple input component

In this chapter, we’ll look at how to build a component that collects a date from the
user. We’ve selected an amazingly unique name for it: UIInputDate. Figure 16.1
shows four different instances of the component in a web browser. Each instance
shows different parts of the date, and the latter one is synchronized with a session-
scoped variable.

NOTE Some portions of code in this chapter have been omitted. You can down-
load the full source code for this book from the JSF in Action web site
(http://www.manning.com/mann).

What we’re aiming for with UIInputDate is functionality that’s similar to the date
input controls you see on popular web sites like Expedia or Travelocity. The con-
trol uses standard HTML drop-downs without JavaScript, so it’s guaranteed to
work with most browsers. It can be synchronized with a value-binding expression,
Figure 16.1 The UIInputDate component collects a date via drop-down list boxes.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple input component 707

and the user can decide which fields (day, month, year, and time) are visible and
the range of years shown in the year drop-down list box. Figure 16.2 shows all of
the different elements involved in developing this class.

 For this component, we’ll use the direct implementation rendering model.
We’ll start by dissecting the UIInputDate class and its configuration elements,
move on to JSP integration, and then show how to use the component.

Figure 16.2 Classes and configuration files for the UIInputDate component. The component
subclasses UIInput, which implements the EditableValueHolder interface. There is one
custom tag handler, InputDateTag, which is validated by the InputDateTEI class.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

708 CHAPTER 16
UIInputDate: a simple input component

16.1 Writing the UIInputDate class

Because UIInputDate collects user input, we can start by subclassing the UIInput
class. UIInput is a concrete class that has a value, collects user input, and has sup-
port for validators and converters. In other words, it’s the base implementation of
the EditableValueHolder interface (and every other input control subclasses it).

 A UIInputDate is basically a specialized way to input a Date object. (It’s possible
to do this using a standard UIInput with a DateTime converter, but doing so
doesn’t automatically enforce the format of the date, nor does it let the user know
which dates are valid.) Consequently, the value of the component should be a
Date object. For convenience to developers, we’ll provide a date property that is a
type-safe alias for the value property.

 We’d like our component to be able to optionally display different parts of the
date—the day, month, year, and time. For each field, we’ll provide a boolean prop-
erty that specifies whether to show the field at all. We also need to know the range
of values that can be displayed for each field in its drop-down listbox.

 We can determine the number of days to show based on the current month.
For instance, if the month is currently January, we know there are 31 days. Time
also is a no-brainer—there’s only 24 hours in the day. Months are easy, too—there
are only 12 months in a year. However, it’s unclear how many years to show.
Should it be just the current year? What if the application developer wants to
show this year and the next five years? Or the range 1950 to 1995? To simplify
things, we’ll provide two additional properties: startYear for the first year to
show in the drop-down listbox, and endYear for the last year to appear. All of
these properties are listed in table 16.1.

Table 16.1 The properties for UIInputDate to display

Property Type Description

date Date A type-safe alias for the value property

showDay boolean True if the user can edit the day

showMonth boolean True if the user can edit the month

showYear boolean True if the user can edit the year

showTime boolean True if the user can edit the time

startYear int The first year to display in the drop-down listbox (if the year is displayed).
endYear int The last year to display in the year drop-down listbox (if the year is displayed)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple input component 709

The first step is to declare the component’s type and family. For both of these,
we’ll use "jia.InputDate":

public final static String COMPONENT_TYPE = "jia.InputDate";
public final static String COMPONENT_FAMILY = "jia.InputDate";

We’ll also expose the family constant:

public String getFamily()
{
 return COMPONENT_FAMILY;
}

The default rendererType for UIInput is Text. In our component, we’d like to han-
dle rendering ourselves, so the rendererType property should be null, which can
be handled in the constructor:

public UIInputDate()
{
 super();
 setRendererType(null);
}

Now that JSF knows we will be handling the rendering duties internally, it’s time
to get down to business.

16.1.1 Encoding

UIInputDate has no child components, so we can do all of the encoding in
encodeBegin. What we’re shooting for is one HTML <select> element for each
date field, as shown in listing 16.1.

<select name="_id0:_id3:day">
 <option value="1">01</option>
 <option value="2">02</option>
 <option value="3">03</option>
 <option value="4">04</option>
 <option value="5">05</option>
 <option value="6">06</option>
 <option value="7">07</option>
 <option value="8">08</option>
 <option value="9">09</option>
 <option value="10">10</option>
 <option value="11">11</option>
 <option value="12">12</option>

Listing 16.1 Output of UIInputDate (all fields)—this maps to the first UIInputDate
shown in figure 16.1
 <option value="13" selected="true">13</option>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

710 CHAPTER 16
UIInputDate: a simple input component

 <option value="14">14</option>
 <option value="15">15</option>
 <option value="16">16</option>
 <option value="17">17</option>
 <option value="18">18</option>
 <option value="19">19</option>
 <option value="20">20</option>
 <option value="21">21</option>
 <option value="22">22</option>
 <option value="23">23</option>
 <option value="24">24</option>
 <option value="25">25</option>
 <option value="26">26</option>
 <option value="27">27</option>
 <option value="28">28</option>
 <option value="29">29</option>
 <option value="30">30</option>
 <option value="31">31</option>
</select>
<select name="_id0:_id3:month">
 <option value="0">January</option>
 <option value="1">February</option>
 <option value="2">March</option>
 <option value="3">April</option>
 <option value="4">May</option>
 <option value="5">June</option>
 <option value="6">July</option>
 <option value="7">August</option>
 <option value="8">September</option>
 <option value="9">October</option>
 <option value="10">November</option>
 <option value="11" selected="true">December</option>
</select>
<select name="_id0:_id3:year">
 <option value="2003" selected="true">2003</option>
</select>
<select name="_id0:_id3:time">
 <option value="0">12:00 AM</option>
 <option value="1">01:00 AM</option>
 <option value="2">02:00 AM</option>
 <option value="3">03:00 AM</option>
 <option value="4">04:00 AM</option>
 <option value="5">05:00 AM</option>
 <option value="6">06:00 AM</option>
 <option value="7">07:00 AM</option>
 <option value="8">08:00 AM</option>
 <option value="9">09:00 AM</option>
 <option value="10">10:00 AM</option>
 <option value="11">11:00 AM</option>

 <option value="12">12:00 PM</option>
 <option value="13">01:00 PM</option>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple input component 711

 <option value="14">02:00 PM</option>
 <option value="15">03:00 PM</option>
 <option value="16">04:00 PM</option>
 <option value="17">05:00 PM</option>
 <option value="18">06:00 PM</option>
 <option value="19">07:00 PM</option>
 <option value="20">08:00 PM</option>
 <option value="21" selected="true">09:00 PM</option>
 <option value="22">10:00 PM</option>
 <option value="23">11:00 PM</option>
</select>

We’ll start the method with a couple of checks:

public void encodeBegin(FacesContext context)
 throws java.io.IOException
{
 if (!isRendered())
 {
 return;
 }

 if (!showDay && !showMonth && !showYear && !showTime)
 {
 throw new InvalidPropertiesException(
 "All display properties set to false. " +
 "One of the showDay, showMonth, showYear, " +
 "or showTime properties must be set to true.");
 }

We begin with the obligatory check to make sure the rendered property is true;
it’s wise to avoid displaying components that aren’t supposed to be visible. Next,
we throw a custom runtime exception, InvalidPropertiesException, if all of the
display properties are false. This is an unacceptable condition because there
would be nothing to display.

 Here’s the rest of the method:

 ResponseWriter writer = context.getResponseWriter();
 Calendar calendar = getCalendar(context, (Date)getValue());

 if (showDay)
 {
 displaySelectFromCalendar(DAY_KEY, Calendar.DAY_OF_MONTH, "dd",
 calendar, calendar.getMinimum(Calendar.DAY_OF_MONTH),
 calendar.getMaximum(Calendar.DAY_OF_MONTH), context,
 writer);

 }
 if (showMonth)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

712 CHAPTER 16
UIInputDate: a simple input component

 {
 displaySelectFromCalendar(MONTH_KEY, Calendar.MONTH, "MMMM",
 calendar, calendar.getMinimum(Calendar.MONTH),
 calendar.getMaximum(Calendar.MONTH), context, writer);
 }
 if (showYear)
 {
 int startValue = startYear, endValue = endYear;
 if (startYear == -1)
 {
 startValue = calendar.get(Calendar.YEAR);
 }
 if (endYear == -1)
 {
 endValue = calendar.get(Calendar.YEAR);
 }
 displaySelectFromCalendar(YEAR_KEY, Calendar.YEAR,
 "yyyy", calendar, startValue, endValue, context, writer);
 }
 if (showTime)
 {
 displaySelectFromCalendar(TIME_KEY, Calendar.HOUR_OF_DAY,
 "hh:00 a", calendar,
 calendar.getMinimum(Calendar.HOUR_OF_DAY),
 calendar.getMaximum(Calendar.HOUR_OF_DAY),
 context, writer);
 }
}

First, we grab a reference to the ResponseWriter, which we’ll use for all output.
Then, we get a Calendar object that wraps the component’s current value. get-
Calendar is a utility method that returns a localized Calendar instance that’s set to
either the component’s current value, or the current time if the component’s
value is null. It’s important to work with a Calendar object as opposed to the Date
object directly, since the Calendar has all of the information we need about spe-
cific fields like day and year.

 The rest of the code simply calls another method, displaySelectFromCalendar,
for each field that should be displayed. (The constants DAY_KEY, MONTH_KEY, YEAR_
KEY, and TIME_KEY are strings that are used to generate form field names used dur-
ing encoding and decoding.) The only nuance is that if startYear or endYear is
set to -1 (the default value), we use the Calendar object’s current year for those
values. This means that the drop-down listbox defaults to showing one number—
the year of the underlying Date object.

 The job of the displaySelectFromCalendar method is to display an HTML

<select> element for the specified Calendar field (Calendar.DAY, Calendar.MONTH,

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple input component 713

Calendar.YEAR, or Calendar.HOUR_OF_DAY). Here’s the code, with the important
lines marked in bold:

protected void displaySelectFromCalendar(String key,
 int calendarField, String dateFormatPattern,
 Calendar calendar, int minFieldValue,
 int maxFieldValue, FacesContext context,
 ResponseWriter writer)
 throws IOException
{
 Locale locale = context.getViewRoot().getLocale();
 writer.startElement("select", this);
 writer.writeAttribute("name", getFieldKey(context, key), null);

 SimpleDateFormat formatter = new SimpleDateFormat(
 dateFormatPattern,
 locale);
 Calendar tempCalendar = Calendar.getInstance(locale);
 tempCalendar.clear();
 tempCalendar.set(calendarField, minFieldValue);
 boolean done = false;
 while (!done)
 {
 int currentFieldValue = tempCalendar.get(calendarField);
 displayOption(formatter.format(tempCalendar.getTime()),
 currentFieldValue,
 calendar.get(calendarField) == currentFieldValue,
 writer);
 tempCalendar.roll(calendarField, 1);
 if (calendarField == Calendar.YEAR)
 {
 // years go on forever, so doesn't reset
 done = tempCalendar.get(calendarField) > maxFieldValue;
 }
 else
 {
 // value resets
 done = tempCalendar.get(calendarField) == minFieldValue;
 }
 }
 writer.endElement("select");
}

The first thing we do is get the Locale for the current page through the viewRoot
property of the FacesContext. We’ll use this to make sure our all of our output is tai-
lored for the user’s culture. We start by writing the opening of the HTML <select>
element. (The second parameter of startElement is the UIComponent associated
with the element, which is the current UIInputDate instance in this case.)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

714 CHAPTER 16
UIInputDate: a simple input component

 Next, we add a name attribute. This attribute is important, because its value is
the name of the request parameter value we’ll be expecting when we write the
decode method. The value is retrieved from the UIInputDate utility method get-
FieldKey, which just returns the component’s clientId plus a separator (Naming-
Container.SEPARATOR_CHAR), followed by the key sent in from the encodeBegin
method. The key is a constant that maps to the field that’s currently being dis-
played: day, month, year, or time. So, if the clientId is _id1, and the key is
TIME_KEY, then the getFieldKey method would return “_id1:time”.1 For a key of
YEAR_KEY, it would return “_id1:year”. (The last parameter of writeAttribute is
the name of the associated UI component property; since the name attribute isn’t
a property, we pass in null.)

TIP Whenever you’re separating different parts of the name of a form field,
you should use NamingContainer.SEPARATOR_CHAR. This ensures that
your components behave consistently with your JSF implementation’s
naming conventions.

The rest of this code iterates through all of the necessary values for the selected
Calendar field. So, if the field is Calendar.MONTH, it starts with January, then
selects February, March, April, and so on. During each iteration, it calls dis-
playOption, which display an HTML <option> element for the current value.
Here’s displayOption:

protected void displayOption(String text, int value,
 boolean selected, ResponseWriter writer)
 throws IOException
{
 writer.startElement("option", this);
 writer.writeAttribute("value", new Integer(value), null);
 if (selected)
 {
 writer.writeAttribute("selected", "true", null);
 }
 writer.writeText(text, null);
 writer.endElement("option");
}

Pretty simple—it just displays an <option> element with the specified text and
value, adding the selected attribute if necessary.

1
 This is, of course, assuming that the value of NamingSeparator.SEPARATOR_CHAR is “:”, which is the
case with the reference implementation.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple input component 715

 After iterating through all of the possible choices for the current field, we end
the <select> element. Here’s some sample output from calling displaySelectFrom-
Calendar for the field Calendar.YEAR when startYear is 2003 and endYear is 2004:

<select name="_id0:_id6:year">
 <option value="2003" selected="true">2003</option>
 <option value="2004">2004</option>
</select>

In this example, the UIInputDate instance’s clientId was id0:_id06. Also, the
component’s date value was already set to 2003. It’s easy to see how four calls to
displaySelectFromCalendar can yield the output shown in listing 16.1.

 That’s it for encoding. Now, let’s see how to decipher the input the component
receives back from the user.

16.1.2 Decoding

Before we begin decoding, we must check to make sure that this component can
really be updated. Here’s the beginning of the decode method:

public void decode(FacesContext context)
{
 if (!Util.canModifyValue(this))
 {
 return;
 }

This little snippet calls the canModifyValue method, which returns true if the
component’s rendered property is true and the readonly and disabled attributes
are set to false (if they are present at all). These attributes are commonly used for
HTML rendering, and if they’re set to true, then the component’s value shouldn’t
be changed. The same holds true for the component’s rendered property, since
an invisible component shouldn’t be able to collect user input.

 Now, on to the meat (or tofu, as the case may be) of the method:

 Date currentValue = (Date)getValue();
 Calendar calendar = getCalendar(context, currentValue);

 Map requestParameterMap =
 context.getExternalContext().getRequestParameterMap();
 String dayKey = getFieldKey(context, DAY_KEY);
 String monthKey = getFieldKey(context, MONTH_KEY);
 String yearKey = getFieldKey(context, YEAR_KEY);
 String timeKey = getFieldKey(context, TIME_KEY);
 if (requestParameterMap.containsKey(dayKey))

 {
 calendar.set(Calendar.DAY_OF_MONTH,

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

716 CHAPTER 16
UIInputDate: a simple input component

 Integer.parseInt(
 (String)requestParameterMap.get(dayKey)));
 }
 if (requestParameterMap.containsKey(monthKey))
 {
 calendar.set(Calendar.MONTH,
 Integer.parseInt(
 (String)requestParameterMap.get(monthKey)));
 }
 if (requestParameterMap.containsKey(yearKey))
 {
 calendar.set(Calendar.YEAR,
 Integer.parseInt(
 (String)requestParameterMap.get(yearKey)));
 }
 if (requestParameterMap.containsKey(timeKey))
 {
 calendar.set(Calendar.HOUR,
 Integer.parseInt(
 (String)requestParameterMap.get(timeKey)));
 }

 setSubmittedValue(calendar.getTime());
}

The decoding process is even simpler than encoding. All we have to do update
the submittedValue based on request parameters. As a matter of fact, the first step
is simply to retrieve the component’s current value property. This is the value
we’ll be updating based on the user’s input. In order to better manipulate that
value, we also create a localized Calendar object that represents the Date value.

 Next, we retrieve the request parameter map from the ExternalContext, and
initialize all of the keys for each of the fields. Remember, these are the same keys
we used for the name attribute for the <select> elements outputted in the encode-
Begin method. The keys, which are derived from the client identifier, are the way
we map between the encoding and decoding processes (see chapter 2 for more
information about client identifiers in general).

 For each key, we check to see if there is a corresponding value in the request
parameter map; if so, we set the appropriate Calendar field to equal that value. In
essence, we’re updating each field of the component’s value based on the user’s
input. Once that process is complete, we updated the submittedValue. In this par-
ticular case, the submitted value is derived from converting the Calendar back
into a Date object (which is what getTime does). We don’t need to update the value
property explicitly—UIInput will update it for us during the Process Validations

phase if the submitted value passes validation.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple input component 717

NOTE In this example, we’re performing conversion during the process of de-
coding. Often, in the decode method, you'll set submittedValue to the
raw String received from the request, and then perform conversion in
the validate method before validation occurs. The key is that submitted-
Value should retain enough data to re-display incorrect data to the user.

That’s it for encoding UIInputDate. There is, however one more step: state man-
agement.

16.1.3 Implementing StateHolder methods
For any component that has a value that you’d like to remember between differ-
ent requests (which is usually the case), you also need to implement the State-
Holder interface (introduced in chapter 15). UIInput implements this interface
already, but some methods must be overridden in order to support the additional
properties shown in table 16.1.

 The StateHolder interface has two methods that are the inverse of each other:
saveState and restoreState. Here’s how UIInputDate implements them:

public Object saveState(FacesContext context)
{
 Object[] values = new Object[7];
 values[0] = super.saveState(context);
 values[1] = showDay ? Boolean.TRUE : Boolean.FALSE;
 values[2] = showMonth ? Boolean.TRUE : Boolean.FALSE;
 values[3] = showYear ? Boolean.TRUE : Boolean.FALSE;
 values[4] = showTime ? Boolean.TRUE : Boolean.FALSE;
 values[5] = new Integer(startYear);
 values[6] = new Integer(endYear);

 return values;
}

public void restoreState(FacesContext context, Object state)
{
 Object[] values = (Object[])state;
 super.restoreState(context, values[0]);
 showDay = ((Boolean) values[1]).booleanValue();
 showMonth = ((Boolean)values[2]).booleanValue();
 showYear = ((Boolean)values[3]).booleanValue();
 showTime = ((Boolean)values[4]).booleanValue();
 startYear = ((Integer)values[5]).intValue();
 endYear = ((Integer)values[6]).intValue();
}

The most important thing to note is that we’re returning and retrieving an array

of Objects. The first Object in the array is the superclass’s state; the other objects
represent the properties of this component. It’s important to always invoke the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

718 CHAPTER 16
UIInputDate: a simple input component

superclass’s implementation of the method, and to do so with the same array
position in both methods.

 This concludes our tour of UIInputDate. With a relatively small amount of
code, we’ve been able to create a simple, self-contained, reusable, localizable,
date input control. Now, let’s configure JSF to recognize its existence.

16.2 Registering the component

We can configure UIInputDate with a simple <component> element in an applica-
tion configuration file:

<component>
 <description>A simple date entry component.</description>
 <display-name>Input Date</display-name>
 <component-type>jia.InputDate</component-type>
 <component-class>org.jia.components.UIInputDate</component-class>
</component>

This configures our UIInputDate component (org.jia.components.UIInputDate)
under the component type jia.InputDate, which is the value of the UIInput-
Date.COMPONENT_TYPE constant. For tools, we supply a display name of “Input
Date”, as well as a full description. You can also provide an icon and additional
metadata for custom components; see chapter 15 for details.

16.3 JSP integration

Once UIInputDate has been created and registered with the JSF application, we
need to integrate it into the world of JSP. This involves writing a custom tag han-
dler and adding the tag handler to a tag library. We’ll then look at how to use
UIInputDate inside of a JSP.

16.3.1 Writing the JSP custom tag

The tag handler for UIInputDate is a simple affair. We’ll call this class org.jia.
components.taglib.InputDateTag and subclass UIComponentTag. First, we need to
override the componentType property:

public String getComponentType()
{
 return UIInputDate.COMPONENT_TYPE;
}

There’s no separate renderer for this component, so we return null for the

rendererType property:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple input component 719

public String getRendererType()
{
 return null;
}

We also need to define the properties UIInputDate defines: date, showDay, showMonth,
showYear, showTime, startYear, and endYear (listed in table 16.1). The difference
between the properties in UIInputDate and the ones in InputDateTag is that we
use the primitive object wrappers in InputDateTag. This allows us to be aware of
whether the value has been initialized.

 In addition to supporting UIInputDate’s properties, we want to support the
immediate property, which is exposed by UIInput. Other properties, like id, are
already supported by UIComponentTag.

 Once we’ve added all of these properties, we need to override UIComponent-
Tag’s setProperties method to transfer the values from the tag handler to the
associated component instance:

protected void setProperties(UIComponent component)
{
 super.setProperties(component);
 UIInputDate uiDate = (UIInputDate)component;
 if (showDay != null)
 {
 uiDate.setShowDay(showDay.booleanValue());
 }
 if (showMonth != null)
 {
 uiDate.setShowMonth(showMonth.booleanValue());
 }
 if (showYear != null)
 {
 uiDate.setShowYear(showYear.booleanValue());
 }
 if (startYear != null)
 {
 uiDate.setStartYear(startYear.intValue());
 }
 if (endYear != null)
 {
 uiDate.setEndYear(endYear.intValue());
 }
 if (showTime != null)
 {
 uiDate.setShowTime(showTime.booleanValue());
 }
 if (value != null)

 {
 if (isValueReference(value))

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

720 CHAPTER 16
UIInputDate: a simple input component

 {
 uiDate.setValueBinding("value",
 getFacesContext().getApplication().
 createValueBinding(value));
 }
 else
 {
 uiDate.setValue(value);
 }
 }
 if (immediate != null)
 {
 uiDate.setImmediate(immediate.booleanValue());
 }
}

We begin by calling the superclass’s setProperties method, which is necessary for
supporting basic properties such as id and rendered. Next, for each non-null tag
handler property, we set the corresponding property for the associated compo-
nent. The interesting part is setting the value property. Note that we call the
isValueReference method (from UIComponentTag) to see if it’s a value-binding
expression. (We know it’s a value-binding expression if it starts with “#{” and
ends with “}”.) If so, we add a ValueBinding instance instead of explicitly setting
the value property. This is how you support value-binding expressions for tag
handler attributes. You can do this for any attribute you wish; for example, the
standard components allow value-bindings in properties like immediate, as well as
renderer-dependent properties like cellpadding and style.

TIP In most cases, the value property (at a minimum) should support value-
binding expressions. However, we recommend enabling every exposed
property for value-binding expressions; this is the approach we take in
later chapters.

Finally, all of the instance variables should be cleared in the release method:

public void release()
{
 super.release();
 showDay = null;
 showMonth = null;
 showYear = null;
 showTime = null;
 startYear = null;
 endYear = null;
 value = null;

 imediate = null;
}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple input component 721

After calling the superclass’s release method, we simply set all of the instance
variables to null.

 This completes the requirements for InputDateTag. Now we just need to
validate it.

16.3.2 Validating the tag

UIInputDate has a very simple requirement for its properties: showDay, showMonth,
showYear, and showTime can’t all be false. This requirement is enforced in the
component’s encodeBegin method, and it also needs to be enforced at the JSP
level. You can enforce tag-level restrictions by extending the javax.servlet.
jsp.tagext.TagExtraInfo class. The InputDateTEI class is shown in listing 16.2.

package org.jia.components.taglib;

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;

public class InputDateTEI extends TagExtraInfo
{
 public InputDateTEI()
 {
 }

 public boolean isValid(TagData tagData)
 {
 return (isTrue(tagData.getAttribute("showDay")) ||
 isTrue(tagData.getAttribute("showMonth")) ||
 isTrue(tagData.getAttribute("showYear")) ||
 isTrue(tagData.getAttribute("showTime")));
 }

 protected boolean isTrue(Object booleanAttribute)
 {
 return (booleanAttribute == null ||
 booleanAttribute == TagData.REQUEST_TIME_VALUE ||
 booleanAttribute.toString().equalsIgnoreCase("true"));
 }
}

Note that the isTrue method returns true even if the attribute isn’t set. (The Tag-
Data.REQUEST_TIME_VALUE constant means that the attribute has been set, but it’s

Listing 16.2 InputDateTEI.java: Validates InputDateTag

Subclasses
TagExtraInfo

Returns true
if attributes
are valid
an expression, so it hasn’t been evaluated yet.) This way, unless all four properties

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

722 CHAPTER 16
UIInputDate: a simple input component

are set to false, we still consider the tag valid. However, this doesn’t mean the
component itself won’t complain if its properties were all set to false in some
other manner.

 Now that we’ve written that tag validator, let’s add it (and the tag itself) to the
tag library.

16.3.3 Adding the tag to the tag library

Adding InputDateTag to our custom tag library is simple. It’s a typical tag handler
entry that exposes all of the tag handler properties that we defined, plus the id
and rendered properties defined in UIComponentTag. The full entry is shown in
listing 16.3 as part of the JSF in Action tag library.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems,
 Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <!-- Tag Library Description Elements -->
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>JSF in Action Custom Tags</short-name>
 <uri>jsf-in-action-components</uri>
 <description>
 Sample custom components, renderers, validators, and
 converters from JSF in Action.
 </description>
 <!-- Tag declarations -->
 ...
 <tag>
 <name>inputDate</name>
 <tag-class>
 org.jia.components.taglib.InputDateTag
 </tag-class>
 <attribute>
 <name>id</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>rendered</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

Listing 16.3 Tag library entry for InputDateTag

 b Implemented by
UIComponentTag
 <attribute>
 <name>binding</name>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple input component 723

 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>showDay</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>showMonth</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>showYear</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>startYear</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>endYear</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>showTime</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>immediate</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
 ...
</taglib>

 b Implemented by
UIComponentTag
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

724 CHAPTER 16
UIInputDate: a simple input component

The name of this tag is inputDate. The first two attributes, referenced by b, are
from UIComponentTag. All of the other attributes are from InputDateTag. Note that
we always set <rtxprvalue> to false.

 Now that we’ve developed the component tag and its validator, let’s look at
using it.

16.4 Using the component

In the simplest case, we can invoke UIInputDate with a single tag and no attributes:

<jia:inputDate/>

This creates a UIInputDate instance with all of the default property values. The
value property will default to the date and time when it was displayed. This tag is
equivalent to the following:

<jia:inputDate showDay="true" showMonth="true" showYear="true"
 showTime="true" startYear="-1" endYear="-1"/>

Either one of these tag declarations will produce the HTML output shown in list-
ing 16.1, assuming that the current time is December 13th, 2003, at around 9:00
P.M. In a browser, it looks like figure 16.3.

By default, the startYear is equal to the current year, and so is the endYear. So, in
the year drop-down listbox in figure 16.3, there’s only one choice: 2003. We can
specify the range for the year drop-down listbox by using real values for startYear
and endYear rather than -1:

<jia:inputDate startYear="2003" endYear="2010"/>

This initializes the component with all of the default values, but specifies a year
range of 2003 to 2010. In a browser, it looks like figure 16.4.

 Now, the year drop-down listbox allows the user to select any year in between
the startYear of 2003 and the endYear of 2010.

 Often, showing all four fields is overkill. We can hide any of them by setting
their corresponding show property to false. The following tag declaration hides
the year and time:

Figure 16.3 Default usage of UIInputDate.
<jia:inputDate showYear="false" showTime="false"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIInputDate: a simple input component 725

In a browser, it looks like figure 16.5.
 All of the examples so far aren’t associated with a bean; we’ve just been seeing

the local value of the component, which was initialized to the current date. In the
real world, you would want to associate this component with a model object.
Here’s an example that does just that:

<jia:inputDate value="#{myBean.tradeDate}" showDay="true"
 showMonth="true" showYear="true" showTime="false"
 startYear="2003" endYear="2004"/>

This example displays the day, month, and year, with the year choices ranging
from 2003 and 2004. The value displayed will always be synchronized with the
Date object referenced by the value-binding expression "#{myBean.tradeDate}".
Assuming that the date is set to September 14, 2003, figure 16.6 shows what the
previous tag declaration would look like in a browser.

Of course, any edits made in the compo-
nent will be synchronized with the under-
lying Date object.

That’s it for UIInputDate. We were
able to create a useful input control with a
fairly small amount of effort.

16.5 Summary

In this chapter, we developed a simple date input control called UIInputDate.
This control is a wrapper around a java.util.Calendar object. It handles all
encoding and decoding internally, and exposes properties that control which part
of the date should be displayed. Since UIInputDate adds additional properties, we

Figure 16.4 UIInputDate with a specific date range.

Figure 16.5 UIInputDate
with showYear and showTime
set to false.

Figure 16.6 UIInputDate
associated with a backing bean
property and showTime set to false.
also had to override methods of the StateHolder interface to ensure that they
would be saved and restored properly.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

726 CHAPTER 16
UIInputDate: a simple input component

 Integrating the component with JSP required a simple tag handler, Input-
DateTag. We also provided an additional class, InputDateTEI, for validating the
tag handler. Both of these classes were declared in a JSP tag library.

 UIInputDate handles encoding and decoding duties internally. In the next
chapter, we change gears and examine developing a renderer for the standard
UICommand component.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

RolloverButton
renderer: a renderer

with JavaScript support
This chapter covers
■ Developing a custom renderer
■ Outputting JavaScript
■ Decorating an existing renderer
727

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

728 CHAPTER 17
RolloverButton renderer

In chapter 8, we showed you how to build a login page with JavaScript events that
achieved a rollover effect for the Submit button. The JavaScript in that page was
handcoded; if we wanted to have that effect on other buttons, we’d have to either
copy the JavaScript from page to page, or move it into a separate file. Every time
we wanted an image rollover effect, we’d have to manually reference the function
in the button’s mouseout and mouseover event handlers. Sound familiar?

 With a component-oriented technology like JSF, it should be possible to encap-
sulate the JavaScript functionality into the component itself, so that the front-end
developer doesn’t have to worry about the details when we’re assembling the user
interface. It should be possible to simply place a button on a page and specify the
normal and rollover image locations without any additional work. This shifts the bur-
den of maintaining JavaScript libraries to the component developer’s arena. So let’s
tackle the job of developing a UICommand component that supports an image rollover.

 At first glance, it seems like making a rollover-enabled button would require
subclassing UICommand. If you think about it, though, the only difference between
a normal button and a rollover button is the way the component is displayed. In
other words, there are no behavioral changes; the changes are solely in their ren-
derer domain.

 Whenever you need to display a component in a different way, you’re better off
developing a separate Renderer class. Renderers are specifically tailored for encod-
ing and decoding a component, and nothing more. (For more information about
renderer basics, see chapter 15.)

 Ideally, we’d like our renderer to function exactly like the standard Button ren-
derer, except that it should also support an extra image that will be displayed when
the user places the mouse over the button. Figure 17.1 shows our new renderer,
called RolloverButton at work.

If you’re wondering why we don’t subclass the Button renderer instead of
writing a new renderer from scratch, it’s because the JSF specification
doesn’t specify any Renderer subclasses. So, there is no standard Button
renderer class to subclass. You can use a vendor-specific class, but do so
only if it’s well documented and you’re not afraid of vendor lock-in. If
you want to reuse an existing renderer’s functionality, your best bet is to
wrap the renderer class. We show this technique in section 17.4.

As figure 17.1 shows, our renderer supports the standard Button renderer func-

BY THE
WAY
tionality. The only difference is that it supports rollover functionality. All of the
elements necessary for developing this renderer are shown in figure 17.2.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the RolloverButtonRenderer class 729

The first step, of course, is to write the renderer class itself.

NOTE Some portions of listings in this chapter have been omitted. You can
download the full source code for this book from the JSF in Action web
site (http://www.manning.com/mann).

17.1 Writing the RolloverButtonRenderer class

Developing renderers is easier than developing components with rendering func-
tionality because you’re only focusing on encoding and decoding. In simpler
cases like this one, you only need to override two methods: encodeBegin and
decode. Our goal is to output an HTML <input> element with the type attribute
set to either submit, reset, or image, depending on what attributes are set. If a

Figure 17.1 The RolloverButton renderer adds rollover functionality to a UICommand
component. Some of the buttons in this example execute an action that modifies a backing bean
property.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

730 CHAPTER 17
RolloverButton renderer

rollover image attribute is set, we want to output JavaScript that will change the
image attribute in the onmouseover and onmouseout event handlers.

 In addition to handling these special JavaScript duties, we’d like to support
the standard Button renderer behavior. We’ll call this class RolloverButtonRen-
derer and place it in the org.jia.components package.

 Unlike components, which generally have properties that affect their behav-
ior, renderers use attributes that are stored dynamically on the component
instance. This allows them to remain stateless and consequently efficient. Each
Renderer instance can be used for multiple components simultaneously, so they
must be thread-safe.

 When you’re developing a new renderer, you must determine the attributes it
needs to understand. For RolloverButtonRenderer, we must support the same set

Figure 17.2 Classes and configuration files for the RolloverButton renderer. The
RolloverButtonRenderer class subclasses Renderer and works with UICommand. It is
integrated with JSP through the Command_RolloverButtonTag class, which subclasses
HtmlBaseTag, which in turn subclasses UIComponentTag.
of pass-through attributes the Button renderer supports. These include title,

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the RolloverButtonRenderer class 731

accessKey, and style, as well as event-handler attributes like onmouseout, onmou-
seover, onclick, onkeydown, and so on—attributes that aren’t interpreted by code
and are simply sent through to the browser. (For simplicity, we’ll put styleClass
in this group, even though it’s displayed as the class attribute rather than the
styleClass attribute.)

 There are also attributes that are specific to RolloverButtonRenderer, shown in
table 17.1. (There are quite a few HTML pass-through attributes; there’s no need
to list them all here.)

The only attribute not currently supported by the Button renderer is rollover-
Image. Other than that, we’re duplicating the original Button renderer’s function-
ality. (For more information on how it works, see the section on HtmlCommandButton
in chapter 5.)

17.1.1 Encoding

When you’re writing a new renderer, it’s helpful to look at the output you’re aim-
ing to generate first. Duplicating the Button renderer’s output is straightforward—
it’s a standard HTML <input> element. Providing the rollover functionality requires
a little more work, as shown in listing 17.1.

<input type="image" title="Submit" name="foo"
 src="images/submit.gif"
 onmouseover="document.getElementsByName('foo')[0].
 set_image(this,'images/submit_over.gif')"

Table 17.1 The attributes for RolloverButtonRenderer.

Property Type Description Button RolloverButton

type String The type for this <input> element. Can
be “submit” or “reset”. (Automatically set
to “image” if the image property is set.)

X

image String URL of image to be displayed. The type
will automatically be set to “submit” if
this attribute is set.

X

rolloverImage String URL of image to display when user puts
the mouse over the button.

X

Listing 17.1 Sample output for RolloverButtonRenderer with the rollover
image specified
 onmouseout="document.getElementsByName('foo')[0].
 set_image(this,'images/submit.gif');"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

732 CHAPTER 17
RolloverButton renderer

<script language="JavaScript">
 document.getElementsByName('foo')[0].set_image =
 function(button, img)
 {
 button.src = img;
 }
</script>

The first thing you may have noticed is that there’s really no need for a function
here. We could directly modify the src property of the <input> element in the
onmouseover and onmouseout event handlers. However, this is a book, and the goal
is to teach, so I figured I’d add the function so that you can see a possible way to
support JavaScript functions.

 Speaking of JavaScript functions, you may also have noticed that the name is a
little strange. It’s actually declared as a property of the <input> element. This is a
handy trick that avoids name conflicts. If the function were declared globally, it
could conflict with other JavaScript function names on the page. Because our
renderer will be responsible for generating this element (and consequently its
name attribute) as well as the JavaScript code, we can rest better knowing that con-
flicts will be avoided.

 The button itself will be displayed using the image images/submit.gif. When
the user puts the mouse over the button, the mouseover event will fire, and the
function will be called, changing the src property to images/submit_over.gif
and thus causing that image to be displayed instead. When the user moves the
mouse away from the button, the mouseout event will be called, which will call our
method and change the src property back to images/submit.gif. No rocket sci-
ence here.

 Now that we’ve examined the output and supported attributes of Rollover-
ButtonRenderer, let’s start developing the encodeBegin method. Writing this method
is similar to writing UIComponent’s version of encodeBegin; the only difference is
that the UIComponent instance is passed in as a parameter. As always, it’s best to
start by checking to see if the component’s rendered property is false:

public void encodeBegin(FacesContext context, UIComponent component)
 throws java.io.IOException
{
 if (!component.isRendered())
 {
 return;
 }
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the RolloverButtonRenderer class 733

If the property is false, the component shouldn’t be visible, so we should avoid
any additional work. We also want to make sure that we have the proper combina-
tion of attributes:

 UICommand button = (UICommand)component;
 Map attributes = button.getAttributes();
 String clientId = button.getClientId(context);
 ResponseWriter writer = context.getResponseWriter();

 if ((attributes.get("image") == null) &&
 (attributes.get("value") == null))
 {
 throw new InvalidAttributesException(
 "Either the image or value attribute must be set.");
 }

Here, we declare some variables, and then check to make sure that either the
image or value property has been set. One of these attributes is required, because
an <input> element needs to either display an image, as defined by the image
attribute, or a label, as defined by the value attribute. If one of these properties
isn’t set, we throw an InvalidAttributesException, which is a custom exception
written just for this purpose.

 Next, let’s start writing the <input> element and output some basic attributes:

 writer.startElement("input", button);
 writer.writeAttribute("name", clientId, "id");
 Util.writePassthroughAttributes(button.getAttributes(), writer);

Here, we start the element, write the name attribute, and write the HTML pass-
through attributes. The Util.writePassthroughAttributes method iterates through
an array of all the pass-through attributes, and calls writer.writeAttribute for ones
that exist in the current component’s attribute Map.

 The next bit of code handles the image and rolloverImage attributes, if they’re set:

 String imageSrc = getImageSrc(context,
 (String)attributes.get("image"));
 String rolloverImageSrc = getImageSrc(context,
 (String)attributes.get(
 "rolloverImage"));
 if (imageSrc != null)
 {
 writer.writeAttribute("type", "image", "type");
 writer.writeAttribute("src", imageSrc, "image");
 if (rolloverImageSrc != null)
 {
 writer.writeAttribute("onmouseover",

 "document.getElementsByName('" + clientId +
 "')[0].set_image(this, '" + rolloverImageSrc +

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

734 CHAPTER 17
RolloverButton renderer

 "')",
 null);
 writer.writeAttribute("onmouseout",
 "document.getElementsByName('" + clientId +
 "')[0].set_image(this, '" + imageSrc + "')",
 null);
 }
 }

First, we retrieve friendlier versions of the image and rolloverImage properties.
The getImageSrc method prepends the image URL with the context path (the web
application’s name) if it’s not an absolute URL.

 If an image was indeed set, we go ahead and write the type and src attributes,
hardcoding the type as “image” because we know an image should be displayed.
If a rollover image was set, we write the onmouseover and onmouseout attributes.
Note that this is the same JavaScript code as shown in listing 17.1, except that we
use the clientId instead of the venerable “foo” to reference the <input> element.
Remember, the clientId is what we used for the name attribute earlier in this
method. It should always be used when you’re outputting markup that references
the component.

 Now, let’s finish outputting the <input> element:

 else
 {
 String type = (String)attributes.get("type");
 if (type != null)
 {
 writer.writeAttribute("type", type, "type");
 }
 else
 {
 writer.writeAttribute("type", "submit", "type");
 }
 String value = (String)attributes.get("value");
 if (value != null)
 {
 writer.writeAttribute("value", value, "value");
 }
 }
 writer.endElement("input");

If the image attribute wasn’t set, we treat this like a normal <input> element and
write the specified type attribute (defaulting to “submit” if no type was set). Next,
we write the element’s value attribute.

 Finally, we end the <input> element with a call to ResponseWriter.endElement.

However, we still have to output the JavaScript function itself:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the RolloverButtonRenderer class 735

 if ((imageSrc != null) && (rolloverImageSrc != null))
 {
 writer.startElement("script", button);
 writer.writeAttribute("language", "JavaScript", null);
 writer.writeText("document.getElementsByName('" + clientId +
 "')[0].set_image = function(button, img)",
 null);
 writer.writeText("{", null);
 writer.writeText("button.src = img;", null);
 writer.writeText("}", null);
 writer.endElement("script");
 }
}

There’s no need to output the JavaScript if no images were specified, so we per-
form that check first. If both images were specified, it’s okay to output the neces-
sary JavaScript. We start with the <script> element, and use ResponseWriter.
writeText to fill in the body of the element with the actual JavaScript code. The
encodeBegin method is now complete. It can support rendering normal buttons
as well as buttons with a simple JavaScript rollover.

NOTE You may have noticed that we accessed component properties (like value)
and renderer-dependent attributes (like image) through the component’s
attributes property. Remember, the attributes property returns a
Map that includes both attributes as well as access to all of the compo-
nent’s properties. Accessing both attributes and properties in the same
manner simplifies the process of developing renderers.

This also means that all of the strongly typed HTML pass-through
properties available through the HTML components are also available
as attributes.

Now, let’s examine the opposite process: decoding.

17.1.2 Decoding

Decoding a UICommand is much simpler than encoding it. All we want to know is
whether the user clicked the button; there’s no need to modify the component’s
value at all. Here’s the code:

public void decode(FacesContext context, UIComponent component)
{
 if (Util.canModifyValue(component))
 {
 String type = (String)component.getAttributes().get("type");

 String clientId = component.getClientId(context);
 Map requestParameterMap =

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

736 CHAPTER 17
RolloverButton renderer

 context.getExternalContext().getRequestParameterMap();
 if ((type == null || !type.equalsIgnoreCase("reset")) &&
 ((requestParameterMap.get(clientId) != null) ||
 (requestParameterMap.get(clientId + ".x") != null) ||
 (requestParameterMap.get(clientId + ".y") != null)))
 {
 component.queueEvent(new ActionEvent(component));
 }
 }
}

First, we call the canModifyValue method, which returns true if the component’s
rendered property is true, and there are no HTML readonly or disabled attributes.
If this method returns false, it means that the component isn’t visible or active,
so there’s no need to check to see if a user interacted with it.

 Next, we check to see if the type of the button is not “reset”, because reset but-
tons don’t generate ActionEvents. If the button isn’t a reset button, then we need
to look for the proper parameter in the requestParameterMap. Any parameter
name that has the name of the clientId indicates that the button was clicked.
Also, any parameter name that starts with the clientId and ends with either “x”
or “y” means that the button was clicked. This is what the browser would send
back if an image map was displayed. If the proper parameter has been found,
there’s no need to see what the value of the parameter was; all we have to do is
enqueue a new ActionEvent on the component. This allows the default Action-
Listener, and any additional registered ActionListeners, to process the event
later in the lifecycle.

 This concludes our tour of the RolloverButtonRenderer class. You can download
the full source code from the book’s web site. Now, let’s configure this renderer.

17.1.3 Registering the renderer

Instead of declaring a component with the <component> tag, we’ll need to declare
RolloverButtonRenderer with the <renderer> tag. However, renderers can’t exist
by themselves—they must be part of a RenderKit. In most cases, if your Renderer
outputs HTML, you can just add it to the default RenderKit:

<render-kit>
 <renderer>
 <display-name>Rollover Button</display-name>
 <component-family>javax.faces.Command</component-family>
 <renderer-type>jia.RolloverButton</renderer-type>
 <renderer-class>org.jia.components.RolloverButtonRenderer<
 </renderer-class>

 </renderer>
</render-kit>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP Integration 737

Notice that we didn’t specify the <render-kit-id> or <render-kit-class> element.
This is because we wanted this renderer to be added to the default RenderKit. We
also specified a display name of “Rollover Button” and the type “jia.Rollover-
Button”. These choices seem logical, since this is essentially a slightly enhanced
version of the standard Button renderer.

 For more on configuring renderers, see chapter 15. Next, we’ll examine the
JSP side of the coin.

17.2 JSP Integration

In its simplest form, JSP integration includes developing a single custom tag han-
dler and then adding that tag to a tag library. As you write more tag handlers,
you’ll quickly find that sometimes you need to create a class hierarchy for compo-
nent tags. This is definitely the case when it comes to supporting HTML pass-
through attributes. We’ve glossed over these details so far, but in general, all tags
and renderers that support HTML should support the appropriate HTML attributes.
We’ve supported these attributes in RolloverButtonRenderer; now we need to sup-
port them in its custom tag.

 All HTML elements support a basic set of attributes that include style, class,
title, onmouseout, onmouseover, onmousemove, and so on. In order to handle this,
we’ll start by developing a base tag handler that has properties for all of the com-
mon HTML attributes. We’ll then subclass this handler and add additional func-
tionality to support the RolloverButtonRenderer and UICommand combination. (We’ll
also subclass this tag handler in the next chapter.)

If you’re wondering why we don’t subclass the tag handlers that ship
with JSF, it’s because the specification itself doesn’t define any classes
that are more specialized than UIComponentTag. This is to allow compet-
itors to handle JSP support in different ways. Unfortunately, it also means
that developers have to either build such functionality from scratch or
subclass implementation-specific classes. If you don’t mind vendor lock-
in, and your vendor has well-documented tag handler classes you can
use, subclassing their classes is a viable alternative to rolling your own.

Another option is code generation. If you specify all of the HTML at-
tributes in an XML document (such as an application configuration file),
you could generate the tag handler automatically. Both the reference
implementation of JSF [Sun, JSF RI] and MyFaces [MyFaces] use some sort
of (unpolished) code-generation technique to implement the standard

BY THE
WAY
tag handlers.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

738 CHAPTER 17
RolloverButton renderer

17.2.1 Writing the HtmlBaseTag class

HtmlBaseTag is a very simple abstract base class; it just exposes properties for the
basic HTML element attributes, overrides setProperties to add those attributes
to the associated component, and overrides release to set its instance variables to
null. The code is shown in listing 17.2 (we’ve omitted most of the accessors and
mutators for brevity).

package org.jia.components.taglib;

import org.jia.Util;

import javax.faces.component.UIComponent;
import javax.faces.webapp.UIComponentTag;

import java.util.Map;

public abstract class HtmlBaseTag extends UIComponentTag
{
 private String styleClass;
 private String onclick;
 private String ondblclick;
 private String onkeydown;
 private String onkeypress;
 private String onkeyup;
 private String onmousedown;
 private String onmousemove;
 private String onmouseout;
 private String onmouseover;
 private String onmouseup;
 private String disabled;
 private String alt;
 private String lang;
 private String dir;
 private String tabindex;
 private String accesskey;
 private String title;
 private String style;

 public HtmlBaseTag()
 {
 super();
 }

 // HtmlBaseTag methods
 protected void setProperties(UIComponent component)

Listing 17.2 The HtmlBaseTag class supports all of the common HTML attributes
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP Integration 739

 super.setProperties(component);

 Map attributes = component.getAttributes();
 Util.addAttribute(attributes, "styleClass", styleClass);
 Util.addAttribute(attributes, "onclick", onclick);
 Util.addAttribute(attributes, "ondblclick", ondblclick);
 Util.addAttribute(attributes, "onkeydown", onkeydown);
 Util.addAttribute(attributes, "onkeypress", onkeypress);
 Util.addAttribute(attributes, "onkeyup", onkeyup);
 Util.addAttribute(attributes, "onmousedown", onmousedown);
 Util.addAttribute(attributes, "onmousemove", onmousemove);
 Util.addAttribute(attributes, "onmouseout", onmouseout);
 Util.addAttribute(attributes, "onmouseover", onmouseover);
 Util.addAttribute(attributes, "onmouseup", onmouseup);
 Util.addAttribute(attributes, "disabled", disabled);
 Util.addAttribute(attributes, "alt", alt);
 Util.addAttribute(attributes, "lang", lang);
 Util.addAttribute(attributes, "dir", dir);
 Util.addAttribute(attributes, "tabindex", tabindex);
 Util.addAttribute(attributes, "accesskey", accesskey);
 Util.addAttribute(attributes, "title", title);
 Util.addAttribute(attributes, "style", style);
 }

 public void release()
 {
 super.release();
 styleClass = null;
 onclick = null;
 ondblclick = null;
 onkeydown = null;
 onkeypress = null;
 onkeyup = null;
 onmousedown = null;
 onmousemove = null;
 onmouseout = null;
 onmouseover = null;
 onmouseup = null;
 disabled = null;
 alt = null;
 lang = null;
 dir = null;
 tabindex = null;
 accesskey = null;
 title = null;
 style = null;
 }

 // Properties
 public String getStyleClass()

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

740 CHAPTER 17
RolloverButton renderer

 {
 return styleClass;
 }

 public void setStyleClass(String styleClass)
 {
 this.styleClass = styleClass;
 }

 ...

 public String getStyle()
 {
 return style;
 }

 public void setStyle(String style)
 {
 this.style = style;
 }
}

As you can see, there’s nothing particularly exciting about this class. It simply
exposes properties for all of the standard HTML attributes, and sets them in the
associated component. The Util.addAttribute method checks to see if the attribute
is null; if not, it either creates and adds a new value-binding expression (if the
value is an expression), or just sets the attribute’s value. This is simply grunt work
that’s better only performed once. We assume that the associated renderer or com-
ponent will output these attributes properly.

If you’re wondering why we didn’t need an analagous base Renderer
class, it’s because Renderers don’t need to expose these attributes as
properties, or set them on the assocaited UIComponent instance. They
just have to read the attributes and display them, and this work can be
formed in a single method: Util.writePassthroughAttributes. This
method displays any HTML attributes (basic and element-specific) that
are set for a particular UIComponent instance. We called this method in
RolloverButtonRenderer’s encodeEnd method.

The next section describes RolloverButtonRenderer’s specific tag handler, which
subclasses HtmlBaseTag.

BY THE
WAY
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP Integration 741

17.2.2 Writing the JSP custom tag

We’ll call this tag handler CommandRolloverButtonTag to signify its support for
both the UICommand class (which is of type javax.faces.Command) and the Rollover-
ButtonRenderer (which is of type jia.RolloverButton). The class will subclass
HtmlBaseTag, which provides support for common HTML attributes. HtmlBaseTag,
in turn, subclasses the JSF-provided UIComponentTag, which performs most of the
basic plumbing.

 We can start by defining the componentType and rendererType properties:

 public String getComponentType()
 {
 return HtmlCommandButton.COMPONENT_TYPE;
 }

 public String getRendererType()
 {
 return "jia.RolloverButton";
 }

These types map to HtmlCommandButton and RolloverButtonRenderer, respectively.
Even though all of our code is based on UICommand, we use the component type for
HtmlCommandButton so that any developers can access strongly typed properties in
their code.

 In the previous chapter, the properties exposed by a tag handler were the
same as the ones exposed as its associated component. That’s because everything
we needed was exposed as a component property; there weren’t any renderer-
specific attributes. However, when you’re developing tag handlers for renderer/
component pairs, you need to support all of the renderer’s attributes as well as
the component’s properties. Table 17.2 lists all of the properties that this tag han-
dler needs to support.

Table 17.2 The properties for Command_RolloverButtonTag. This includes all of the attributes
from RolloverButtonRenderer and the properties from UICommand.

Property Type Description RolloverButton Command

type String The type for this <input> element.
Can be “submit” or “reset”. (Auto-
matically set to “image” if the
image property is set.)

X

image String URL of image to be displayed. The
type will automatically be set to
“image” if this attribute is set.

X

continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

742 CHAPTER 17
RolloverButton renderer

This list includes all the attributes supported by RolloverButtonRenderer as well
as all of UICommand’s properties. We’ve left out properties of UIComponentBase (like
id and rendered) that are already handled by UIComponentTag.

 These properties are used in CommandRolloverButtonTag’s implementation of
setProperties:

protected void setProperties(UIComponent component)
{
 super.setProperties(component);

 UICommand command = (UICommand)component;
 Application app = getFacesContext().getApplication();
 Map attributes = command.getAttributes();
 if (value != null)
 {
 if (isValueReference(value))
 {
 command.setValueBinding("value",
 app.createValueBinding(value));
 }
 else
 {
 command.setValue(value);
 }
 }

rolloverImage String URL of image to display when user
puts the mouse over the button.

X

value String Literal string or value-binding
expression to be displayed as the
button’s label.

X

action String Literal string or method-binding
expression that specifies specific
outcome.

X

actionLis-
tener

String Method-binding expression for an
action listener method.

X

immediate Boolean True if the component should be
processed during the Apply Request
Values phase of the request pro-
cessing lifecycle.

X

Table 17.2 The properties for Command_RolloverButtonTag. This includes all of the attributes
from RolloverButtonRenderer and the properties from UICommand. (continued)

Property Type Description RolloverButton Command
 if (immediate != null)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP Integration 743

 if (isValueReference(immediate))
 {
 command.setValueBinding("immediate",
 app.createValueBinding(immediate));
 }
 else
 {
 command.setImmediate(
 Boolean.valueOf(immediate).booleanValue());
 }
 }

We start by setting UICommand properties. The value and immediate properties can
accept value-binding expressions, so if the variables are in the proper format (as
determined by isValueReference, which is a UIComponentTag method), we need to
add a ValueBinding for them; otherwise, we just set the property as usual.

 The next step in the setProperties method is to process the action and
actionListener properties:

 if (action != null)
 {
 MethodBinding actionBinding = null;
 if (isValueReference(action))
 {
 actionBinding = app.createMethodBinding(action, null);
 }
 else
 {
 actionBinding = new ConstantMethodBinding(action);
 }
 command.setAction(actionBinding);
 }
 if (actionListener != null)
 {
 MethodBinding actionListenerBinding =
 app.createMethodBinding(actionListener,
 new Class[] { ActionEvent.class });
 command.setActionListener(actionListenerBinding);
 }

For the action property, if it is a method-binding expression, we create a new
MethodBinding instance based on the property’s value. Otherwise, we create a
ConstantMethodBinding instance using the literal value of the action property.
ConstantMethodBinding is a subclass of MethodBinding that just returns the literal
value. (In other words, if the action property is “foo”, then the corresponding
ConstantMethodBinding instance’s invoke method would simply return “foo”).

This is how the reference implementation [Sun, JSF RI] handles static out-
comes internally.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

744 CHAPTER 17
RolloverButton renderer

 Finally, we finish the setProperties method by adding the renderer-dependent
properties:

 Util.addAttribute(app, component, "image", image);
 Util.addAttribute(app, component, "rolloverImage", rolloverImage);
 Util.addAttribute(app, component, "type", type);
}

Util.addAttribute simply adds the attribute or creates a new ValueBinding
instance if the value passed in is non-null. Since all of the code in this method
creates ValueBinding instances if necessary, it’s safe to say that all of the attributes
of this component tag are value-binding enabled.

 The only other step is clearing all of the instance variables with release:

public void release()
{
 super.release();

 image = null;
 rolloverImage = null;
 action = null;
 value = null;
 immediate = null;
 actionListener = null;
 action = null;
 type = null;
}

Note that we’re clearing the instance variables for all of the properties listed in
table 17.1. The only other methods in this class are getters and setters for these
properties, so we’ll spare you the details. You can download the full source from
the book’s web site.

 Because RolloverButtonRenderer has some restrictions on its attributes that can’t
be enforced with a normal tag library descriptor, we must also write a tag validator.

17.2.3 Validating the tag

When RolloverButtonRenderer executes its encodeBegin method, it does a quick
check to make sure that either the image or value attributes are set. The same sort
of check should always be performed at the JSP level, so errors can be caught at
translation time, when the JSP is compiled.

 In JSP, you can validate the entire tag library by subclassing the TagLibrary-
Validator class, or you can validate an individual tag by subclassing the TagExtra-
Info class. The former method is more powerful, especially if you’re checking

for dependencies between multiple checks. For simple validation, however,

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP Integration 745

TagExtraInfo will suffice, and that’s how we’ve implemented the validation check
for CommandRolloverButtonTag. The code is shown in listing 17.3.

package org.jia.components.taglib;

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;

public class CommandRolloverButtonTEI extends TagExtraInfo
{
 public CommandRolloverButtonTEI()
 {
 }

 public boolean isValid(TagData tagData)
 {
 return ((tagData.getAttribute("image") != null) ||
 (tagData.getAttribute("value") != null));
 }
}

All the work happens in the isValid method. The tagData object passed in con-
tains all of the attributes for the tag, as well as the tag’s id (if available). All we do
is check to make sure that either the image or value attributes are set, just as the
renderer itself does.

If you’re wondering why we need to do this check at both the renderer
and JSP levels, it’s because the two aren’t required to be used together.
What if, for example, you configured the RolloverButtonRenderer in
code? You’d still want an exception to be thrown if you didn’t set the
proper attributes. Having the check at the renderer also helps with de-
bugging the tag handler.

This completes the Java code required to integrate the renderer with JSP. To fin-
ish the process, we’ll need to add it to the tag library.

17.2.4 Adding the tag to the tag library

The only thing that’s unique about the CommandRolloverButtonTag’s tag descriptor
is the fact that it includes not only all of the properties the class defines itself, but

Listing 17.3 CommandRolloverButtonTEI.java: Validates CommandRolloverButtonTag

BY THE
WAY
also all of HtmlBaseTag’s properties as well. The descriptor is shown in listing 17.4;
we’ve omitted parts for brevity.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

746 CHAPTER 17
RolloverButton renderer

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//
DTD JSP Tag Library 1.2//EN" "http://java.sun.com/dtd/web-

jsptaglibrary_1_2.dtd">
<taglib>
 <!-- Tag Library Description Elements -->
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>JSF in Action Custom Tags</short-name>
 <uri>jsf-in-action-components</uri>
 <description>
 Sample custom components, renderers, validatos, and
 converters from JSF in Action.
 </description>
 <!-- Tag declarations -->
 ...
 <tag>
 <name>commandRolloverButton</name>
 <tag-class>
 org.jia.components.taglib.CommandRolloverButtonTag
 </tag-class>
 <tei-class>
 org.jia.components.taglib.CommandRolloverButtonTEI
 </tei-class>
 <attribute>
 <name>id</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>image</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>rolloverImage</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>action</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>actionListener</name>
 <required>false</required>

Listing 17.4 The tag descriptor for CommandRolloverButtonTag
 <rtexprvalue>true</rtexprvalue>
 </attribute>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP Integration 747

 <attribute>
 <name>immediate</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>rendered</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>binding</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <!-- HTML pass-through attributes -->
 <attribute>
 <name>onclick</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>>
 ...
 <attribute>
 <name>style</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

It’s important to remember that whenever you subclass a tag handler, you need to
still need to expose all of its properties in your new class’s tag library entry.

TIP If you have a lot of tags that use the same set of attributes, you can use
XML entities to avoid repetitive, error-prone typing.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

748 CHAPTER 17
RolloverButton renderer

We’ve now succeeded in duplicating the functionality of the <h:commandButton>
component tag, with the added ability to support a JavaScript rollover effect. In
the next section, we take a look at using the tag.

17.3 Using the renderer

As intended, usage of this component tag is much the same as using the <h:command_
button> tag. For example, the following tag displays a simple reset button:

<jia:commandRolloverButton type="reset" value="Reset"/>

Figure 17.3 shows what this tag looks like in a browser. Since this is a reset button,
no action event will be generated.

The following example registers an action listener method, displays a label whose
value comes from a value-binding expression, and uses a CSS class:

<jia:commandRolloverButton
 actionListener="#{testForm.incrementCounter}"
 value="#{testForm.message}" styleClass="button"/>

TestForm is a simple backing bean with some methods and properties that we use
in these examples. The message property is equal to “What time is love?”, so fig-
ure 17.4 shows what this tag looks like in a browser.

If you click on the button shown in Figure 17.4, the incrementCounter(ActionEvent)
method of testForm is called, which increments the value of its counter property.

 The following example illustrates use of the action property with an image
URL retrieved from a resource bundle:

<jia:commandRolloverButton action="#{testForm.incrementCounter}"
 alt="Submit" title="Submit"
 image="#{bundle.submitImage}"/>

Instead of registering an action listener method, this tag registers an action
method. (Both versions of the incrementCounter method do the same thing.) It
also retreives a URL for the image from a resource bundle. Figure 17.5 shows what

Figure 17.3 RolloverButton renderer
displaying a normal reset button.

Figure 17.4 RolloverButton renderer with
style sheets, executing an action listener.
it looks like in a browser.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using the renderer 749

Just like the last example, when a user clicks on the button shown in figure 17.5,
the counter property of testForm will be incremented.

 All of the previous examples could have used the standard <h:commandButton>
tag. Using our new renderer’s rollover functionality is as simple as adding the
rolloverImage attribute to the previous example (and using a literal string for the
image attribute). Here’s the new tag, with an extra style attribute just for kicks:

<jia:commandRolloverButton action="#{testForm.incrementCounter}"
 image="images/submit.gif"
 rolloverImage="images/submit_over.gif"
 alt="Submit" title="Submit"
 style="margin-bottom: 10px"/>

Because the rollover functionality was the main purpose of this exercise, it’s worth
examining the HTML output. It’s shown in listing 17.5.

<input name="_id0:_id5" alt="Submit" title="Submit"
 style="margin-bottom: 10px" type="image"
 src="images/submit.gif"
 onmouseover="document.getElementsByName('_id0:_id5')[0].
 set_image(this, 'images/submit_over.gif'')"
 onmouseout="document.getElementsByName('_id0:_id5')[0].
 set_image(this, 'images/submit.gif')" />
<script language="JavaScript">
 document.getElementsByName('_id0:_id5')[0].set_image =
 function(button, img){ button.src = img; }
</script>

This should look similar to our desired output, which was shown in listing 17.1.
In this case, however, we see JSF-generated client identifiers instead of “foo”.
Also, note that the alt, title, and style attributes were passed through.

 Figure 17.6 shows what the HTML looks like in a browser (the rollover image,
submit_over.gif, is currently showing). This isn’t much to look at, but you get the
idea. All of these examples are shown together in figure 17.1.

Listing 17.5 Actual output from RolloverButton renderer with a rollover image
specified

Figure 17.5 The RolloverButton renderer
with an image, executing an action method.

Figure 17.6 The RolloverButton renderer with a rollover image showing
(the original image is the same as the one shown in figure 17.5).
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

750 CHAPTER 17
RolloverButton renderer

Even though the results weren’t spectacular, it was a decent amount of work for
such a simple effect. It would be nice if we could use the standard Button renderer
and delegate most of our work to it. Fortunately, we can wrap an existing renderer.

17.4 Wrapping an existing renderer

I must confess: developing the RolloverButton renderer from scratch was a bit of
an unnecessary adventure. It was useful for explaining a lot of the concepts that
are involved with writing real-world renderers, but it duplicated a lot of function-
ality available in the standard Button renderer. We couldn’t subclass the Button ren-
derer because there is no specific class defined by the JSF specification. Any
vendor that develops a JSF implementation could have a completely different
class for handling the Button renderer duties.

 For example, the reference implementation’s [Sun, JSF RI] class name is com.sun.
faces.renderkit.html_basic.ButtonRenderer. You could subclass this class, but if
you were to use a different implementation, like MyFaces [MyFaces], your code
wouldn’t be portable. A reasonable solution to this problem is to simply wrap your
implementation’s default Button renderer and work at the level of the Renderer
abstract base class, which is guaranteed to be available in all JSF implementations.

 Let’s examine this solution, with the goal of duplicating all of the functionality
provided by the RolloverButton renderer, with a lot less code (we hope). Because
wrapping an existing object is often called the Decorator pattern [GoF], we’ll call
the class RolloverButtonDecoratorRenderer. (Okay, I admit it, I like long names.)
Because there is no additional functionality, we’ll spare you the additional screen-
shot; refer to figure 17.1 to see what it looks like.

17.4.1 Developing the RolloverButtonDecoratorRenderer class

The behavior of this class is identical to that of RolloverButtonRenderer, as
described in section 17.1. That means it also supports the same properties, which
are listed in table 17.1.

Encoding
The encodeBegin method begins in the same way, as well:

public void encodeBegin(FacesContext context, UIComponent component)
 throws java.io.IOException
{
 if (!component.isRendered())
 {

 return;
 }

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Wrapping an existing renderer 751

 Map attributes = component.getAttributes();
 if ((attributes.get("image") == null) &&
 (attributes.get("value") == null))
 {
 throw new InvalidAttributesException(
 "Either the image, or value attribute must be set.");
 }

This code is similar to the code in RolloverButtonRenderer. First, we exit the
method if the component’s rendered property is false. No need to display a com-
ponent that’s marked as invisible. Next, we grab the component’s attributes and
check to make sure that either the image or value attribute is not null. One of
these attributes is required, or else we’ll have nothing to display on the button. If
neither one of them is defined, we throw an InvalidAttributesException, which
is a custom exception that indicates a problem with the current set of attributes.

 At this point in RolloverButtonRenderer, we declared some variables and
wrote out a bunch of attributes, including the HTML pass-through attributes. We
then wrote out the attributes for the onmouseover and onmouseout event handlers
(if the rolloverImage attribute was set). Because we’re delegating to another ren-
derer, however, we can just let the other renderer output all those attributes. And
since onmouseover and onmouseout are HTML pass-through attributes, it will ren-
der those as well. We still have to declare some variables, but there’s no need to
directly write out any attributes; we can just add them to the component:

 UIComponent button = (UIComponent)component;
 String clientId = component.getClientId(context);

 String imageSrc = getImageSrc(context,
 (String)attributes.get("image"));
 String rolloverImageSrc =
 getImageSrc(context,
 (String)attributes.get("rolloverImage"));

 if (imageSrc != null && rolloverImageSrc != null)
 {
 attributes.put("onmouseover",
 "document.getElementsByName('" + clientId +
 "')[0].set_image(this, '" + rolloverImageSrc +
 "')");
 attributes.put("onmouseout",
 "document.getElementsByName('" + clientId +
 "')[0].set_image(this, '" + imageSrc + "')");
 }

First, we declare some variables. Note that we didn’t grab a reference to a Response-

Writer; we don’t need one yet. We then retrieve the URL for the image and roll-

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

752 CHAPTER 17
RolloverButton renderer

over image. The method getImageSrc is exactly the same as it is in RolloverButton-
Renderer; it simply prefixes the URL with a web application’s pathname if it
begins with a slash (/).

 If an image URL and a rollover image URL were both set, we can get down to
business. However, instead of directly writing out the onmouseover and onmou-
seover attributes, we just add them to the attribute Map. The Button renderer will
display these attributes, as well as all of the other ones that have been registered
on the component.

TIP If you need to pass information from one encode method to another, use
attributes rather than instance variables. A single Renderer instance can
be executed in multiple threads, so the component instance itself is the
best place to save component-specific state.

Now that all of the properties have been set, we can just delegate encoding to the
standard Button renderer:

{
 getButtonRenderer(context).encodeBegin(context, button);
}

getButtonRenderer returns the default Button renderer; we let it perform the rest
of encodeBegin. Here’s the getButtonRenderer method:

protected Renderer getButtonRenderer(FacesContext context)
{
 RenderKitFactory rkFactory = (RenderKitFactory)FactoryFinder.
 getFactory(FactoryFinder.RENDER_KIT_FACTORY);

 RenderKit defaultRenderKit = rkFactory.getRenderKit(context,
 RenderKitFactory.HTML_BASIC_RENDER_KIT);

 return defaultRenderKit.getRenderer(UICommand.COMPONENT_FAMILY,
 "javax.faces.Button");
}

Here, we grab the RenderKitFactory from the FactoryFinder class (remember
that we can use the FactoryFinder to retrieve any JSF factory). Once we’ve got the
RenderKitFactory, we can retrieve the default RenderKit by using the RenderKit-
Factory.HTML_BASIC_RENDER_KIT constant. From the default RenderKit, we can
retrieve the Button renderer.
NOTE We could store the Button renderer in an instance variable, but that would
cause problems if the default Button renderer is changed at runtime.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Wrapping an existing renderer 753

You may be wondering what happened to the JavaScript that we rendered in
RolloverButtonRenderer’s encodeBegin method. Unfortunately, we don’t know
whether the default Button renderer outputs the <input> element in the encode-
Begin method or the encodeEnd method. The reference implementation [Sun, JSF
RI] does all of its work in encodeBegin, but it’s not safe to assume that every other
implementation will do so as well. The JavaScript output must be after the <input>
element, so it’s safer to place it after the wrapped renderer’s encodeEnd:

public void encodeEnd(FacesContext context, UIComponent component)
 throws java.io.IOException
{
 getButtonRenderer(context).encodeEnd(context, component);

 if (component.getAttributes().get("image") != null &&
 component.getAttributes().get("rolloverImage") != null)
 {
 ResponseWriter writer = context.getResponseWriter();
 writer.startElement("script", component);
 writer.writeAttribute("language", "JavaScript", null);
 writer.writeText("document.getElementsByName('" +
 component.getClientId(context) +
 "')[0].set_image = function(component, img)",
 null);
 writer.writeText("{", null);
 writer.writeText("component.src = img;", null);
 writer.writeText("}", null);
 writer.endElement("script");
 }
}

After calling the standard renderer’s encodeEnd, we check to see if both the image
and rolloverImage attributes have been set. If so, then we know we need to finish
the rollover rendering job and output the JavaScript code. This should look sim-
ilar to the output we generated in RolloverButtonRenderer’s encodeBegin method.

 That was the hard part. Because there’s no additional functionality to add to
the wrapped renderer, we can just delegate to it for the encodeChildren method:

public void encodeChildren(FacesContext context,
 UIComponent component)
 throws java.io.IOException
{
 getButtonRenderer(context).encodeChildren(context, component);
}

That’s it for encoding. Decoding is a piece of cake.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

754 CHAPTER 17
RolloverButton renderer

Decoding
RolloverButtonRenderer didn’t add any special decoding functionality over and
above what the Button renderer already does. Consequently, we can just delegate
to it for the decode method as well:

public void decode(FacesContext context, UIComponent component)
{
 getButtonRenderer(context).decode(context, component);
}

Nothing terribly exciting here—we just call the corresponding method in the
Button renderer.

 What is exciting, however, is that we’ve successfully wrapped the Button ren-
derer and added a rollover effect. We’ll spare you the full listing; you can get it
online from the book’s web site.

 This may not seem like a lot less code than RolloverButtonRenderer, but there
was no need to call Util.rendererPassthroughAttributes, we didn’t have to write
out any attributes, and we didn’t have to write any decoding logic. As a matter of
fact, there was no need to worry about the standard functionality at all. This tech-
nique can save you a lot of time, especially if you’re wrapping a renderer for a
more complicated component, like UIData.

 Configuring this renderer with your application and integrating it with JSP is
almost exactly the same as the process for RolloverButtonRenderer. As a matter of
fact, if you use the same renderer type, jia.RolloverButtonRenderer, it is exactly
the same. The same goes for usage; refer to section 17.3 for examples.

17.5 Summary

This chapter walked through the process of adding a JavaScript rollover effect to
a UICommand component. You can’t portably subclass standard renderer imple-
mentations, so our first approach was to develop an entirely new renderer called
RolloverButton. This renderer is a replacement for the standard Button renderer,
and is responsible for all of the same encoding and decoding responsibilities for a
UICommand component. In addition to UICommand’s properties, the component has
to support HTML pass-through attributes.

 The need to support additional HTML attributes makes JSP integration more
complicated, because each attribute must be exposed as a tag handler property.
In order to handle this, we built an HtmlBaseTag class that supports all of the stan-
dard HTML pass-through attributes. Our tag handler, CommandRolloverButtonTag,
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Summary 755

subclasses HtmlBaseTag. We also provided a validator for the tag to make sure that
the proper attributes were used together.

 The work of writing the renderer itself can be simplified by wrapping the
existing Button renderer, which is what we did with the RolloverButtonDecorator
Renderer. However, the new renderer still requires the same level of JSP integration,
since you cannot reliably subclass standard tag handler implementations.

 Regardless of the method, the result is an easy-to-use button with support for
JavaScript rollovers. As a matter of fact, the JSP tag is a drop-in replacement for
the standard <h:commandButton> tag.

 Now that we’ve examined some simpler components that perform their own
rendering, and a new renderer for a standard component, it’s time to look at a
more complicated component in the next chapter.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer:
a composite,

data-aware component
This chapter covers
■ Working with RSS feeds
■ Writing a DataModel class
■ ISubclassing UIData
■ Building a composite component
756

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 757

RSS is all the rage these days. It stands for Really Simple Syndication, RDF Site Sum-
mary, or nothing, depending on who you’re talking to. Basically, it’s an XML-based
format for syndicating the contents, or headlines, of a web site. It’s commonly used
by weblogs (“blogs”) and news sites. Just about every web development book I’ve
read recently includes an example of consuming RSS feeds, so I figured this book
should be just as hip as the others. In this chapter, we’ll build a component that dis-
plays RSS feeds from any site on the Internet that publishes such a feed (there are
tens of thousands available; see Syndic8 [Syndi8] for a comprehensive directory).
Our component, UIHeadlineViewer is shown in figure 18.1.

Figure 18.1 UIHeadlineViewer is a component that displays external RSS feeds.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

758 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

NOTE Some portions of listings in this chapter have been omitted. You can
download the full source code for this book from the JSF in Action web
site at http://www.manning.com/mann.

You can see from the figure that it’d be pretty easy to add a UIHeadlineViewer to an
existing page in your web site. This is a common thing to do—many sites display
headlines from other sites, often on their front page. If you have an API that han-
dles the complexities of parsing RSS files, it’s entirely possible to display headlines
using the standard UIData with the Table renderer. However, doing so takes a bit of
work, especially if you don’t know how you want the table to be displayed.

 In cases where you want the features of a standard component but you want a
specific set of child components or properties, it makes sense to subclass that
component and then add the appropriate child components in code. We’ll call
this a composite component. UIHeadlineViewer subclasses UIData but adds child
components to display the item title, description, and other attributes. Since it
subclasses a standard component, we can use it with the standard Table renderer,
as opposed to developing our own. Using UIHeadlineViewer is substantially sim-
pler than using the vanilla UIData component.

 Because UIHeadlineViewer subclasses UIData, it’s data-aware—it operates on
DataModel objects. JSF includes DataModel objects that wrap collections, result sets,
and individual objects. For UIHeadlineViewer, we’ll create a DataModel subclass
called ChannelDataModel that consumes RSS feeds. Figure 18.2 shows the elements
involved with implementing UIHeadlineViewer.

 Before we delve into the details of implementing these classes, let’s examine
the underlying API we’ll be using to process RSS feeds.

18.1 RSS and the Informa API

Conceptually, RSS feeds are simple. Feeds are organized into channels, and a
channel can contain individual items with properties like title, pubDate, and
description. A web site may produce multiple channels, such as one for all head-
lines, and others for specialized topics. For example, listing 18.1 shows a fragment
of an RSS published by JSF Central [JSF Central], which is a JSF community site.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 759

<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:dc="http://purl.org/dc/elements/1.1/" version="2.0">
 <channel>
 <title>JSF Central - Your JavaServer Faces Community - News</title>
 <link>http://www.jsfcentral.com</link>
 <description>
 JSFCentral.com is a community dedicated to providing developer
 resources, FAQ, news, and information about JavaServer Faces
 technology.
 </description>
 <copyright>
 Copyright (C) 2003 Virtua, Inc. All Rights Reserved. Java,
 JavaServer Faces, and all Java-based marks are trademarks or

Listing 18.1 A fragment of an RSS feed from JSF Central

Figure 18.2 Classes and configuration files for the UIHeadlineViewer component. The
component subclasses UIData, and is used with the standard Table renderer. It also makes
use of a DataModel subclass, called ChannelDataModel. There is one custom tag handler,
HeadlineViewer_TableTag, that subclasses HtmlTableBaseTag (which has all of the HTML
pass-through properties for an HTML table).
 registered trademarks of Sun Microsystems, Inc. in the United
 States and other countries. Virtua, Inc. is independent of Sun

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

760 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

 Microsystems, Inc.
 </copyright>
 <language>en-us</language>
 <managingEditor>
 Kito D. Mann (kmann@jsfcentral.com)
 </managingEditor>
 <webMaster>JSFCentral (webmaster@jsfcentral.com)</webMaster>
 <pubDate>22 Dec 2003 13:45 EST</pubDate>
 <item>
 <title>
 JavaServer Faces Proposed Final Draft and Beta 1.0 RI Shipped
 </title>
 <link>http://www.jsfcentral.com#1700</link>
 <description>
 Ed Burns announced Friday at 11:00 PM that the newest version
 of the JavaServer Faces spec has been released. There were many
 changes to the spec.
 </description>
 <dc:publisher>TheServerSide.com</dc:publisher>
 <dc:creator>Bill Dudney</dc:creator>
 <pubDate>21 Dec 2003 06:11 PST</pubDate>
 </item>
 <item>
 <title>IBM to release WebSphere updates</title>
 <link>http://www.jsfcentral.com#1600</link>
 <description>
 Sutor said the new version will also add beta support for
 JavaServer Faces, a proposed standard being developed through
 the Java Community Process, an organization that Sun Microsystems
 Inc. established to evolve Java technology. Using the programming
 model that JavaServer Faces defines, developers can assemble
 reusable interface components in a Web page and connect them to
 data sources.
 </description>
 <dc:publisher>Computerworld</dc:publisher>
 <dc:creator>Carol Sliwa</dc:creator>
 <pubDate>15 Dec 2003 00:00 EST</pubDate>
 </item>
 </channel>
</rss>

What makes RSS parsing complicated is the fact that there are several versions,
and they all have their particular nuances. Different sites use different versions;
some use several. In order to handle all of the complexities of supporting differ-
ent feeds, it makes sense to use a third-party library. Such a library can normalize
all of the feeds into a common object model, which makes our lives easier. For this

example, we’ll use the open source Informa API [Informa]. Informa has a lot of

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 761

useful features, like text searching and persistence. However, for our purposes,
we’ll just touch on the basics of the API that deal with consuming feeds from URLs
and managing them.

NOTE The code in this chapter is based on Informa v0.45. Newer versions
may differ.

An RSS channel is represented in Informa by the ChannelIF interface. Each
ChannelIF has properties like updatedDate, title, creator, description, and so on.
It also has a list of the channel’s individual items, which are implemented as
ItemIF instances. Each ItemIF has properties like title, creator, date, found, and
description. ChannelIF objects are created by classes that implement the Chan-
nelBuilderIF interface. A ChannelBuilderIF implementation persists the channel
in some way—either in memory or in a data store. You can retrieve a new Channe-
lIF instance from the RSSParser class:

ChannelIF channel =
 RSSParser.parse(new ChannelBuilder(),
 "http://www.jsfcentral.com/jsfcentral_news.rss");

Here, we use RSSParser to create a new ChannelIF instance based on a new Channel-
Builder instance and a specific URL. ChannelBuilder is a concrete implementation
of ChannelBuilderIF that stores new channels in memory.

 Once we’ve retrieved a ChannelIF instance, we can access all of the expected
channel properties, and also the list of items for the channel:

System.out.println("Channel Title: " + channel.getTitle());
Collection items = channel.getItems();
Iterator iterator = items.iterator();
while (iterator.hasNext())
{
 ItemIF item = (ItemIF)iterator.next();
 System.out.println();
 System.out.println("Item Title: " + item.getTitle());
 System.out.println("Item Creator: " + item.getCreator());
 System.out.println("Item Date: " + item.getDate());
 System.out.println("Item Found: " + item.getFound());
 System.out.println("Item Description: " + item.getDescription());
}

This code retrieves a list of all items in the channel, and then outputs a few prop-
erties of each one. It produces the following output:

Channel Title: JSF Central - Your JavaServer Faces Community – News
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

762 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

Item Title: JavaServer Faces Proposed Final Draft and Beta 1.0 RI
Shipped
Item Creator: Bill Dudney
Item Date: Sun 21 Dec 2003 06:11 GMT-08:00 2003
Item Found: Mon Jan 12 20:25:04 GMT-05:00 2004
Item Description: Ed Burns announced Friday at 11:00 PM that the
newest version of the JavaServer Faces spec has been released.
There were many changes to the spec.

Item Title: IBM to release WebSphere updates
Item Creator: Carol Sliwa
Item Date: Mon 15 Dec 2003 00:00:00 GMT-05:00 2003
Item Found: Mon Jan 12 20:25:04 GMT-05:00 2004
Item Description: Sutor said the new version will also add beta
support for JavaServer Faces, a proposed standard being developed
through the Java Community Process, an organization that Sun
Microsystems Inc. established to evolve Java technology. Using the

programming model that JavaServer Faces defines, developers can
assemble reusable interface components in a Web page and connect
them to data sources.

...

Note that this matches the content of the RSS feed shown in listing 18.1.
 Using the in-memory ChannelBuilder and directly calling RSSParser.parse

works fine for this simple example, but if you’re constantly displaying the same
feed (especially in a web application), reloading an unchanged feed is an unnec-
essary performance hit. Informa has a FeedManager class that caches ChannelIF
instances, and refreshes them only when something has changed, or if the feed is
out of date. Here’s an example of retrieving a ChannelIF instance using Feed-
Manager instead of RSSParser:

FeedManager manager = new FeedManager();
FeedIF feed = manager.addFeed(
 "http://www.jsfcentral.com/jsfcentral_news.rss");
ChannelIF channel = feed.getChannel();

By default, FeedManager uses the ChannelBuilder class internally for managing
the feeds in memory. The addFeed method returns a FeedIF instance, which pro-
vides additional metadata about a channel. We’re more interested in the ChannelIF
instance itself, which can be retrieved from FeedIF’s getChannel method. This
code generates the same output as the previous snippet, except that the feed won’t
be reloaded unless it’s necessary.

 These are the only classes we’ll need to implement UIHeadlineViewer, although
it’s entirely possible to use more portions of the API to enhance the component’s

functionality and to develop rich, non-JSF functionality.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 763

18.2 Using UIData with Informa

As we stated previously, you can use the raw Informa API with UIData to create
the output shown in figure 18.1. This is possible because UIData can handle List
objects directly. Let’s say we had the following code:

FacesContext context = FacesContext.getCurrentInstance();
Application app = context.getApplication();
ChannelIF channel =
 RSSParser.parse(new ChannelBuilder(),
 "http://www.theserverside.com/rss/theserverside-1.0.rdf");
app.createValueBinding("#{requestScope.channel}").
 setValue(context, channel);

ArrayList itemList = new ArrayList(channel.getItems());
app.createValueBinding("#{requestScope.channelItems}").
 setValue(context, itemList);

Here, we create a new ChannelIF instance for the RSS feed at TheServerSide.com
[TheServerSide], which is a great J2EE community. We store the ChannelIF instance
itself under the key channel in the request scope. This will be displayed in the
table’s header. We also store its items under the separate key channelItem in request
scope as well, to be displayed in the table’s rows. Note that we create a new Array-
List instance as opposed to storing the items directly. This is because ChannelIF.
getItems returns a Collection, and UIData can handle Lists but not Collections.

 With the channel and its items stored in the request, we can set up a UIData
instance that references them and achieves our desired appearance using the JSP
shown in listing 18.2.

<h:dataTable headerClass="hviewer-channel-title"
 rowClasses="hviewer-item-even, hviewer-item-odd"
 rows="5"
 styleClass="hviewer"
 value="#{channelItems}"
 var="item">

 <f:facet name="header">
 <h:outputText value="#{channel.title}"/>
 </f:facet>
 <h:column>
 <h:panelGrid columns="1" cellpadding="2" cellspacing="0"
 headerClass="hviewer-item-title"
 columnClasses="hviewer-item-header">

Listing 18.2 Using a UIData to display an RSS channel stored by the Informa API
 <f:facet name="header">
 <h:outputLink value="#{item.link}">

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

764 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

 <h:outputText value="#{item.title}"/>
 </h:outputLink>
 </f:facet>
 <h:outputText value="#{item.creator}"/>
 <h:outputText value="#{item.date}">
 <f:convertDateTime
 pattern="'Published on
 ' EEE MMM dd yyyy 'at' hh:mm a."/>
 </h:outputText>
 <h:outputText value="#{item.found}">
 <f:convertDateTime
 pattern="'Received on
 ' EEE MMM dd yyyy 'at' hh:mm a."/>
 </h:outputText>
 <h:outputText value="#{item.description}"
 styleClass="hviewer-item-description">
 </h:outputText>
 </h:panelGrid>
 </h:column>
 </h:dataTable>

The code in listing 18.2 outputs a table with a single column. The header has a
UIOutput that displays the channel’s title, but the UIData control itself is associ-
ated with channelItems, which is the ArrayList of ItemIF instances. As the com-
ponent iterates through the list, each item will be stored under the key item. The
embedded panel displays a single item, using a header for the item’s title and
UIOutput components for individual fields. The code also uses the DateTime con-
verter to format the date fields properly for display.

 Using UIData this way works just fine, but it requires a bit of work. Not only do
you have to know the Informa API, but a specific component configuration is
harder to reuse in multiple places on the same page, or on different pages. You
can always create a separate JSP file and include it when necessary, but that makes
parameterization more difficult, especially if you want a different URL and per-
haps different styles on different pages. (Parameterization is easier, however, with
JSP 2.0 tag files.)

 Our UIHeadlineViewer component will encapsulate all of the components that
are declared in listing 18.2. All front-end developers will need to do is specify CSS
styles and which fields they want visible. They won’t have to worry about the
Informa API either; all they’ll need is the URL of the RSS feed. Our component
will also optionally cache feeds. Let’s start building it by subclassing DataModel,
which UIData uses to abstract the underlying data format.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 765

18.3 Subclassing DataModel

In the example in the previous section, we associated UIData’s value with an Array-
List created from the Collection of items that the channel returned. In general,
this is a reasonable way to associate new data types with UIData components. When
you set UIData’s value to equal a List, it internally creates an instance of ListData-
Model, which is a subclass of DataModel. DataModel is an abstract class that represents
a standard way to access different rows of data. JSF also has DataModel subclasses that
wrap arrays (ArrayDataModel), JSTL Result objects (ResultDataModel), JDBC
ResultSets (ResultSetDataModel), and any other individual object (ScalarData-
Model). All of these are in the javax.faces.model package.

 For times when converting your items to a list isn’t enough, it’s sometimes nec-
essary to write your own DataModel subclass. Doing so gives you more control over
how data navigation behaves, insulates the component from API changes, and also
adds room for extra features like caching. In this section, we’ll build a DataModel
instance that works with ChannelIF instances, called ChannelDataModel. ChannelData-
Model isn’t a whole lot different than ListDataModel under the covers, but it should
give you an idea about how easy it is to create your own DataModel subclasses.

 The first step is to create two constructors—a zero argument constructor
(required), and one that accepts the wrapped data type:

public ChannelDataModel()
{
 this(null);
}

public ChannelDataModel(ChannelIF channel)
{
 super();
 rowIndex = -1;
 setWrappedData(channel);
}

Our data type is a ChannelIF instance, so the second constructor accepts that type
as an argument. rowIndex is an instance variable that represents the current row.
setWrappedData is the mutator for the wrappedData property, which is one of the
abstract DataModel properties we must implement:

public void setWrappedData(Object data)
{
 if (data != null)
 {
 if (!(data instanceof ChannelIF))

 {
 throw new IllegalArgumentException(

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

766 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

 "Only ChannelIF instances can be wrapped; " +
 " received a " + data.getClass().getName() +
 " instance instead.");
 }
 channel = (ChannelIF)data;
 items = new ArrayList(channel.getItems());
 setRowIndex(0);
 }
 else
 {
 channel = null;
 items = null;
 }
}

public Object getWrappedData()
{
 return channel;
}

For the setter method, if the data type isn’t a ChannelIF instance, we throw a new
IllegalArgumentException, since this class doesn’t know how to handle any other
types. The method’s goal is to set up the channel and items instance variables, and
set the row index to 0 (the first row). Note that we store the items as an ArrayList,
even though ChannelIF.getItems returns a Collection. This is because we need to
access an individual item by its index, which isn’t possible with a Collection.

 We also need to implement the rowIndex property:

public void setRowIndex(int rowIndex)
{
 if (rowIndex < -1)
 {
 throw new IllegalArgumentException(
 "rowIndex must be -1 or greater.");
 }
 if (channel != null && this.rowIndex != rowIndex)
 {
 this.rowIndex = rowIndex;
 Object rowData = null;
 if (isRowAvailable())
 {
 rowData = getRowData();
 }
 DataModelListener[] listeners = getDataModelListeners();
 for (int i = 0; i < listeners.length; i++)
 {
 listeners[i].rowSelected(
 new DataModelEvent(this, rowIndex, rowData));

 }
 }

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 767

}

public int getRowIndex()
{
 return rowIndex;
}

In setRowIndex, we only begin processing if the channel isn’t null, the new value
is greater than -1, and the new value is different than the old value. Then, we
update the rowIndex instance variable and broadcast a new DataModelEvent to all
interested DataModelListeners. (DataModel provides a full implementation of get-
DataModelListeners as well as addDataModelListener and removeDataModeListener.)
Supporting DataModelListeners is one of the key DataModel requirements; this is
necessary for developers to perform actions based on the currently selected row.
(The setRowIndex method is actually called anytime a renderer iterates through
the data set; it’s not analogous to the user selecting a row.)

 availableRow and rowData are read-only properties that must be implemented
by DataModel subclasses. Here’s isRowAvailable:

public boolean isRowAvailable()
{
 return (channel != null && rowIndex > -1 &&
 rowIndex < items.size());
}

If the channel isn’t null, and the rowIndex is between 0 and the maximum size of
the list, the currently selected row is available.

 The rowData property is trivial as well:

public Object getRowData()
{
 if (channel == null)
 {
 return null;
 }
 return items.get(rowIndex);
}

If the channel isn’t null, we just return the item available at the current index.
 The final property is rowCount, which is yet another wrapper for a List method:

public int getRowCount()
{
 if (channel == null)
 {
 return -1;
 }

 return items.size();
}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

768 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

If the channel is null, we return -1; otherwise, we just return the size of the list.
 That’s it for ChannelDataModel. For the full source, see the book’s web site.

Given the simplicity of this process, it’s no surprise that the JSF specification refers
to DataModel objects as wrappers for other data types. In essence, they’re adapters
[GoF]—they adapt a specific data type into a known type that UIData (and any
other custom components that you or third parties develop) can understand.

 Now that we’ve completed our ChannelDataModel tour, let’s move on to the
important piece of the puzzle: the UIHeadlineViewer component itself.

18.4 Writing the UIHeadlineViewer class

Our goal with UIHeadlineViewer is essentially to provide a customized version of
UIData that can load feeds based solely on the feed’s URL. Writing UIHeadline-
Viewer (in the package jia.components) requires the following steps:

1 Subclass UIData.

2 Create and add child components that mimic the structure defined by
the JSP in listing 18.2. That structure is a tree of components, as shown
in figure 18.3. Rather than defining these components in JSP, we’ll create
them in code and add them when our component is created.
Figure 18.3 UIHeadlineViewer is a composite component. It’s a UIData subclass with a facet
and several customized child components.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 769

For each of the primary child components, we’ll expose properties that indicate
whether they should be visible. This will allow us to easily control whether
UIHeadlineViewer displays an item’s description, published date, creator, and so
on. We’ll also expose a URL property that we’ll use to create the ChannelData-
Model instance that is stored as the component’s value. These properties are listed
in table 18.1.

The code for UIHeadlineViewer is shown in listing 18.3.

package org.jia.components;

import org.jia.components.model.ChannelDataModel;
import org.jia.util.Util;

import javax.faces.application.Application;
import javax.faces.component.*;
import javax.faces.context.FacesContext;
import javax.faces.convert.DateTimeConverter;
import javax.faces.el.ValueBinding;

import de.nava.informa.core.ChannelIF;
import de.nava.informa.impl.basic.ChannelBuilder;
import de.nava.informa.parsers.RSSParser;
import de.nava.informa.utils.FeedManager;

public class UIHeadlineViewer extends UIData
{

Table 18.1 UIHeadlineViewer has properties that control which items should be visible.

Property Type Description Default Value

showChannelTitle boolean True if the channel title should be displayed. true

showItemTitle boolean True if the item title should be displayed. true

showItemCreator boolean True if an item’s creator should be displayed. false

showItem-
ReceivedDate

boolean True if an item’s received date should be
displayed.

false

showItem-
PublishedDate

boolean True if an item’s published date should be
displayed.

false

URL String The URL for the RSS feed. null

Listing 18.3 UIHeadlineViewer.java: a UIData subclass that displays RSS feeds

Subclass
UIData b
 public final static String
 COMPONENT_TYPE = "jia.HeadlineViewer";

Declare new
component type

 c

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

770 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

 private UIPanel innerPanel;
 private UIOutput itemDescription;
 private UIOutput itemPublishedDate;
 private UIOutput itemReceivedDate;
 private UIOutput itemTitle;
 private UIOutput channelTitle;
 private UIOutput itemCreator;

 private String url;
 private Boolean showChannelTitle;
 private Boolean showItemCreator;
 private Boolean showItemDescription;
 private Boolean showItemPublishedDate;
 private Boolean showItemReceivedDate;
 private Boolean showItemTitle;

 public UIHeadlineViewer()
 {
 super();
 this.setVar("item");
 addChildrenAndFacets();
 }

 // Protected methods

 protected void addChildrenAndFacets()
 {
 Application app = FacesContext.
 getCurrentInstance().getApplication();

 setChannelTitle(createChannelTitle(app));

 UIColumn column =
 (UIColumn)app.createComponent(
 UIColumn.COMPONENT_TYPE);
 column.setId("column1");
 getChildren().add(column);

 setInnerPanel(createInnerPanel(app));

 setItemTitle(createItemTitle(app));
 setItemCreator(createItemCreator(app));
 setItemPublishedDate(
 createItemPublishedDate(app));
 setItemReceivedDate(
 createItemReceivedDate(app));
 setItemDescription(
 createItemDescription(app));
 }

Set the row
variable to "item"

 d

 eAdd child
components

and facets

 f Components
for each item
 // Component creation methods

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 771

 protected UIOutput createChannelTitle(Application app)
 {
 UIOutput channelTitle =
 (UIOutput)app.createComponent(UIOutput.COMPONENT_TYPE);
 channelTitle.setId("channelTitle");
 return channelTitle;
 }

 protected UIPanel createInnerPanel(Application app)
 {
 UIPanel innerPanel =
 (UIPanel)app.createComponent(UIPanel.COMPONENT_TYPE);
 innerPanel.setId("innerPanel");
 innerPanel.setRendererType(
 "javax.faces.Grid");
 return innerPanel;
 }

 protected UIOutput createItemTitle(Application app)
 {
 UIOutput itemTitle =
 (UIOutput)app.createComponent(UIOutput.COMPONENT_TYPE);
 itemTitle.setId("itemTitle");
 itemTitle.setRendererType("javax.faces.Link");
 itemTitle.setValueBinding("value",
 app.createValueBinding("#{item.link}"));

 UIOutput itemTitleText =
 (UIOutput)app.createComponent(UIOutput.COMPONENT_TYPE);
 itemTitleText.setValueBinding("value",
 app.createValueBinding("#{item.title}"));
 itemTitle.getChildren().add(itemTitleText);

 return itemTitle;
 }

 protected UIOutput createItemCreator(Application app)
 {
 UIOutput itemCreator =
 (UIOutput)app.createComponent(UIOutput.COMPONENT_TYPE);
 itemCreator.setId("itemCreator");
 itemCreator.setValueBinding("value",
 app.createValueBinding("#{item.creator}"));
 return itemCreator;
 }

 protected UIOutput createItemPublishedDate(Application app)
 {
 UIOutput itemPublishedDate =

Give all
components an
identifier

 g

Set renderer
type if
necessary

 h

Set value-
binding for row
components

 i
 (UIOutput)app.createComponent(UIOutput.COMPONENT_TYPE);
 itemPublishedDate.setId("itemPublishedDate");

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

772 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

 itemPublishedDate.setValueBinding("value",
 app.createValueBinding("#{item.date}"));

 DateTimeConverter converter =
 new DateTimeConverter();
 converter.setPattern(
 "'Published on ' EEE MMM dd yyyy " +
 "'at' hh:mm a.");
 itemPublishedDate.setConverter(converter);

 return itemPublishedDate;
 }

 protected UIOutput createItemReceivedDate(Application app)
 {
 UIOutput itemReceivedDate =
 (UIOutput)app.createComponent(UIOutput.COMPONENT_TYPE);
 itemReceivedDate.setId("itemReceivedDate");
 itemReceivedDate.setValueBinding("value",
 app.createValueBinding("#{item.found}"));

 DateTimeConverter converter = new DateTimeConverter();
 converter.setPattern(
 "'Received on ' EEE MMM dd yyyy 'at' hh:mm a.");
 itemReceivedDate.setConverter(converter);

 return itemReceivedDate;
 }

 protected UIOutput createItemDescription(Application app)
 {
 UIOutput itemDescription =
 (UIOutput)app.createComponent(UIOutput.COMPONENT_TYPE);
 itemDescription.setId("itemDescription");
 itemDescription.setValueBinding("value",
 app.createValueBinding("#{item.description}"));
 return itemDescription;
 }

 // Embedded component properties

 public UIOutput getChannelTitle()
 {
 return channelTitle;
 }

 protected void setChannelTitle(UIOutput channelTitle)
 {
 this.channelTitle = channelTitle;

Create and add
converters for
dates

 j
 getFacets().put("header", channelTitle);
 }

Add channel
title as a facet

 1)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 773

 public UIPanel getInnerPanel()
 {
 return innerPanel;
 }

 protected void setInnerPanel(UIPanel innerPanel)
 {
 this.innerPanel = innerPanel;
 findComponent("column1").getChildren().
 add(innerPanel);
 }

 public UIOutput getItemTitle()
 {
 return itemTitle;
 }

 protected void setItemTitle(UIOutput itemTitle)
 {
 this.itemTitle = itemTitle;
 innerPanel.getFacets().put("header",
 itemTitle);
 }

 public UIOutput getItemCreator()
 {
 return itemCreator;
 }

 protected void setItemCreator(UIOutput itemCreator)
 {
 this.itemCreator = itemCreator;
 innerPanel.getChildren().add
 itemCreator);
 }

 public UIOutput getItemPublishedDate()
 {
 return itemPublishedDate;
 }

 protected void setItemPublishedDate(UIOutput itemPublishedDate)
 {
 this.itemPublishedDate = itemPublishedDate;
 innerPanel.getChildren().add(itemPublishedDate);
 }

 public UIOutput getItemReceivedDate()

Add inner panel
as a child of the
column

 1!

Add item title as
a facet of the
inner panel

 1@

Add per-item
components

 1#
 {
 return itemReceivedDate;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

774 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

 }

 protected void setItemReceivedDate(UIOutput itemReceivedDate)
 {
 this.itemReceivedDate = itemReceivedDate;
 innerPanel.getChildren().add(itemReceivedDate);
 }

 public UIOutput getItemDescription()
 {
 return itemDescription;
 }

 protected void setItemDescription(UIOutput itemDescription)
 {
 this.itemDescription = itemDescription;
 innerPanel.getChildren().add(itemDescription);
 }

 // UIComponent methods

 public void encodeBegin(FacesContext context)
 throws java.io.IOException
 {
 ChannelDataModel data =
 (ChannelDataModel)getValue();
 if (data != null)
 {
 ChannelIF channel =
 (ChannelIF)data.getWrappedData();
 getChannelTitle().setValue(
 channel.getTitle());
 }
 channelTitle.setRendered
 getShowChannelTitle());
 itemTitle.setRendered(
 getShowItemTitle());
 itemCreator.setRendered(
 getShowItemCreator());
 itemDescription.setRendered
 getShowItemDescription());
 itemPublishedDate.setRendered
 getShowItemPublishedDate());
 itemReceivedDate.setRendered(
 getShowItemReceivedDate());

 super.encodeBegin(context);
 }

Set the value
of the title

 1$

Set the
properties
before display

 1%
 // Other properties

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 775

 public String getURL()
 {
 return url;
 }

 public void setURL(String url)
 {
 if (url != null)
 {
 ValueBinding binding =
 getFacesContext().getApplication().
 createValueBinding(
 "#{UIHeadlineViewerFeedManager}");
 FeedManager manager =
 (FeedManager)binding.getValue(
 getFacesContext());

 ChannelIF channel = null;
 try
 {
 if (manager != null)
 {
 channel = manager.addFeed(url).
 getChannel();
 }
 else
 {
 channel = RSSParser.parse(
 new ChannelBuilder(), url);
 }
 }
 catch (Exception e)
 {
 throw new FacesException(
 "Error creating channel from URL", e);
 }
 this.url = url;
 setValue(new ChannelDataModel(channel));
 }
 }

 public boolean getShowChannelTitle()
 {
 return Util.getBooleanProperty(this,
 showChannelTitle,
 "showChannelTitle", true);
 }

 public void setShowChannelTitle(

Create new
ChannelDataModel
instance

 1^

Check for
expressions

 1&
 boolean showChannelTitle)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

776 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

 this.showChannelTitle =
 new Boolean(showChannelTitle);
 }

 public boolean getShowItemTitle()
 {
 return Util.getBooleanProperty(this, showItemTitle,
 "showItemTitle", true);
 }

 public void setShowItemTitle(boolean showItemTitle)
 {
 this.showItemTitle = new Boolean(showItemTitle);
 }

 public boolean getShowItemCreator()
 {
 return Util.getBooleanProperty(this, showItemCreator,
 "showItemCreator", false);
 }

 public void setShowItemCreator(boolean showItemCreator)
 {
 this.showItemCreator = new Boolean(showItemCreator);
 }

 public boolean getShowItemPublishedDate()
 {
 return Util.getBooleanProperty(this, showItemPublishedDate,
 "showItemPublishedDate", false);
 }

 public void setShowItemPublishedDate(
 boolean showItemPublishedDate)
 {
 this.showItemPublishedDate =
 new Boolean(showItemPublishedDate);
 }

 public boolean getShowItemReceivedDate()
 {
 return Util.getBooleanProperty(this, showItemReceivedDate,
 "showItemReceivedDate", false);
 }

 public void setShowItemReceivedDate(boolean showItemReceivedDate)
 {
 this.showItemReceivedDate = new Boolean(showItemReceivedDate);

 }

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 777

 public boolean getShowItemDescription()
 {
 return Util.getBooleanProperty(this, showItemDescription,
 "showItemDescription", false);
 }

 public void setShowItemDescription(boolean showItemDescription)
 {
 this.showItemDescription = new Boolean(showItemDescription);
 }

 // StateHolder methods

 public Object saveState(FacesContext context)
 {
 Object[] values = new Object[8];
 values[1] = url;
 values[2] = super.saveState(context);
 values[3] = showChannelTitle;
 values[4] = showItemTitle;
 values[5] = showItemCreator;
 values[6] = showItemPublishedDate;
 values[7] = showItemReceivedDate;
 values[8] = showItemDescription;

 return values;
 }

 public void restoreState(FacesContext context,
 Object state)
 {
 Object[] values = (Object[])state;
 super.restoreState(context, values[0]);
 url = (String)values[1];
 showChannelTitle = (Boolean)values[2];
 showItemTitle = (Boolean)values[3];
 showItemCreator = (Boolean)values[4];
 showItemPublishedDate = (Boolean)values[5];
 showItemReceivedDate = (Boolean)values[6];
 showItemDescription = (Boolean)values[7];
 }

Subclassing UIData gives us automatic support for displaying DataModel objects,
and ensures that the Table renderer can display this component.
Here, we declare the component’s type. There is no need to change the family prop-
erty; we inherit the javax.faces.Data family from UIData, which is what we want.

Save and
restore new
properties

 1*

 b

 c
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

778 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

The var property is the key under which each row is stored when iterating through
rows in the DataModel object. Because each row in ChannelDataModel represents an
RSS item (and more specifically, an instance of the ItemIF interface), we’ll use the
key item for each row. We’ll reference this key later when we set the value-binding
expressions for child components.
This method creates all of the child components and facets. Note that we start by
creating and adding a UIColumn instance. UIData requires that all components
that need to be displayed for each row must be contained within a UIColumn
instance. All of our child components are laid out within a UIPanel that is a child
of this UIColumn. Once this method has completed, our component will represent
a tree like the one shown in figure 18.3. All of the setters are responsible for plac-
ing the component in the proper tree position.
Each of these components are displayed once for each item in the ChannelDataModel.
Every time we create a new component, we set its component identifier. This
makes it easy to find the component later, if necessary.
If a component’s default renderer doesn’t provide the right functionality, we need
to set a new one. The innerPanel component is used to lay out all of the compo-
nents, so it requires a Grid renderer (the default renderer for UIPanel is null).
For all of the components that display item values, we need to set a value-bind-
ing expression. Note that the key is item, which is the variable we defined in the
constructor (d). The second part of the expression, link, maps to the link prop-
erty of the ItemIF interface, since an instance of ItemIF will be stored under the
item key for each row.
For components that display date values, we create and configure a new Date-
TimeConverter instance.
We store the channelTitle component as a header facet of the UIHeadlineViewer
itself. This will be used by the Table renderer.
In order to be displayed, innerPanel must be a child of a UIColumn.
The itemTitle component is added as the header facet of innerPanel because it’s
the heading for each item iteration.
All of the other per-item components are simply added as children of innerPanel.
When UIHeadlineViewer displays itself, it starts by setting a few properties of its
children and facets. Because the channel title is a property of the ChannelIF
interface and not the ItemIF interface, we can’t associate it with a value-binding
expression that uses the var property (item). However, we can just manually set
the value before display.
Before encoding, we also set the rendered properties of all of the components

 d

 e

 f
 g

 h

 i

 j

 1)

 1!
 1@

 1#
 1$

 1%

based on properties designed to control this behavior (1&).

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 779

The URL property is shorthand for the value property, so we create a new Channel-
DataModel based on the URL. First, we check to see if there’s a FeedManager instance
stored under the key UIHeadlineViewerFeedManager. Remember, a FeedManager
caches ChannelIF instances. (Usually, this would be a managed bean; see the next
section for an example.) If one exists, we retrieve a ChannelIF instance from it; oth-
erwise we forgo caching and retrieve a ChannelIF instance directly from the RSS-
Parser class. Finally, we create a new ChannelDataModel instance and set it as the
value of this component. Since the value is now a proper DataModel instance, we
can safely reuse all of UIData’s default behavior for displaying individual rows.
All of the remaining properties are simple boolean properties. However, in order
to support value-binding expressions, we store them internally as Boolean ins-
tances. This allows us to use a value-binding expression or default value if they
haven’t yet been set. The Util.getBooleanProperty returns the instance variable
if it is non-null; otherwise it evaluates and returns its value-binding expression
(if there is one):

public static boolean getBooleanProperty(UIComponent component,
 Boolean property, String key,
 boolean defaultValue)
{
 if (property != null)
 {
 return property.booleanValue();
 }
 else
 {
 ValueBinding binding =
 (ValueBinding)component.getValueBinding(key);
 if (binding != null)
 {
 Boolean value = (Boolean)binding.getValue(
 FacesContext.getCurrentInstance());
 if (value != null)
 {
 return value.booleanValue();
 }
 }
 }
 return defaultValue;
}

This is the norm for any properties that support value-binding expressions. If the
property has been set, you return it. Otherwise, you evaluate its value-binding
expression (if there is one).

 1^

 1&
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

780 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

For the StateHolder methods, we only need to worry about the new properties
that UIHeadlineViewer defines. All child components and facets will be saved for
us by the superclasses.

That’s it for UIHeadlineViewer. There’s no need to develop a custom renderer,
since we’ll be using the standard Table renderer. Consequently, we can skip
ahead to the configuration details.

18.5 Registering the component

Configuring UIHeadlineViewer requires two entries in a JSF configuration file: the
typical <component> entry, and an optional <managed-bean> entry for configuring
the FeedManager:

 <component>
 <description>
 Displays RSS feeds from a given URL.
 </description>
 <display-name>HeadlineViewer</display-name>
 <component-type>jia.HeadlineViewer</component-type>
 <component-class>
 org.jia.components.UIHeadlineViewer
 </component-class>
 </component>
 <managed-bean>
 <description>
 FeedManager for use with UIHeadlineViewer
 </description>
 <managed-bean-name>
 UIHeadlineViewerFeedManager
 </managed-bean-name>
 <managed-bean-class>
 de.nava.informa.utils.FeedManager
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 </managed-bean>

Note that we place the FeedManager in the application scope, and that the bean’s
name matches the name we used in the UIHeadlineViewer.setURL method (see
section 18.4). In a real application, you may want to initialize FeedManager in
more complicated ways, perhaps taking advantage of some of Informa’s persis-
tence features. Our new component, however, is blissfully unaware of such details.

 Configuration is usually the simplest part of the equation; now let’s look at JSP
integration.

 1*
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 781

18.6 JSP integration

In order to integrate this component with JSP, all that’s necessary is a new base tag
handler for additional HTML properties, the main tag handler, and entry in our
custom tag library.

18.6.1 Writing the JSP custom tag
We’ll integrate UIHeadlineViewer with JSP through a custom tag handler called
jia.components.taglib.HeadlineViewerTableTag. In order to support the same
HTML pass-through properties that the Table renderer supports, we’ll subclass
the jia.components.taglib.HtmlTableBaseTag class. HtmlTableBaseTag is a subclass
of HtmlBaseTag, which we developed in online extension chapter 17. It implements
table-specific HTML pass-through attributes like cellpadding and width, in
addition to the basic attributes that HtmlBaseTag provides.

 Other than its superclass, HeadlineViewerTableTag is somewhat unique
because some of its properties don’t map directly to Table renderer attributes of
the same name. It also exposes rendererer attributes that apply to child components
of UIHeadlineViewer. This way, a front-end developer can specify a CSS style for
different child components by simply specifying an attribute on the custom tag.
Table 18.2 describes how the tag handler’s properties map to attributes and
properties of UIHeadlineViwer, its child components, and the Table renderer.

Table 18.2 HeadlineViewerTableTag exposes renderer attributes for UIHeadlineViewer and
its child components.

Tag Property For Component Renderer Attribute

styleClass UIHeadlineViewer styleClass

channelTitleClass UIHeadlineViewer headerClass

itemClasses UIHeadlineViewer rowClasses

itemTitleClass UIHeadlineViewer.innerPanel headerClass

itemHeaderClass UIHeadlineViewer.itemCreator styleClass

itemHeaderClass UIHeadlineViewer.itemPublishedDate styleClass

itemHeaderClass UIHeadlineViewer.itemReceivedDate styleClass

itemDescriptionClass UIHeadlineViewer.itemDescription styleClass
As usual, all of HeadlineViewerTableTag’s specialized work is handled in the set-
Properties method; the grunt work is handled by the superclasses. The source

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

782 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

for is shown in listing 18.4; we’ve omitted most of the mundane getters and set-
ters to save some trees.

package org.jia.components.taglib;

import org.jia.components.UIHeadlineViewer;
import org.jia.util.Util;

import javax.faces.application.Application;
import javax.faces.component.UIComponent;
import javax.faces.component.UIPanel;
import javax.faces.context.FacesContext;

public class HeadlineViewerTableTag
 extends HtmlTableBaseTag
{
 private String url;
 private String styleClass;
 private String channelTitleClass;
 private String itemTitleClass;
 private String itemHeaderClass;
 private String itemDescriptionClass;
 private String itemClasses;
 private String showChannelTitle;
 private String showItemCreator;
 private String showItemDescription;
 private String showItemPublishedDate;
 private String showItemReceivedDate;
 private String showItemTitle;
 private String rows;

 public HeadlineViewerTableTag()
 {
 super();
 }

 // UIComponentTag methods

 public String getComponentType()
 {
 return UIHeadlineViewer.COMPONENT_TYPE;
 }

 public String getRendererType()
 {

Listing 18.4 HeadlineViewerTableTag.java: Tag handler for UIHeadlineViewer with
the Table renderer

Subclass
HtmlTableBaseTag

 b

Declare
properties
as Strings

 c

Set component
type for
UIHeadlineViewer

 d

Use the e

 return "javax.faces.Table";
 }

Table
renderer

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 783

 protected void setProperties(UIComponent component)
 {
 super.setProperties(component);

 UIHeadlineViewer viewer = (UIHeadlineViewer)component;
 Application app = getFacesContext().getApplication();

 if (url != null)
 {
 if (isValueReference(url))
 {
 viewer.setURL((String)
 app.createValueBinding(url).
 getValue(getFacesContext()));
 }
 else
 {
 viewer.setURL(url);
 }
 }
 if (showChannelTitle != null)
 {
 if (isValueReference(showChannelTitle))
 {
 viewer.setValueBinding(
 "showChannelTitle",
 app.createValueBinding(
 showChannelTitle));
 }
 else
 {
 viewer.setShowChannelTitle(
 Boolean.valueOf(showChannelTitle).
 booleanValue());
 }
 }
 if (showItemTitle != null)
 {
 if (isValueReference(showItemTitle))
 {
 viewer.setValueBinding("showItemTitle",
 app.createValueBinding(showItemTitle));
 }
 else
 {
 viewer.setShowItemTitle(
 Boolean.valueOf(showItemTitle).booleanValue());
 }

For the URL
property,
evaluate the
expression first

 f

For other
properties,
add bindings
normally

 g
 }
 if (showItemCreator != null)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

784 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

 {
 if (isValueReference(showItemCreator))
 {
 viewer.setValueBinding("showItemCreator",
 app.createValueBinding(showItemCreator));
 }
 else
 {
 viewer.setShowItemCreator(
 Boolean.valueOf(showItemCreator).booleanValue());
 }
 }
 if (showItemPublishedDate != null)
 {
 if (isValueReference(showItemPublishedDate))
 {
 viewer.setValueBinding("showItemPublishedDate",
 app.createValueBinding(showItemPublishedDate));
 }
 else
 {
 viewer.setShowItemPublishedDate(
 Boolean.valueOf(showItemPublishedDate).booleanValue());
 }
 }
 if (showItemReceivedDate != null)
 {
 if (isValueReference(showItemReceivedDate))
 {
 viewer.setValueBinding("showItemReceivedDate",
 app.createValueBinding(showItemReceivedDate));
 }
 else
 {
 viewer.setShowItemReceivedDate(
 Boolean.valueOf(showItemReceivedDate).booleanValue());
 }
 }
 if (showItemDescription != null)
 {
 if (isValueReference(showItemDescription))
 {
 viewer.setValueBinding("showItemDescription",
 app.createValueBinding(showItemDescription));
 }
 else
 {
 viewer.setShowItemDescription(
 Boolean.valueOf(showItemDescription).booleanValue());

 }
 }

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 785

 if (rows != null)
 {
 if (isValueReference(rows))
 {
 viewer.setValueBinding("rows",
 app.createValueBinding(rows));
 }
 else
 {
 viewer.setRows(Integer.parseInt(rows));
 }
 }

 Util.addAttribute(app, viewer, "styleClass", styleClass);
 Util.addAttribute(app, viewer, "headerClass", channelTitleClass);
 Util.addAttribute(app, viewer, "rowClasses", itemClasses);

 UIPanel panel = viewer.getInnerPanel();
 panel.getAttributes().put("columns",
 new Integer(1));
 panel.getAttributes().put("cellpadding",
 new Integer(2));
 panel.getAttributes().put("cellspacing",
 new Integer(0));

 Util.addAttribute(app,
 panel,
 "headerClass",
 itemTitleClass);
 Util.addAttribute(app,
 viewer.getItemCreator(),
 "styleClass",
 itemHeaderClass);
 Util.addAttribute(app,
 viewer.getItemPublishedDate(),
 "styleClass",
 itemHeaderClass);
 Util.addAttribute(app,
 viewer.getItemReceivedDate(),
 "styleClass",
 itemHeaderClass);
 Util.addAttribute(app,
 viewer.getItemDescription(),
 "styleClass",
 itemDescriptionClass);
 }

 public void release()
 {

Set Table
renderer
attributes

 h

Hard-code
renderer attributes
of inner panel

 i

Set attributes
of child
components

 j
 url = null;
 styleClass = null;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

786 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

 channelTitleClass = null;
 itemTitleClass = null;
 itemHeaderClass = null;
 itemDescriptionClass = null;
 showChannelTitle = null;
 showItemCreator = null;
 showItemReceivedDate = null;
 showItemTitle = null;
 showItemDescription = null;
 showItemPublishedDate = null;
 rows = null;
 itemClasses = null;
 }

 // Component properties

 public String getUrl()
 {
 return url;
 }

 public void setUrl(String url)
 {
 this.url = url;
 }
 ...
 // Renderer attributes

 public String getStyleClass()
 {
 return styleClass;
 }

 public void setStyleClass(String styleClass)
 {
 this.styleClass = styleClass;
 }
...
}

In order to support HTML pass-through attributes for tables, we subclass the
HtmlTableBaseTag class, which supports HTML attributes for tables, and gives us
basic component tag functionality.
In order to support value-binding expressions for all attributes, the instance
variables for all of the properties are declared as Strings.
In order to associate this component with UIHeadlineViewer, we return the com-

 b

 c

 d

ponent type UIHeadlineViewer.COMPONENT_TYPE.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 787

We want to use the standard Table renderer (normally used with UIData), so we
return “javax.faces.Table” as the renderer type.
In UIHeadlineViewer, the URL property isn’t value-binding enabled. This is because
the component tries to create a new ChannelIF based on the URL when the prop-
erty is set. However, a front-end developer may want to express the URL via a value-
binding expression, so we support it by evaluating it (if necessary) and then setting
the UIHeadlineViewer’s URL property with the result.
All of the display properties are value-binding enabled, so we support them by
creating and setting a new value-binding property if necessary. If the property
isn’t value-binding enabled, we have to convert it to a boolean from a String
before setting it. The Util.addAttribute method sets the attribute if the tag han-
dler’s property is non-null, creating and adding a ValueBinding if necessary.
Here, we set Table renderer attributes for UIHeadlineViewer. Note that the
names don’t match exactly; the names of the tag handler’s properties make more
sense for the type of component we’re displaying. (See table 18.2 for a list of how
the tag handler handles renderer attributes.)
This code hardcodes some Grid renderer attributes for UIHeadlineViewer’s inner
panel. We set these attributes here instead of in UIHeadlineViewer itself because
this tag handler is designed to support attributes understood by the standard
HTML render kit. The component itself doesn’t know which render kit it will be
associated with; it only knows the renderer types, which could be valid for multi-
ple render kits.
Here, we set renderer attributes of the child components. Note that we map the
tag handler’s itemHeaderClass property to the styleClass attribute of several
child components. See table 18.2 for a list of how the tag handler properties are
mapped to attributes of the child components.
This completes our discussion of UIHeadlineViewer’s tag handler. Next, we’ll tell
the web container about this tag by adding it to the tag library.

18.6.2 Adding the tag to the tag library

The tag handler entry for HeadlineViewerTableTag is straightforward. It has no
required attributes, and includes all of the properties defined by the tag itself,
and its superclasses (which include HTML table pass-through attributes). Portions
of the code are shown in listing 18.5.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE taglib PUBLIC

 e

 f

 g

 h

 i

 j

Listing 18.5 Tag handler entry for HeadlineViewerTableTag
"-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
"http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

788 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

<taglib>
<!-- Tag Library Description Elements -->
<tlib-version>1.0</tlib-version>
<jsp-version>1.2</jsp-version>
<short-name>JSF in Action Custom Tags</short-name>
<uri>jsf-in-action-components</uri>
<description>
Sample custom components, renderers, validators, and converters
from JSF in Action method.
</description>
<!-- Tag declarations -->
...
 <tag>
 <name>headlineViewerTable</name>
 <tag-class>
 org.jia.components.taglib.HeadlineViewerTableTag
 </tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>url</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>id</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>rendered</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>showChannelTitle</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
...
 <attribute>
 <name>cellpadding</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>width</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

 </tag>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 789

The real tag entry includes all of the HTML pass-through attributes plus the
attributes defined specifically in the tag handler class. You can download the full
code from the book’s web site.

 The last section shows how to use this exciting new component in a JSP view.

18.7 Using the component

The purpose of developing UIHeadlineViewer was to provide a simpler way to dis-
play RSS feeds than using the standard UIData component (in addition to show-
ing you how to build a data-aware, composite component, that is). So using the
component tag should be much more convenient than the example of using
UIData we showed in listing 18.2.

 Fortunately, usage really is quite convenient. In the simplest case all that’s nec-
essary is to specify the URL of the RSS feed:

<jia:headlineViewerTable
 url="http://www.jsfcentral.com/jsfcentral.rss"/>

This displays the default fields (channel title and header title), doesn’t limit the
number of rows to display, and has no styles applied. Figure 18.4 shows what it
looks like in a browser. It’s not exactly pretty, but using it is quite simple.
Figure 18.4 Simple use of UIHeadlineViewer with a single URL property.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

790 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

We can spice things up by adding some styles:

<jia:headlineViewerTable
 url="http://www.jsfcentral.com/jsfcentral.rss"
 styleClass="hviewer"
 channelTitleClass="hviewer-channel-title"
 itemTitleClass="hviewer-item-title"
 itemClasses="hviewer-item-even, hviewer-item-odd"
 rows="5"/>

Here, we add a style for the overall component, the channel title, the item title,
and alternating styles for each row. Also, we limit the number of rows to just 5.
The browser output is a definite improvement, as figure 18.5 shows.

 Displaying additional fields requires specifying the display attributes explicitly:

<jia:headlineViewerTable
 url="http://www.theserverside.com/rss/theserverside-1.0.rdf"
 showChannelTitle="#{testForm.trueProperty}"
 showItemTitle="#{testForm.trueProperty}"
 showItemCreator="#{testForm.trueProperty}"
 showItemPublishedDate="#{testForm.trueProperty}"
 showItemReceivedDate="#{testForm.trueProperty}"

Figure 18.5
UIHeadlineViewer
with styles added.
 showItemDescription="#{testForm.trueProperty}"
 styleClass="hviewer"

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 791

 channelTitleClass="hviewer-channel-title"
 itemTitleClass="hviewer-item-title"
 itemHeaderClass="hviewer-item-header"
 itemDescriptionClass="hviewer-item-description"
 itemClasses="hviewer-item-even, hviewer-item-odd"
 rows="5"/>

All we’ve added here are the display properties. The example uses value-binding
expressions instead of literal values, but as the name trueProperty implies, this
property always returns true. Even though this example is a little more verbose
than the previous one, it’s still compact. As a matter of fact, it’s equivalent to
the UIData example in listing 18.2. All of the Informa API details, as well as the
specifics of using UIData are gone; all we need is a URL, some styles, and some
display properties. Figure 18.6 shows this example in a browser (only the first cou-
ple of items appear in the figure). Now, in addition to the default fields, all of the
other fields are displayed as well.

Figure 18.6

UIHeadlineViewer displaying
all fields with styles.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

792 CHAPTER 18
UIHeadlineViewer: a composite, data-aware component

For our final example, let’s suppose we had the link to an RSS feed stored in
the session:

FacesContext context = FacesContext.getCurrentInstance();
context.getApplication().
 createValueBinding("#{sessionScope.rssLink}").
 setValue(context,
 "http://news.com.com/2547-1_3-0-20.xml");

This link is for CNET News.com’s front page headlines. We could reference it with
UIHeadlineViewer’s component tag like so:

<jia:headlineViewerTable url="#{rssLink}"
 showItemDescription="true"
 styleClass="hviewer"
 channelTitleClass="hviewer-channel-title"
 itemTitleClass="hviewer-item-title"
 itemDescriptionClass=
 "hviewer-item-description"
 itemClasses=
 "hviewer-item-even, hviewer-item-odd"/>

This displays the default fields plus the item description, utilizing the string stored
in the session for the value property. The output is shown in figure 18.7.

Figure 18.7
UIHeadlineViewer displaying some

fields, with the value and style-related
properties retrieved from the session.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UIHeadlineViewer: a composite, data-aware component 793

Now we’ve consumed a feed by using a value-binding expression, but without
having to worry about the Informa API. The URL could have even come from a
database or some other source, like a class that chooses a feed randomly.

 Now that we’ve shown some usage examples, it’s clear that the effort was
worth it: using UIHeadlineViewer is much simpler than using UIData by itself. It’s
now quite easy to add RSS headlines to any page with a single tag and no addi-
tional programming.

18.8 Summary

In this chapter, we developed UIHeadlineViewer—a composite, data-aware compo-
nent that displays an RSS channel. RSS is a popular XML format used for syndicat-
ing news or web log headlines; there are tens of thousands of feeds available today.

 Parsing RSS feeds isn’t trivial, because several versions are available. To parse
different RSS formats and normalize them into a coherent object model, we
examined the open source Inform API [Informa]. It’s entirely possible to use the
Informa API directly with UIData to display an RSS channel, but doing so is fairly
complicated, and not terribly easy to reuse on different pages.

 Therefore, our component subclasses UIData. UIData components work with
DataModel objects, so we wrote a simple ChannelDataModel class that acts as an
adapter between the Informa classes and the component itself. Our customized
UIData also creates child components and facets for displaying specific fields of
an individual channel. In addition, for each field, it exposes a boolean property
that controls whether the field should be displayed.

 Most important, UIHeadlineViewer exposes a URL property that can point
directly to an RSS feed. This makes life easier for front-end developers, because
they don’t have to know about the Informa API at all; they just have to know the
URL of the RSS feed. Moreover, the component can optionally cache feeds by
using an additional managed bean.

 The resulting component is powerful—it can consume and display an RSS
feed anywhere on the Internet, complete with caching capabilities.

 The next chapter covers our final component example—a UINavigator com-
ponent with a Toolbar renderer.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UINavigator:
a model-driven

toolbar component
This chapter covers
■ Building a navigation component
■ Building a toolbar renderer
■ Developing custom model classes
■ Writing a private action listener
794

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

UINavigator: a model-driven toolbar component 795

Our sample application, ProjectTrack, has a cute little toolbar at the top. When we
developed the user interface in chapter 9, we used JSP includes to reuse the toolbar
code on every page. The toolbar wasn’t feature-rich—it just displayed an icon and
a link for each item. When you clicked a link, it would simply take you to the
requested page. The link you clicked on wasn’t highlighted, so there was no way to
visually indicate which toolbar link mapped to the current page. Moreover, the con-
tents of the toolbar were hardcoded—you couldn’t manipulate them dynamically.

 With so many limitations, the toolbar is the perfect candidate for componen-
tization. We updated ProjectTrack to use a toolbar component, which provided all
of the same features in a nice, easy-to-use, reusable package. In this chapter, we
examine this sophisticated toolbar component, which is driven by a configurable
list of items. Each item can have an icon and can either execute an action method
or link to a URL. This list can be created in code, via JSP custom tags, or through
the Managed Bean Creation facility. You can specify whether the items are dis-
played horizontally or vertically, and modify its appearance via CSS styles.

NOTE In order to save trees, we have omitted some of the source for this com-
ponent. You can download all of it from the book’s web site (http://
www.manning.com/mann).

We’ve been calling this a toolbar component, but if you think about it, it repre-
sents a set of navigation options. A toolbar is only one way to represent those
options. Consequently, we’ll call the component UINavigator, and its renderer
ToolbarRenderer. Figure 19.1 shows examples of what the two look like together.

 For a model-driven component like UINavigator, there are quite a few different
custom pieces. First, there are the model objects—the item list (NavigatorItem-
List) and the items themselves (NavigatorItem). These are simple objects (like
SelectItem and SelectItems in the standard component set) that just store data.
Next, there’s the UINavigator class itself, a private ActionListener called Naviga-
torActionListener, and its renderer, ToolbarRenderer. Finally, there is a JSP
component tag to represent individual items as well as the UINavigator/Toolbar-
Renderer combination, and also one for configuring items. All of these elements
are shown in figure 19.2

 Let’s start our tour with the model objects.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

796 CHAPTER 19
UINavigator: a model-driven toolbar component

19.1 Writing the model classes

Each option displayed through a UINavigator control can be represented by a
model class called jia.components.model.NavigatorItem. A NavigatorItem has a
name, a label, and an icon, and can be disabled. It can refer to either an action or

Figure 19.1 UINavigator represents a list of navigation options, and the Toolbar
renderer displays them as a toolbar.
a link (URL), but not both. If it refers to a link, the direct property determines

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the model classes 797

whether it outputs a direct hyperlink (as opposed to posting back to the application
and then performing a redirect). These properties are summarized in table 19.1.

Table 19.1 The properties for the NavigatorItem class

Property Type Description

name String The name of the item; this is a unique identifier that is required.

label String The text displayed for the item.

link String The URL the user should see when this item is selected. Use this property or
the action property.

Figure 19.2 Elements involved in building UINavigator. UINavigator is the focal point; it’s a
component that implements ActionSource and subclasses UIComponentBase. It works with the
NavigatorItemList model class, which manages NavigatorItems. UINavigator also has a
private ActionListener called NavigatorActionListener. The component can be displayed by
ToolbarRenderer, and there are two JSP tags: Navigator_ToolbarTag for registering the
component and its renderer, and NavigatorItemTag for registering NavigatorItem instances.
Technically, NavigatorItemTag depends on several other classes, but we’ve omitted those
relationships for simplicity.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

798 CHAPTER 19
UINavigator: a model-driven toolbar component

NavigatorItem is a simple JavaBean with only getters and setters (as well as a con-
structor that takes all of these properties), so we’ll spare you the code listing.

TIP One thing you might have noticed about this class is that it doesn’t refer-
ence any JavaServer Faces objects. It’s usually better to leave JSF-related
objects out of model classes. For example, NavigatorItem has a String
for its action property as opposed to a MethodBinding instance. This
makes life easier for unit testing and for storing them in the session.
(MethodBinding isn’t serializable, so it can’t be persisted in a session.)

Now that we’ve completed NavigatorItem, let’s take a look at the class that holds
NavigatorItem instances. It’s called NavigatorItemList, and it’s a subclass of java.
util.ArrayList. UINavigator’s value property will be set to an instance of this class.

 NavigatorItemList adds a few features to Java’s handy ArrayList: a selected-
Item property, and a method to determine if an item with a specific name is in the
list, type-safe versions of its basic methods to keep people from putting the wrong
type of object in the list.1 The class is shown in listing 19.1.

package org.jia.components.model;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;

public class NavigatorItemList extends ArrayList
{
 private NavigatorItem selectedItem;

 public NavigatorItemList()

direct Boolean True if this item should refer directly to the link (and avoid posting back to the
application). Only used if the link property is specified.

action String Literal action value or method-binding expression for the action that should
be executed when the user selects this item.

Listing 19.1 NavigatorItemList manages a list of NavigatorItem instances

1

Table 19.1 The properties for the NavigatorItem class (continued)

Property Type Description
Sadly, JDK 1.5 (“Tiger”) and its support for generics wasn’t quite ready for prime time when I was
working on this book.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the model classes 799

 {
 super();
 }

 public boolean containsName(String name)
 {
 Iterator iterator = iterator();
 while (iterator.hasNext())
 {
 if (((NavigatorItem)iterator.next()).getName().equals(name))
 {
 return true;
 }
 }
 return false;
 }

 // List methods

 public void add(int index, Object element)
 {
 if (!(element instanceof NavigatorItem))
 {
 throw new ClassCastException(
 "This list only accepts NavigatorItem instances.");
 }
 super.add(index, element);
 }

 public boolean add(Object element)
 {
 if (!(element instanceof NavigatorItem))
 {
 throw new ClassCastException(
 "This list only accepts NavigatorItem instances.");
 }
 return super.add(element);
 }

 public boolean addAll(Collection c)
 {
 Iterator iterator = c.iterator();
 while (iterator.hasNext())
 {
 if (!(iterator.next() instanceof NavigatorItem))
 {
 throw new ClassCastException(
 "This list only accepts NavigatorItem
 instances.");

True if an item
is in the list

Type-safe
overrides
 }
 }

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

800 CHAPTER 19
UINavigator: a model-driven toolbar component

 return super.addAll(c);
 }

 public boolean addAll(int index, Collection c)
 {
 Iterator iterator = c.iterator();
 while (iterator.hasNext())
 {
 if (!(iterator.next() instanceof NavigatorItem))
 {
 throw new ClassCastException(
 "This list only accepts NavigatorItem instances.");
 }
 }
 return super.addAll(index, c);
 }

 public Object set(int index, Object element)
 {
 if (!(element instanceof NavigatorItem))
 {
 throw new ClassCastException(
 "This list only accepts NavigatorItem instances.");
 }
 return super.set(index, element);
 }

 // Properties

 public NavigatorItem getSelectedItem()
 {
 return selectedItem;
 }

 public void setSelectedItem(
 NavigatorItem selectedItem)
 {
 this.selectedItem = selectedItem;
 }
}

That’s it for the model classes. In essence, the UINavigator component is a wrap-
per around NavigatorItemList. Let’s take a look at UINavigator now.

Property for
selected item

Property for
selected item
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the UINavigator class 801

19.2 Writing the UINavigator class

The jia.components.UINavigator class subclasses UIComponentBase directly, and
implements the ActionSource interface. The ActionSource interface is important
because the component needs to generate action events when a user clicks on one
of the items.

 Because this component isn’t subclassing a standard concrete component class,
we must define both the family and the type:

public final static String COMPONENT_FAMILY = "jia.Navigator";
public final static String COMPONENT_TYPE = "jia.Navigator";

public String getFamily()
{
 return COMPONENT_FAMILY;
}

Simple enough. Now, here’s the constructor:

public UINavigator()
{
 super();
 setRendererType("jia.Toolbar");
 navigatorListener = new NavigatorActionListener();
 addActionListener(navigatorListener);
}

First, we set the renderer type to “jia.Toolbar”. This will be the default renderer
type for UINavigator instances, since it’s the only one we will write. Next, we instan-
tiate a NavigatorActionListener and add it to the list of action listeners. Navigator-
ActionListener is a special action listener for this component; we’ll cover it in
section 19.2.4. The method addActionListener is required by the ActionSource
interface; we’ll cover it later as well. We add this listener in the constructor to make
sure it’s always available to process action events.

 Because the value property of this component should be of type NavigatorItem-
List, it makes sense to provide type-safe aliases for the value property methods:

public NavigatorItemList getItems()
{
 return (NavigatorItemList)getValue();
}

public void setItems(NavigatorItemList itemList)
{
 setValue(itemList);

}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

802 CHAPTER 19
UINavigator: a model-driven toolbar component

Nothing terribly exciting here—just the joy of casting.
 NavigatorItemList has a selectedItem property, which indicates the current

item the user has selected. However, an item isn’t really selected until its associ-
ated action event has been processed, and such processing won’t occur unless val-
idation and conversion for other controls in the same form are successful. In
order to keep track of the item the user selected before the action event is exe-
cuted, we need another property—the submitted item:

public NavigatorItem getSubmittedItem()
{
 return submittedItem;
}

public void setSubmittedItem(NavigatorItem submittedItem)
{
 this.submittedItem = submittedItem;
}

In our custom action listener, we’ll set the actual selectedItem property of the
NavigatorItemList to equal the submittedItem property. This is similar to the
submittedValue property of the EditableValueHolder interface, which is used by
UIInput controls.

 If you look at figure 19.1, you’ll see that each UINavigator has a header. Head-
ers, footers, and such are best implemented as facets with convenience methods
for accessing them:

public UIComponent getHeader()
{
 return (UIComponent)getFacets().get("header");
}

public void setHeader(UIComponent header)
{
 getFacets().put("header", header);
}

These methods just simplify the process of retrieving the header facet, and also
make it clear that header is an accepted facet name.

 Most of the time, the header is really just a single UIOutput component with a
text label value. To make things simpler, UINavigator has an addStandardHeader
method that takes a text label value as a parameter and creates the facet for you:

public void addStandardHeader(String headerLabel)
{

 UIComponent header = getHeader();
 if (header == null || !(header instanceof UIOutput))

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the UINavigator class 803

 {
 UIOutput titleOutput = (UIOutput)getFacesContext().
 getApplication().createComponent(UIOutput.COMPONENT_TYPE);
 titleOutput.setValue(headerLabel);
 setHeader(titleOutput);
 }
 else
 {
 ((UIOutput)header).setValue(headerLabel);
 }
}

First, we retrieve the current header facet. If it’s null, or if it’s not a UIOutput, we cre-
ate a new UIOutput, set its value to equal that of the text label, and then set the UIOut-
put component as the new header. If there was already a UIOutput component set as
the header, we just update its value to equal the text label. These types of conve-
nience methods are handy when you can anticipate common use cases. The corre-
sponding JSP custom tag (covered in section 19.6.1) takes advantage of this feature.

 Surprisingly, there are no additional new UINavigator methods; everything
else is either an overridden ActionSource, UIComponentBase, or StateHolder method.
Let’s examine the ActionSource methods first.

19.2.1 Implementing ActionSource methods

Because UIComponentBase doesn’t implement ActionSource, we’ll need to imple-
ment its methods from scratch. The interface defines three properties (action,
actionListener, and immediate) and two methods (addActionListener and remove-
ActionListener). Let’s examine the action property first. Here’s the accessor:

public MethodBinding getAction()
{
 NavigatorItem selectedItem = getItems().getSelectedItem();
 if (selectedItem == null ||
 selectedItem.getAction() == null)
 {
 return null;
 }
 String actionString = selectedItem.getAction();
 if (Util.isBindingExpression(actionString))
 {
 return getFacesContext().getApplication().
 createMethodBinding(actionString, null);
 }
 else
 {
 return new ConstantMethodBinding(actionString);

 }
}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

804 CHAPTER 19
UINavigator: a model-driven toolbar component

The purpose of this method is to return a MethodBinding instance that references
an action method. Rather than hold a MethodBinding as an instance variable,
UINavigator creates one based on the action property of the currently selected
NavigatorItem. If there isn’t a currently selected NavigatorItem, or if the selected
NavigatorItem instance’s action property is null, we return null.

 Otherwise, we check to see if the action is a method-binding expression.
(Util.isBindingExpression just checks to make sure that the string starts with
“# {” and ends with “}”.) If so, we create and return a new method binding using
the item’s action property. If the action isn’t a method-binding expression, we
return a new instance of ConstantMethodBinding, which is a special MethodBinding
subclass that just returns the literal value of the action. (So, if the action was “hitMe”,
the ConstantMethodBinding instance’s invoke method would return “hitMe”.)

 Here’s the code for the corresponding mutator:

public void setAction(MethodBinding actionBinding)
{
 NavigatorItem selectedItem = getItems().getSelectedItem();
 if (selectedItem == null)
 {
 throw new IllegalStateException(
 "No item is currently selected.");
 }
 if (actionBinding == null)
 {
 selectedItem.setAction(null);
 }
 else
 {
 selectedItem.setAction(actionBinding.getExpressionString());
 }
}

Like the accessor, the mutator really delegates to the selected NavigatorItem instance.
If there isn’t a selected NavigatorItem, we throw an IllegalStateException—you
can’t set a property on an object that doesn’t exist. Otherwise, we set the selected
NavigatorItem instance’s action property based on the underlying expression of
the MethodBinding instance.

 ActionSource also defines methods for handling ActionListener instances. It
has a single ActionListener property, which is a MethodBinding that must refer to
a method that accepts a single ActionEvent as a parameter. (You may remember
this property from the UICommand component, which implements ActionSource.)
Here are the methods for this property:
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the UINavigator class 805

public void setActionListener(MethodBinding actionListener)
{
 this.actionListenerBinding = actionListenerBinding;
}

public MethodBinding getActionListener()
{
 return actionListenerBinding;
}

UINavigator simply holds on to a MethodBinding instance, so there’s nothing excit-
ing about these methods.

 In addition to the single actionListener property, ActionSources must main-
tain a list of ActionListener instances. Here are the methods for handling that list:

public void addActionListener(ActionListener listener)
{
 addFacesListener(listener);
}

public void removeActionListener(ActionListener listener)
{
 removeFacesListener(listener);
}

public ActionListener[] getActionListeners()
{
 return (ActionListener[])getFacesListeners(ActionListener.class);
}

All of these methods simply delegate to UIComponent utility methods that handle
the listeners by type.

 ActionSource also defines an immediate property, which indicates whether asso-
ciated ActionListeners should be executed during the Apply Request Value phase
(if it’s true) or the Invoke Application phase (if it’s false) of the Request Process-
ing Lifecycle. Like most properties, it makes life easier for developers if you make
it aware of value-binding expressions. Here’s the immediate property (which usu-
ally defaults to false):

private Boolean immediate = null;
...
public boolean isImmediate()
{
 return Util.getBooleanProperty(this, immediate, "immediate",
 false);
}

public void setImmediate(boolean immediate)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

806 CHAPTER 19
UINavigator: a model-driven toolbar component

{
 this.immediate = new Boolean(immediate);
}

Notice that we store the property as a Boolean object instead of a primitive type.
This allows us to keep track of whether a property has been set; if it is non-null,
the Util.getBooleanProperty method will simply return its boolean value. How-
ever, if it is null, the method will evaluate its value-binding expression (if there
is one). If no value-binding expression can be found, Util.getBooleanProperty
returns a default value, which is false in this case. (Recall that UIComponent keeps
a list of ValueBinding instances, keyed by property or attribute name.)

 That’s it for the ActionSource methods. Now, let’s look at the UIComponentBase
methods that UINavigator overrides.

19.2.2 Overriding UIComponentBase methods

Only a few of UIComponentBase’s methods need to be overridden. The first is get-
RendersChildren. By default, the rendersChildren property returns false, so that
any child components or facets will render themselves. Because the component
we’re writing has a header facet and allows no additional child components, we
can set the rendersChildren property to true:

public boolean getRendersChildren()
{
 return true;
}

rendersChildren is defined as read-only property by UIComponent, so there’s no
setter method, and we can just hardcode true as the return value. In general, the
rendersChildren property should only return true if your encoding methods
actually display child components.

 By default, the broadcast method invokes all listeners whose phaseId property
matches the phaseId of the current event. Because the actionListener property is
a MethodBinding instance and not an ActionListener, we need to add support for
executing it:

public void broadcast(FacesEvent event)
 throws AbortProcessingException
{
 super.broadcast(event);

 MethodBinding binding = getActionListener();
 if (binding != null)

 {
 FacesContext context = getFacesContext();

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the UINavigator class 807

 binding.invoke(context, new Object[] { event });
 }
}

First, we delegate to the superclass for all of the normal event processing. Next,
we retrieve the actionListener property. If the property is non-null, we invoke
the MethodBinding, passing in the event as the parameter.

 We defined the immediate property earlier, but so far we haven’t written any
code that uses it. ActionSource components are supposed to process action events
during the Apply Request Values phase of the Request Processing Lifecycle if the
immediate property is true, and during the Invoke Application phase if immediate
is false. We can enforce this rule by overriding the queueEvent method, which is
responsible for adding new events to our component:

public void queueEvent(FacesEvent event)
{
 if (event instanceof ActionEvent)
 {
 if (isImmediate())
 {
 event.setPhaseId(PhaseId.APPLY_REQUEST_VALUES);
 }
 else
 {
 event.setPhaseId(PhaseId.INVOKE_APPLICATION);
 }
 }
 super.queueEvent(event);
}

All FacesEvent subclasses (such as ActionEvent) have a phaseId property that indi-
cates when they should be executed. So all we have to do is set this property
depending on the value of immediate. Now, whenever an action event is added to
this component, we ensure that it is executed during the proper lifecycle phase.

 There are no additional UIComponentBase methods to override. Now, let’s
examine state management.

19.2.3 Implementing StateHolder methods

State management for UINavigator is pretty normal, except for handling action
listeners. First, there’s the default NavigatorActionListener that we registered in
the constructor. Next, there’s the actionListener property. Take a look at how
they’re managed in saveState:
public Object saveState(FacesContext context)
{

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

808 CHAPTER 19
UINavigator: a model-driven toolbar component

 removeActionListener(navigatorListener);

 Object[] values = new Object[5];
 values[0] = super.saveState(context);
 values[1] = value;
 values[2] = valid ? Boolean.TRUE : Boolean.FALSE;
 values[3] = immediate;
 values[4] = saveAttachedState(context, actionListener);

 return values;
}

Note that we actually remove the navigatorListener from the list of action listen-
ers. Because this listener has no properties, there’s no need to waste time and (pos-
sibly bandwidth) saving it. Also, note that we save the actionListener property
(which is a MethodBinding instance) by using UIComponentBase’s saveAttached-
State utility method instead of just storing it directly. You should use save-
AttachedState for any associated objects like this, especially if there’s a chance
that they might implement the StateHolder interface.

 All of the other work in this method is standard: we create an array of Objects,
assigning properties to each element in the array, beginning with the state of
the superclass.

 Here is the corresponding restoreState method:

public void restoreState(FacesContext context, Object state)
{
 Object[] values = (Object[])state;
 super.restoreState(context, values[0]);
 value = values[1];
 valid = ((Boolean)values[2]).booleanValue();
 Boolean immediateState = (Boolean)values[3];
 if (immediateState != null)
 {
 setImmediate(immediateState.booleanValue());
 }
 actionListener = (MethodBinding)restoreAttachedState(
 context, values[4]);
}

Retrieval of most of these properties is standard—we just retrieve them from the
array of Objects, starting with the superclass’s state. Note that we don’t initialize
the navigatorListener variable because it was already created in UINavigator’s
constructor. Because we stored actionListener using the saveAttachedState
method, we must retrieve it using restoreAttachedState, another UIComponent-

Base utility method that performs the opposite task.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the UINavigator class 809

 We have now covered all of UINavigator’s methods. However, it would be rude
to ignore the details of NavigatorActionListener, so we’ll examine its implemen-
tation next.

19.2.4 Developing NavigatorActionListener:
a custom ActionListener

When we discussed the goals of UINavigator, we said that for the selected Navigator-
Item instance, the control would either fire an action method or redirect to a URL.
In order to implement this functionality, UINavigator has its own private Action-
Listener subclass, NavigatorActionListener. Firing an action method is handled
by the application’s default ActionListener instance, so NavigatorActionListener
delegates to that instance if the selected NavigatorItem has a null action prop-
erty. Otherwise, it handles the redirect all by itself.

 An instance of NavigatorActionListener is created and added to UINavigator
in its constructor, which ensures that there’s always a single up-to-date instance
waiting to process any action events triggered by the user.

 The ActionListener interface has a single method called processAction;
here’s our implementation:

public void processAction(ActionEvent event)
{
 UINavigator navigator = (UINavigator)event.getComponent();

 NavigatorItem selectedItem = navigator.getSubmittedItem();
 navigator.getItems().setSelectedItem(selectedItem);
 navigator.setSubmittedItem(null);

 if (navigator.getAction() != null)
 {
 getFacesContext().getApplication().getActionListener().
 processAction(event);
 }

First, we cast the source of the event as a UINavigator instance. This is a safe thing
to do, because no other class can instantiate a NavigatorActionListener. Next, we
retrieve the submittedItem property from the component, update the currently
selected item, and set the submittedItem property to non-null. This is effectively
committing the user’s selection.

 Now that the user’s choice has been solidified, we can retrieve the action
property from the UINavigator instance. Recall that this property’s value is based
on the selected NavigatorItem’s action property. If the property isn’t null, we sim-

ply delegate processing to the Application’s actionListener, which ensures that
the default processing occurs, complete with navigation.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

810 CHAPTER 19
UINavigator: a model-driven toolbar component

 If the action property is null, then we can redirect to the URL specified by the
selected item’s link property:

 else
 {
 String link = selectedItem.getLink();
 if (link != null)
 {
 FacesContext context = getFacesContext();
 try
 {
 context.getExternalContext().redirect(link);
 }
 catch (IOException e)
 {
 String message = "Error redirecting to link '" + link + "'";
 context.addMessage(navigator.getClientId(context),
 new FacesMessage(FacesMessage.SEVERITY_ERROR,
 message, null));
 context.getExternalContext().log(message, e);
 }
 }
 }

If the link property is non-null, we try to redirect to it using the sendRedirect
method of the ExternalContext. This method can throw an IOException, so we
must catch it, log the error, and add a message to the current context.

 This completes the tour of UINavigator and its inner class, NavigatorAction-
Listener. Next, let’s handle component registration.

19.3 Registering the component

Registration for this component is as simple or complex as any other. We’ll choose
the simple route, and just add the bare minimum amount of metadata; remember,
however, that you can do much more (see chapter 15 for an example).

<component>
 <description>
 Displays a set of buttons (in a table) that execute
 action methods.
 </description>
 <display-name>Navigator</display-name>
 <component-type>jia.Navigator</component-type>
 <component-class>org.jia.components.UINavigator</component-class>
</component>
This declares a component of type jia.Navigator with the display name Naviga-
tor and the class name org.jia.components.UINavigator. Note that the type

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the ToolbarRenderer class 811

matches the value of the COMPONENT_TYPE constant we declared in section 19.2.
Now, on to the renderer.

19.4 Writing the ToolbarRenderer class

Now that the model and component classes are complete, it’s time to address dis-
playing the component. We’ll develop a ToolbarRenderer that can display the
items in an HTML table, either horizontally or vertically. The renderer will also
fire an ActionEvent when a user clicks on an item.

 For controlling the appearance of the associated UINavigator, the renderer
uses attributes for specifying the layout and the styles associated with portions of
the HTML table. These attributes are listed in table 19.2. The renderer also uses
base HTML pass-through attributes as well as HTML pass-through attributes for
tables, like cellpadding and cellspacing.

Now, let’s look at how ToolbarRenderer displays the UINavigator component.

19.4.1 Encoding

If you look at figure 19.1, you can see that UINavigator is displayed as a table,
complete with CSS styles, a header, and a label (and optionally an icon) for each
item. The table can display either horizontally or vertically. Listing 19.2 shows
what the HTML output for a horizontal table should look like (this is the HTML
for the first example shown in the figure).

Table 19.2 The attributes for ToolbarRenderer

Property Type Description

layout String Specifies whether or not to display all items in a single row
(“HORIZONTAL”) or in a single column (“VERTICAL”)

headerClass String The CSS style for the header of the table

itemClass String The CSS style for all unselected items

selectedItemClass String The CSS style for the selected item

iconClass String The CSS style for the icon

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

812 CHAPTER 19
UINavigator: a model-driven toolbar component

<input type="hidden" name="mainForm:nav1" />

<table cellpadding="4" class="navigator2">

 <thead>
 <tr>
 <th class="navigator-title">ProjectTrack:</th>
 </tr>
 </thead>
 <tbody>
 <tr class="navigator-selected-command">
 <td>
 <a href="#"
 onmousedown="document.forms['mainForm']
 ['mainForm:nav1'].value='0';
 document.forms['mainForm'].submit()">
 <img border="0" src="images/inbox.gif"
 class="navigator-command-icon">Inbox

 </td>
 </tr>
..
 <tr class="navigator-command">
 <td>
 <a href="#"
 onmousedown="document.forms['mainForm']
 ['mainForm:nav1'].value='3';
 document.forms['mainForm'].submit()">
 <img border="0" src="images/logout.gif"
 class="navigator-command-icon">Logout

 </td>
 </tr>
 </tbody>
</table>

The first thing to note is that there’s a hidden form element whose name is equal
to the client identifier of the component, which is mainForm:nav1 in this case
(b). The hidden field is followed by a standard HTML table element with a
cellpadding attribute and a CSS style (c). It also has a header, which is derived
from UINavigator’s header facet (d).

 Each NavigatorItem is represented by a single table row (e). Each row wraps an

Listing 19.2 The expected HTML output of ToolbarRenderer for the first vertical
toolbar shown in figure 19.1

Hidden field for
selected item

 b

Items laid
out in table

 c

Header facet d

Each item
represented
by a row

 e
image and the item’s label with an HTML anchor that has inline JavaScript for its

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the ToolbarRenderer class 813

onmousedown event. This JavaScript sets the enclosing hidden field’s value to equal
the index of the corresponding item on the server, and then submits the form.

 The example shows UINavigator displayed with a vertical layout. It can also
be displayed with a horizontal layout. The only differences are that items are
displayed in columns instead of rows, and that instead of having a table header
row (an HTML <thead> element), the header is displayed as the first column.

 Let’s get down to business. The class jia.components.ToolbarRenderer directly
subclasses the Renderer abstract class. Because UINavigator has a header facet, we will
implement encodeBegin for the beginning of the table, encodeChildren for the facet,
and encodeEnd for the items and the end of the table. Let’s start with encodeBegin:

 public void encodeBegin(FacesContext context,
 UIComponent component)
 throws java.io.IOException
 {
 if (component.isRendered())
 {
 UINavigator navigator = (UINavigator)component;
 Map attributes = navigator.getAttributes();
 ResponseWriter writer = context.getResponseWriter();
 writer.startElement("input", navigator);
 writer.writeAttribute("type", "hidden", null);
 writer.writeAttribute("name",
 navigator.getClientId(context), "clientId");
 writer.endElement("input");
 writer.startElement("table", navigator);
 if (attributes.get("cellpadding") == null)
 {
 attributes.put("cellpadding", "4");
 }
 Util.writePassthroughAttributes(attributes, writer);
 }
 }

First, we check to see if the component should be displayed. If so, we start by
outputting the hidden HTML <input> element. Next, we begin outputting the
<table> element. The second parameter of ResponseWriter.startElement is always
the associated component, which is UINavigator in this case. (This is for use by
tools, but has no effect on your application.) If no cellpadding attribute has been
set on the component, we add one with a default value of 4. Next, we write
through all of the pass-through attributes (which include the cellpadding
attributes). The Util.writePassthroughAttributes method simply outputs any
attribute that’s used for standard HTML elements, evaluating value-binding

expressions if necessary.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

814 CHAPTER 19
UINavigator: a model-driven toolbar component

 The encodeChildren method is where we output the header facet:

public void encodeChildren(FacesContext context,
 UIComponent component)
 throws java.io.IOException
{
 if (component.isRendered())
 {
 UINavigator navigator = (UINavigator)component;
 Map attributes = navigator.getAttributes();
 UIComponent header = navigator.getHeader();
 boolean vertical = isVertical(attributes);
 if (header != null)
 {
 ResponseWriter writer = context.getResponseWriter();
 if (vertical)
 {
 writer.startElement("thead", header);
 writer.startElement("tr", header);
 writer.startElement("th", header);
 }
 else
 {
 writer.startElement("tbody", navigator);
 writer.startElement("tr", header);
 writer.startElement("td", header);
 }

If the component is visible, we begin by declaring some local variables. The ver-
tical variable tells if the table should be vertical (each item displayed on a sepa-
rate row) or horizontal (all items displayed on the same row). (The isVertical
method returns true if the layout attribute is non-null and equals “VERTICAL”,
and false if it is non-null and equals “HORIZONTAL”.)

 If the header facet itself isn’t null, we can display it. If the layout is vertical, we
begin outputting markup for an HTML header row; otherwise we just start out-
putting a normal table body and the first column of the first row. Note that for the
startElement method of the ResponseWriter, we pass the header component for
all of the header-related elements instead of the UINavigator instance.

 Now that we’ve started all of the elements surrounding the actual header out-
put, it’s time to apply any attributes that may affect the header. In table 19.2, we
defined the headerClass attribute, which is the style that should be applied to the
header. The following code outputs that attribute:

 if (attributes.get("headerClass") != null)
 {

 writer.writeAttribute("class",

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the ToolbarRenderer class 815

 attributes.get("headerClass"),
 "headerClass");
 }

Now it’s time to display the actual header component. Whenever you want to ren-
der a facet or child component, you simply call its encoding methods directly:

 header.encodeBegin(context);
 header.encodeChildren(context);
 header.encodeEnd(context);

These lines perform all of the necessary encoding for the header, embedded
within our table.

 Finally, we finish surrounding the header’s output:

 if (vertical)
 {
 writer.endElement("th");
 writer.endElement("tr");
 writer.endElement("thead");
 }
 else
 {
 writer.endElement("td");
 }
 }
 }
 }

If the layout is vertical, we end the table header row. Otherwise, we just end
the column.

 The encodeBegin and encodeChildren methods displayed the beginning of the
table and its header. The meat, which is the markup for the individual items, is
displayed in encodeEnd:

public void encodeEnd(FacesContext context, UIComponent component)
 throws java.io.IOException
 {
 if (component.isRendered())
 {
 ResponseWriter writer = context.getResponseWriter();
 UINavigator navigator = (UINavigator)component;
 Map attributes = navigator.getAttributes();
 boolean vertical = isVertical(attributes);
 UIForm parentForm = getParentForm(navigator);
 if (parentForm == null)
 {
 throw new NullPointerException("No parent UIForm found.");
 }

 NavigatorItemList items = navigator.getItems();

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

816 CHAPTER 19
UINavigator: a model-driven toolbar component

 if (items != null && items.size() > 0)
 {
 if (vertical)
 {
 writer.startElement("tbody", navigator);
 }
 else
 if (navigator.getHeader() == null)
 {
 writer.startElement("tbody", navigator);
 writer.startElement("tr", navigator);
 }

As usual, we first check to see if the rendered property is true. If so, we declare
some variables, and then retrieve the parent UIForm of our UINavigator instance
using getParentForm, which is a utility method that we’ll cover later. Having a
handle to the parent form and its index is vital for the JavaScript event handlers
that are rendered for each item. Finally, if there are any items in the list, we begin
outputting the table’s body (the output varies depending on the layout).

 Next, we output a table cell for each item in the list:

 Iterator itemIterator = items.iterator();
 while (itemIterator.hasNext())
 {
 encodeItem((NavigatorItem)itemIterator.next(), items,
 context, writer, navigator, attributes,
 vertical, parentForm);
 }

This code just calls encodeItem (a utility method we’ll discuss next) for each item
in the list. Once all of the items have been displayed, we can close the open ele-
ments that were started earlier:

 if (!vertical)
 {
 writer.endElement("tr");
 }
 writer.endElement("tbody");
 }
 writer.endElement("table");
 }
 }

That’s it for encodeEnd. Let’s look at encodeItem, which was executed for each
item in the list. This method handles the details of displaying each individual
item within a table cell. Here’s the code that outputs the beginning of the cell:
private void encodeItem(NavigatorItem item,
 NavigatorItemList items, FacesContext context,

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the ToolbarRenderer class 817

 ResponseWriter writer, UINavigator navigator,
 Map attributes, boolean vertical, UIForm parentForm)
 throws IOException
 {
 if (vertical)
 {
 writer.startElement("tr", navigator);
 }
 writer.startElement("td", navigator);
 writeItemClass(writer,
 item.equals(navigator.getItems().getSelectedItem()),
 attributes);

If the layout of the UINavigator is vertical, we start with a table row; otherwise, we
start with a table cell element. (Remember, if the layout is vertical, there’s one
item per row; otherwise, each item occupies a cell in a table with only one row.)
Then we output the CSS style (an HTML class attribute) for the item using the
writeItemClass utility method. This simple ToolbarRenderer method uses the
selectedItemClass attribute if the item is currently selected; otherwise, it uses
the itemClass attribute.

 Now, we can output the item’s label and icon, enclosed in a hyperlink if
necessary:

 if (!item.isDisabled())
 {
 writer.startElement("a", navigator);
 if (item.isDirect() && item.getLink() != null)
 {
 writer.writeAttribute("href",
 context.getExternalContext().encodeResourceURL(
 item.getLink()),
 null);
 }
 else
 {
 writer.writeAttribute("href", "#", null);
 String clientId = navigator.getClientId(context);
 writer.writeAttribute("onmousedown",
 "document.forms['" +
 parentForm.getClientId(context) +
 "']['" + clientId + "'].value='" +
 items.indexOf(item) + "'; document.forms['" +
 parentForm.getClientId(context) +
 "'].submit()",
 null);
 }
 }

 if (item.getIcon() != null)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

818 CHAPTER 19
UINavigator: a model-driven toolbar component

 encodeIcon(context, writer, attributes, item.getIcon());
 }
 if (item.getLabel() != null)
 {
 writer.writeText(item.getLabel(), null);
 }
 if (!item.isDisabled())
 {
 writer.endElement("a");
 }

If the item isn’t disabled, we begin outputting the <a> element. For direct item
links, we simply output the href attribute to avoid a roundtrip to the server. Note
that we’re using the encodeResourceURL method on the ExternalContext to encode
the item’s link property; using this method is required anytime you need to out-
put a URL directly.

 If the item doesn’t require a direct link, then we want it to postback so that
ToolbarRenderer can generate an ActionEvent based on the item the user selected
(this will happen in the decode method, which we’ll cover later). To do this, we
output JavaScript that modifies the value of the hidden field (rendered in encode-
Begin) to be equal to the index of this item. This JavaScript code uses the clientId
property of the parent UIForm to make sure it’s referencing the proper hidden
field. (Refer back to listing 19.2 to see what this output looks like.) This way, when
the renderer decodes the user’s response, it can associate it with a specific item on
behalf of the user.

 After we output the hyperlink (if necessary), we simply display the icon and
the item’s label. (If the item is disabled, the icon and label are still displayed, but
without the hyperlink.) Then, if necessary, we finish outputting the enclosing
hyperlink element. The encodeIcon method outputs the actual graphic hyper-
link; we’ll cover that method next.

 ResponseWriter’s writeAttribute and writeText methods take the compo-
nent’s property as the last parameter. In this case, we pass in null because this
output isn’t associated with a component (each NavigatorItem is a model object,
not a component).

 Once the item’s label and icon have been displayed, we can end the column
and row (if necessary):

 writer.endElement("td");
 if (vertical)
 {
 writer.endElement("tr");

 }
 }

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Writing the ToolbarRenderer class 819

That’s it for displaying an individual NavigatorItem instance. encodeItem did,
however, call another method, encodeIcon:

 protected void encodeIcon(FacesContext context,
 ResponseWriter writer,
 Map attributes, String iconUrl)
 throws IOException
 {
 if (iconUrl.startsWith("/"))
 {
 iconUrl = context.getExternalContext().
 getRequestContextPath() + iconUrl;
 }
 writer.startElement("img", null);
 writer.writeAttribute("border", "0", null);
 writer.writeAttribute("src",
 context.getExternalContext().
 encodeResourceURL(iconUrl),
 null);

 if (attributes.get("iconClass") != null)
 {
 writer.writeAttribute("class", attributes.get("iconClass"),
 null);
 }
 else
 {
 writer.writeAttribute("style",
 "margin-left: 0px; margin-right: 10px; " +
 "border: 0px; vertical-align: middle;", null);
 }
 writer.endElement("img");
 }

There are two important features of this method. First, if the icon starts with a for-
ward slash (/), we prepend it with the context path. Prepending the URL ensures
that all absolute links are made relative to the current servlet or portlet; this is the
same behavior the standard components use when displaying image URLs. Sec-
ond, for each element, we output a CSS style that equals the iconClass ren-
derer attribute, if it has been set. Otherwise, we hardcode the style to equal
something that works well in many cases.

TIP It’s usually a good idea to provide default style values so that the compo-
nent user gets a feel for how the component should look before they
tweak its appearance.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

820 CHAPTER 19
UINavigator: a model-driven toolbar component

Finding the parent form
Instead of making any assumptions about the form enclosing the UINavigator
component, ToolbarRenderer’s encode method finds the UINavigator instance’s
parent UIForm. The encodeItem method uses the form’s clientId property to
make sure that the JavaScript it outputs references the proper form on the client.
Here’s the code for getParentForm:

protected UIForm getParentForm(UIComponent component)
{
 UIComponent parent = component.getParent();
 while (parent != null)
 {
 if (parent instanceof UIForm)
 {
 break;
 }
 parent = parent.getParent();
 }
 return (UIForm)parent;
}

This method moves from the current component (our UINavigator instance)
recursively up the component tree until it finds the first UIForm object, which is
the parent form. Finding the parent form is useful for cases where you need to
reference the form explicitly on the client side (as we did with JavaScript in the
encodeItem method).

 Now that we’ve covered the encoding logic of ToolbarRenderer, let’s see how it
handles decoding.

19.4.2 Decoding

As usual, decoding is a much simpler process than encoding. All we have to do is
check the request parameters for one whose name equals the clientId of the
UINavigator instance. If there’s a match, we just set the selected item and fire an
ActionEvent. Here’s the decode method:

 public void decode(FacesContext context, UIComponent component)
 {
 if (Util.canModifyValue(component))
 {
 UINavigator navigator = (UINavigator)component;
 Map parameterMap = context.getExternalContext().
 getRequestParameterMap();
 String selectedItem =

 (String)parameterMap.get(
 (String)navigator.getClientId(context));

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Registering the renderer 821

 if (selectedItem != null && selectedItem.length() > 0)
 {
 NavigatorItemList items = navigator.getItems();
 if (items != null)
 {
 navigator.setSubmittedItem((NavigatorItem)items.get(
 Integer.parseInt(selectedItem)));
 navigator.queueEvent(new ActionEvent(navigator));
 }
 }
 }
 }

First, we check to see if this component is accepting input. The Util.canModify-
Value returns true if the component’s rendered property is true, and it’s not dis-
abled or read-only (as specified by render-dependent HTML attributes). If we can
modify the value, we start by retrieving the request parameter map from the
external context. We then check to see if the map includes a parameter whose
name equals the client identifier of this component. If so, the user has clicked on
this UINavigator instance, so we select the proper item in the UINavigator’s list
and fire a new ActionEvent. Note that the item is selected based on its index,
which the encodeItem method rendered in its JavaScript event handler. (Another
option would have been to select an item based on its name property.)

 Once the decode method has executed, the normal JSF processing takes place. If
a new ActionEvent was fired, the processing results in execution of the Navigation-
ActionListener instance, which either delegates to the application’s default Action-
Listener or redirects to the selected NavigatorItem’s link property.

 This completes our tour of ToolbarRenderer. Now, let’s register our new ren-
derer with JSF.

19.5 Registering the renderer

Here’s the renderer entry for ToolbarRenderer in an application configuration file:

<renderer>
 <description>
 <display-name>Toolbar</display-name>
 <component-family>jia.Navigator</component-family>
 <renderer-type>jia.Toolbar</renderer-type>
 <renderer-class>
 org.jia.components.ToolbarRenderer
 </renderer-class>
</renderer>
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

822 CHAPTER 19
UINavigator: a model-driven toolbar component

Note that the same renderer type was set in UINavigator’s constructor, effectively
making ToolbarRenderer its default navigator. On to the world of JSP.

19.6 JSP integration

Sometimes, integrating a component with JSP involves developing more than one
tag handler. This is usually the case when you’ve developed child components
that work with your primary component. In this case, there are no child compo-
nents, but we’ll use a custom tag handler to create new NavigatorItem instances
for the parent UINavigator.

TIP Remember, custom tags don’t always have to create JSF components.
They can perform other operations that initialize or manipulate your
component in some way.

So, this means that in addition to developing the component tag for the UINavigator–
ToolbarRenderer pair, we’ll develop one that represents a single NavigatorItem
instance and that is designed to be nested within the component tag.

19.6.1 Writing the Navigator_ToolbarTag component tag

The primary component tag for our new component and renderer is called
org.jia.components.Navigator_ToolbarTag. It subclasses a class called HtmlTable-
BaseTag, which provides support for properties that map to standard HTML tables.
The implementation of this class is similar to HtmlBaseTag (covered in online
extension chapter 17), so we’ll skip the details. Just remember that it implements
additional table-specific HTML pass-through attributes such as cellpadding and
width, in addition to the basic attributes the HtmlBaseTag provides.

 HtmlBaseTag supports pass-through attributes, but we still need to support
both component properties and renderer attributes in Navigator_ToolbarTag.
We’ll expose them all as properties of the tag handler; table 19.3 lists them all.

Table 19.3 The properties for Navigator_ToolbarTag. This includes all of the properties from
the UINavigator component and the attributes from ToolbarRenderer.

Property Type Description UINavigator Toolbar

value String The value of this component. Must be a value-
binding expression that evaluates to a
NavigatorItemList.

X

continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP integration 823

You might have noticed a couple things about this table. First, UINavigator’s
action property isn’t exposed. This is intentional—the action is set based on the
currently selected item. Also, the headerLabel property doesn’t map to a specific
UINavigator property or Toolbar attribute. This is because a non-empty header-
Label property initiates a call to UINavigator’s addStandardHeader method, which
creates a default UIOutput instance.

TIP Think of the tag handler as an interface to your component–renderer
pair. As such, you may expose properties whose relationship with the
component or renderer counterpart is more complicated than just set-
ting a property.

As the name Navigator_ToolbarTag implies, this component tag is specifically
designed for the UINavigator component type and the Toolbar renderer type.
The first implementation step is to set those properties:

public String getComponentType()
{

immediate String True if the default NavigatorAction-
Listener should be executed immediately
(during the Apply Request Values phase).

X

action-
Listener

String Method-binding expression pointing to an action
listener method.

X

layout String Specifies whether or not to display all items in a
single row (“HORIZONTAL”) or in a single column
(“VERTICAL”).

X

header-
Class

String The CSS style for the header of the table. X

itemClass String The CSS style for all unselected items. X

selected-
ItemClass

String The CSS style for the selected item. X

iconClass String The CSS style for the icon. X

headerLabel String The value used for the default header facet.

Table 19.3 The properties for Navigator_ToolbarTag. This includes all of the properties from
the UINavigator component and the attributes from ToolbarRenderer. (continued)

Property Type Description UINavigator Toolbar
 return UINavigator.COMPONENT_TYPE;
}

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

824 CHAPTER 19
UINavigator: a model-driven toolbar component

public String getRendererType()
{
 return "jia.Toolbar";
}

Now that it’s clear which types of objects this handler supports, the next step is to
override the setProperties method. The first thing it does is set the UINavigator’s
immediate property:

protected void setProperties(UIComponent component)
{
 super.setProperties(component);

 UINavigator navigator = (UINavigator)component;
 FacesContext context = FacesContext.getCurrentInstance();
 Application app = context.getApplication();

 if (immediate != null)
 {
 if (isValueReference(immediate))
 {
 navigator.setValueBinding("immediate",app.
 createValueBinding(immediate));
 }
 else
 {
 navigator.setImmediate(new Boolean(immediate).booleanValue());
 }
 }

First, we call the superclass’s setProperties method. Then, if the immediate prop-
erty is non-null and it’s a value-binding expression, we set its value binding. Other-
wise, we set the property directly. (The isValueReference method is a utility
method implemented by the UIComponentTag base class. Remember, you must go
through the extra step of checking for a value-binding if you want to support
value-binding expressions in every property, like the standard component tags.)

 Next, we handle the headerLabel property:

 if (headerLabel != null)
 {
 if (isValueReference(headerLabel))
 {
 ValueBinding binding = app.createValueBinding(headerLabel);
 navigator.addStandardHeader(
 (String)binding.getValue(context));
 }
 else
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP integration 825

 {
 navigator.addStandardHeader(headerLabel);
 }
 }

The code here is almost exactly the same, except that we call addStandardHeader
instead of a setter property. This method will create a new header UIOutput facet
that has headerLabel as its value. This is an example of a tag handler property
that doesn’t map directly to a component property or renderer attribute.

 The actionListener property must be a method-binding expression, so we
handle things slightly differently:

 if (actionListener != null)
 {
 if (isValueReference(actionListener))
 {
 MethodBinding mBinding =
 app.createMethodBinding(actionListener,
 new Class[] { ActionEvent.class });
 navigator.setActionListener(mBinding);
 }
 else
 {
 throw new IllegalArgumentException(
 "The actionListener property " +
 "must be a method-binding expression.");
 }
 }

We start by once again calling isValueReference (this works for both value and
method-binding expressions), and then create a new MethodBinding instance if
necessary. Note that the method binding specifies a single ActionEvent parame-
ter for the method signature, which is the requirement for action listener meth-
ods. If the actionListener property isn’t a method-binding expression, we throw
an IllegalArgumentException, since that is a requirement. (It is also possible to
handle such details using a TagExtraInfo class, which validates individual JSP tags.)

 Next, we set the value of the component:

 if (value != null)
 {
 if (isValueReference(value))
 {
 navigator.setValueBinding("value",
 app.createValueBinding(value));
 }
 else
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

826 CHAPTER 19
UINavigator: a model-driven toolbar component

 {
 throw new IllegalArgumentException(
 "The value property must be a value" +
 "binding expression that points to a " +
 "NavigatorItemList object.");
 }
 }

First, if the value property of the tag handler isn’t null, we either create a new
ValueBinding instance and set it on the component, or throw an exception if the
value isn’t a value-binding expression.

 The final step is to add the normal attributes:

 Util.addAttribute(app, navigator, "headerClass", headerClass);
 Util.addAttribute(app, navigator, "itemClass", itemClass);
 Util.addAttribute(app, navigator, "selectedItemClass",
 selectedItemClass);
 Util.addAttribute(app, navigator, "iconClass", iconClass);
 Util.addAttribute(app, navigator, "layout", layout);
 }

This adds each of the additional attributes specified in table 19.3. Util.add-
Attribute simply adds the specified attribute if it’s non-null, creating and setting
a ValueBinding instance if necessary.

 The final task is the exciting release method:

 public void release()
 {
 super.release();

 headerClass = null;
 itemClass = null;
 selectedItemClass = null;
 headerLabel = null;
 layout = null;
 value = null;
 immediate = null;
 iconClass = null;
 actionListener = null;
 }

Here, we simply clear all of the instance variables used for this tag.
 Now that we’ve seen Navigator_ToolbarTag, let’s examine the tag handler for

individual NavigatorItem instances.

19.6.2 Writing the NavigatorItemTag tag handler
When front-end developers use the Navigator_ToolbarTag, they have the option
of either referencing a value-binding expression for the component’s value or

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP integration 827

configuring it via additional JSP tags. Those additional tags reference the Navig-
atorItemTag custom tag handler, which creates a new NavigatorItem instance and
adds it to the list of items maintained by the parent UINavigator component. This
way, developers can either reference an object already stored somewhere in the
application (either in code or through the Managed Bean Creation facility), or
use the tags to initialize the list.

 NavigatorItemTag subclasses UIComponentTag directly, since it doesn’t have to
process any HTML attributes. Even though this class isn’t associated with a com-
ponent directly, subclassing UIComponentTag makes it much easier to integrate with
component tags and the JSF components on the current page.

 Rather than exposing properties that are also used by a component or a
renderer, NavigatorItemTag exposes properties that map to an individual Navig-
atorItem instance. This makes sense, since the primary purpose of this tag is to
create a new NavigatorItem instance. These are the same properties that are listed
in table 19.1.

 Because this tag handler isn’t associated with a component or a renderer, we
return null for the componentType and rendererType properties:

public String getComponentType()
{
 return null;
}

public String getRendererType()
{
 return null;
}

In all of the examples so far, most of the work in a tag handler has been performed
in the setProperties method. This is because usually a tag handler is just respon-
sible for mapping its properties to those of the associated component and ren-
derer. Since NavigatorItemTag’s primary purpose is to create a new NavigatorItem
instance based on its properties, we can perform its work in the doStartTag
method. UIComponentTag usually sets up the associated component and starts the
encoding process in this method, but we will focus on creating a new NavigatorItem
instance and updating the parent UINavigator’s item list.

public int doStartTag() throws JspException
{
 FacesContext context = FacesContext.getCurrentInstance();
 Application app = context.getApplication();

 UIComponentTag parentTag = getParentUIComponentTag(pageContext);

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

828 CHAPTER 19
UINavigator: a model-driven toolbar component

 if (parentTag == null ||
 !(parentTag instanceof Navigator_ToolbarTag))
 {
 throw new JspException(
 "This tag must be nested inside a " +
 "parent Navigator_ToolbarTag.");
 }

 Navigator_ToolbarTag parentToolbarTag =
 (Navigator_ToolbarTag)parentTag;

First, we check to make sure this tag is nested inside a Navigator_ToolbarTag
using getParentUIComponentTag, which is a UIComponentTag utility method. If not,
we throw an exception. (This check can also be handled by a tag library validator.)

 Once we have a handle to the parent Navigator_ToolbarTag, we retrieve the
associated UINavigator component using getComponentInstance, which is a UICom-
ponentTag method. Then, we retrieve the list of items from the UINavigator. If the
list is null, we create it.

 UINavigator navigator =
 (UINavigator)parentToolbarTag.getComponentInstance();
 NavigatorItemList items = navigator.getItems();
 if (items == null)
 {
 items = new NavigatorItemList();
 navigator.setValue(items);
 }

Creating a new NavigatorItemList instance ensures that a list is available for this item.
 One of the key differences between working directly with a model object as

opposed to a UIComponent is support for value-binding expressions. Whereas a
UIComponent instance maintains a collection of ValueBinding instances, Navigator-
Item knows nothing about them. So, it’s up to Navigator_ToolbarTag to evaluate
the expressions by retrieving a ValueBinding instance and calling the getValue
method. We begin with the name property:

 if (name != null && isValueReference(name))
 {
 name = (String)app.createValueBinding(name).
 getValue(context);
 }

Once we’ve evaluated the name property (if necessary), we proceed only if the item
isn’t already in the list (so that we don’t overwrite any existing items):

 if (!items.containsName(name))

 {
 if (label != null && isValueReference(label))

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP integration 829

 {
 label = (String)app.createValueBinding(label).
 getValue(context);
 }
 if (icon != null && isValueReference(icon))
 {
 icon = (String)app.createValueBinding(icon).
 getValue(context);
 }
 if (link != null && isValueReference(link))
 {
 link = (String)app.createValueBinding(link).
 getValue(context);
 }
 boolean bDirect = false;
 if (direct != null)
 {
 if (isValueReference(direct))
 {
 bDirect = ((Boolean)app.createValueBinding(direct).
 getValue(context)).booleanValue();
 }
 else
 {
 bDirect = Boolean.valueOf(direct).booleanValue();
 }
 }
 boolean bDisabled = false;
 if (disabled != null)
 {
 if (isValueReference(disabled))
 {
 bDisabled = ((Boolean)app.createValueBinding(disabled).
 getValue(context)).booleanValue();
 }
 else
 {
 bDisabled = Boolean.valueOf(disabled).booleanValue();
 }
 }

 items.add(new NavigatorItem(name, label, icon, action, link,
 bDirect, bDisabled));
 }
 return getDoStartValue();
 }

Most of the work here is evaluating value-binding expressions. The real work is
the last two lines (in bold) that create a new NavigatorItem instance and add it

to the list.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

830 CHAPTER 19
UINavigator: a model-driven toolbar component

 Afterwards, we return the result of the getDoStartValue method. getDo-
StartValue is a protected method of UIComponentTag that makes it easy for sub-
classes to change the value returned from the doStartTag method. For us, the
default value is fine.

 There’s a corresponding doEndValue method that performs the same task for
the doEndTag method. Our doEndTag implementation simply calls that method:

 public int doEndTag() throws JspException
 {
 return getDoEndValue();
 }

It’s important to override doEndTag in this case because we want to avoid UICom-
ponentTag’s default processing, which assumes that there’s an associated compo-
nent and tries to decode it.

TIP Don’t forget to call the getDoStartValue or getDoEndValue method
when you’re overriding the doStartTag or doEndTag method of UICom-
ponentTag. If you return a specific value, you’re breaking UIComponent-
Tag’s guarantee that the values from those properties will always be
returned. If you want to return a specific value, override getDoStart-
Value or getDoEndValue explicitly. (For more information about UICom-
ponentTag, see chapter 15.)

The last step is the obligatory release method:

public void release()
{
 super.release();

 name = null;
 label = null;
 icon = null;
 action = null;
 link = null;
 direct = null;
 disabled = null;
}

Nothing exciting here; we just reset all of the variables to null.
 That’s all there is for NavigatorItemTag. Now that we’ve covered the Java code

for both tags, we can examine the XML tag library descriptors for them.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP integration 831

19.6.3 Adding the tags to the tag library

Navigator_ToolbarTag doesn’t require anything fancy in its tag libary descriptor.
The descriptor does, however need to expose all of the HTML pass-through
attributes defined in the tag handler’s superclasses (HtmlBaseTag and HtmlTable-
BaseTag). The relevant portions of the source are shown in listing 19.3.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <!-- Tag Library Description Elements -->
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>JSF in Action Custom Tags</short-name>
 <uri>jsf-in-action-components</uri>
 <description>
 Sample custom components, renderers, validators, and converters
 from JSF in Action method.
 </description>
<!-- Tag declarations -->
...
 <tag>
 <name>navigatorToolbar</name>
 <tag-class>
 org.jia.components.taglib.Navigator_ToolbarTag
 </tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>headerClass</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>headerLabel</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>itemClass</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>selectedItemClass</name>

Listing 19.3 The tag library descriptor for Navigator_ToolbarTag
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

832 CHAPTER 19
UINavigator: a model-driven toolbar component

 </attribute>
 <attribute>
 <name>styleClass</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>iconClass</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>immediate</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>layout</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>id</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>rendered</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>binding</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
...
 <attribute>
 <name>cellpadding</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>width</name>

 <required>false</required>
 <rtexprvalue>false</rtexprvalue>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSP integration 833

 </attribute>
 </tag>
</taglib>

The descriptor for the NavigatorItemTag is quite simple, since there are no extra
HTML attributes to expose. It’s shown in listing 19.4.

 <tag>
 <name>navigatorItem</name>
 <tag-class>
 org.jia.components.taglib.NavigatorItemTag
 </tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>name</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>label</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>icon</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>link</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>action</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>direct</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>disabled</name>

Listing 19.4 The tag library descriptor for the NavigatorItemTag (the top-level taglib
element has been excluded)
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

834 CHAPTER 19
UINavigator: a model-driven toolbar component

 </attribute>
 </tag>

The only interesting thing to note here is that the name attribute is required
because it’s the item’s identifier.

 Now that we’ve fully integrated this component and renderer with JSP, it’s time
to actually use it.

19.7 Using the component

One of the primary reasons for developing this component was to show how to
support a custom model class, which is the NavigatorItemList, in this case. The
list can be initialized either in code, via the Managed Bean Creation facility, or via
the NavigatorItemTag. Let’s look at how it can be initialized in code:

FacesContext context = FacesContext.getCurrentInstance();
ValueBinding binding = (ValueBinding)context.getApplication().
 createValueBinding("#{sessionScope.items}");
NavigatorItemList items = (
 NavigatorItemList)binding.getValue(context);
if (items == null)
{
 String action = "#{testForm.toggleNextOrPrevious}";
 items = new NavigatorItemList();
 items.add(new NavigatorItem("inbox", "Inbox",
 "images/inbox.gif", action,
 null, false, false));
 items.add(new NavigatorItem("showAll", Show all",
 "images/show_all.gif", action,
 null, false, false));
 items.add(new NavigatorItem("createNew", "Create new",
 "images/inbox.gif", action,
 null, false, false));
 items.add(new NavigatorItem("logout", "Logout",
 "images/logout.gif", action,
 null, false, false));
 binding.setValue(context, items);
}

This code creates a session-scoped variable with the key items. If no object is avail-
able for the binding, it creates a new NavigatorItemList and adds four Navigator-
Item instances to it. Note that all of them reference the same action method—
testForm.toggleNextPrevious. This is a simple method that toggles between an

outcome of "next" and "previous". Once the new list has been created and pop-
ulated, we update the value binding with it.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using the component 835

Now that we’ve created a NavigatorItemList and made it available, we can refer-
ence it using the component tag:

 <jia:navigatorToolbar id="nav1" layout="VERTICAL"
 styleClass="navigator2"
 itemClass="navigator-command"
 selectedItemClass="navigator-selected-command"
 headerClass="navigator-title"
 iconClass="navigator-command-icon"
 value="#{items}" headerLabel="ProjectTrack:"/>

This displays a new toolbar with a vertical layout and a header that says “Project-
Track:”, and that references the list we stored under the key items. This is the tag
that generated the HTML shown in listing 19.2. Figure 19.3 shows what it looks
like in a browser.

 Note that the first item in figure 19.3 is highlighted. This is because it’s the cur-
rently selected item, and consequently the ToolbarRenderer has displayed it with the
CSS style navigator-selected-command instead of navigator-command. If the user
clicks on any of these links, it will execute the toggleNextOrPrevious action of testForm.

 Let’s look at an example with a horizontal layout, an explicitly declared header
facet, and items configured via custom tags instead of code:

<jia:navigatorToolbar id="nav2"
 layout="HORIZONTAL"
 styleClass="navigator2"
 itemClass="navigator-command"
 selectedItemClass="navigator-selected-command"
 headerClass="navigator-title"
 iconClass="navigator-command-icon">
 <f:facet name="header">
 <h:outputText value="ProjectTrack:"/>
 </f:facet>
 <jia:navigatorItem name="inbox" label="Inbox"
 icon="images/inbox.gif"
 action="#{testForm.incrementCounter}"
 disabled="true"/>
 <jia:navigatorItem name="showAll" label="Show All"

Figure 19.3
UINavigator referencing a scoped
variable with vertical layout and CSS styles.
 icon="images/show_all.gif"
 action="#{testForm.incrementCounter}"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

836 CHAPTER 19
UINavigator: a model-driven toolbar component

 <jia:navigatorItem name="createNew" label="Create New"
 icon="images/create.gif"
 action="#{testForm.incrementCounter}"
 disabled="true"/>
 <jia:navigatorItem name="logout" label="Logout"
 icon="images/logout.gif"
 action="#{testForm.incrementCounter}"/>
 </jia:navigatorToolbar>

In this example, we’ve added an explicit header facet. In the previous example,
this wasn’t necessary, because using the headerLabel attribute told the tag han-
dler to create the facet for us. The two methods are semantically equivalent: they
both create a facet that contains a single UIOutput component with the value
“ProjectTrack:”.

 After the facet, this example includes several <jia:navigatorItem> tags to
add individual NavigatorItem instances to the list. Each item references the
action method testForm.incrementCounter, which simply increments the value of
the testForm.counter property by 1. Also, note that the first and third items have
the disabled property set to true. Figure 19.4 shows how this declaration looks
in a browser.

The header has the same text, and all of the items have the same name, but the
first and third items have no hyperlink (because they are disabled), the second
item is selected, and the table is a single row instead of five rows (since the layout
is horizontal). Also, when the user clicks on one of the items, it will execute the
testForm.incrementCounter action method instead of testForm.nextOrPrevious.

 All of the items don’t have to execute the same action method, though. The
following example has some items that behave quite differently from each other:

<jia:navigatorToolbar id="nav3" layout="vertical"
 styleClass="navigator2"
 itemClass="navigator-selected-command"
 selectedItemClass="navigator-command"
 headerClass="navigator-title"
 iconClass="navigator-command-icon">
 <f:facet name="header">
 <h:outputText value="UINavigator Demo"/>

Figure 19.4 UINavigator with hardcoded items, CSS
styles, and a horizontal layout (the first and third items are
disabled and the second item is selected).
 </f:facet>
 <jia:navigatorItem name="item1" label="Item 1 (no action)"

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using the component 837

 icon="images/show_all.gif"/>
 <jia:navigatorItem name="item2"
 label="Item 2 (increment counter action)"
 icon="images/show_all.gif"
 action="#{testForm.incrementCounter}"/>
 <jia:navigatorItem name="item3"
 label="Item 3 (toggle page action)"
 icon="images/show_all.gif"
 action="#{testForm.toggleNextOrPrevious}"/>
 <jia:navigatorItem name="google" label="Google (direct link)"
 direct="true" link="http://www.google.com"/>
 <jia:navigatorItem name="manning" label="Manning"
 icon="/images/manning_logo.gif"
 link="http://www.manning.com"/>
 <jia:navigatorItem name="jsfcentral" label="JSF Central"
 icon="/images/jsf_logo_small.gif"
 link="http://www.jsfcentral.com"/>
 <f:action_listener
 type="org.jia.components.NavigatorLoggingActionListener"/>
</jia:navigatorToolbar>

The first item in this example doesn’t reference an action method at all. The next
two items reference different actions—testForm.incrementCounter and testForm.
toggleNextOrPrevious, respectively. The fourth item doesn’t have an icon, it has
the direct property set to true, and it references an external URL. The final two
items reference external URLs as well. Also, note that we added an ActionListener
called NavigatorLoggingActionListener. Figure 19.5 shows what this toolbar looks
like in a browser.

 We reversed the styles for the selected and unselected items to spice things
up; Item 2 is the one that’s selected. Clicking on Item 1 won’t fire an action, but
it will cause the item to be selected. Clicking on Item 2 will execute testForm.
incrementCounter, and Item 3 will cause testForm.nextPrevious to be executed.

 Clicking on the Google link has an entirely different effect; it’s a direct link
to www.google.com that doesn’t cause a postback to the component itself.
The last two links do, however, post back to the server, and result in executing

Figure 19.5
UINavigator with vertical layout, CSS styles, and a

combination of items that reference direct links and
action methods (the second item is selected).

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

838 CHAPTER 19
UINavigator: a model-driven toolbar component

NavigationActionHandler to redirect the user to www.manning.com (this book’s
publisher), and www.jsfcentral.com (the author’s JSF community site), respectively.

 Allowing the component to perform a postback is useful if you want to log the
user’s selected item. This is where the NavigatorLoggingActionListener comes in.
It simply outputs the selected item to the log file. A real application might regis-
ter an ActionListener that logs such actions to a database. This would allow it to
keep track of its user’s activity (if you’re working for Big Brother) or even adapt
the system’s behavior based on usage patterns.

19.8 Summary

The goal of this chapter was to build the toolbar used in ProjectTrack. We developed
a model-driven component, UINavigator, that allows a user to select one of many
possible items. We wrote the NavigatorItem class, which represents an individual
item. We also wrote an ArrayList subclass, NavigatorItemList, which maintains a
list of NavigatorItem instances and keeps track of the currently selected one. UINavi-
gator is essentially a component wrapper around a NavigatorItemList instance.

 UINavigator implements the ActionSource interface, so it’s a source of action
events. There’s also a private ActionListener implementation, NavigatorAction-
Listener, that’s automatically registered for each UINavigator instance. This lis-
tener is responsible for either executing the action property or redirecting the
user to the link property of the selected NavigatorItem.

 To display a UINavigator, we wrote a ToolbarRenderer that displays all of the
items in an HTML table, complete with CSS styles and layout options. In order to
properly understand which item the user selects, ToolbarRenderer uses JavaScript
and hidden fields, and also references the parent form on the page.

 For JSP integration, we developed two custom tag handlers: Navigator_Toolbar-
Tag for the component, and NavigatorItemTag for individual items. Navigator-
ItemTag is unique because it doesn’t map to a specific component tag; it’s only used
for creating and configuring new NavigatorItem instances. Front-end developers
will typically nest several NavigatorItemTags inside a single Navigator_ ToolbarTag.

 The final result is a highly flexible, reusable navigation component with a
familiar toolbar representation. A developer can configure the list of items in
code, via the Managed Bean Creation facility, or through custom tags. Each item
can point to an action or an external link, and additional action listeners to react
to a user’s selection.

 This completes our study of components and renderers. Next, we’ll take a

closer look at building validators and converters.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Validator and
converter examples
This chapter covers
■ When to write a validator
■ Developing a validator
■ When to write a converter
■ Developing a converter
839

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

840 CHAPTER 20
Validator and converter examples

Now that we’ve completed our whirlwind tour of the component development
world, it’s time to take a look at the JSF user interface helpers: validators and con-
verters. Developing either one is pretty similar to developing user interface compo-
nents, but much easier. The process involves implementing a simple interface and
registering the new class with the application.

 JSP integration is the same: subclass a JSF custom tag handler, override a cou-
ple of methods, and then add it to the tag library definition (TLD). Because neither
components nor validators are associated with JSF’s rendering mechanism, there’s
no need to worry about developing renderers. This chapter assumes that you’re
familiar with the validator and converter classes and interfaces; refer back to
chapter 15 for an overview.

20.1 Validator methods vs. validator classes

In chapter 13, we showed you how to write methods in your backing beans that
perform validation. For most application logic, this is perfectly acceptable and
even encouraged, especially if there’s no need for reuse across dissimilar pages.
(You can reuse a validator method across similar pages if you create a hierarchy of
backing beans that are specialized for different pages, or reuse the same backing
bean in multiple pages.) However, for cases where you want validation logic to be
separate from application logic (for example, a credit card validator), and cases
where you are developing a library for resale or distribution (externally or inter-
nally), stand-alone validators are the way to go.

20.2 Developing a validator

Out of the box, JSF has several standard validators for basic things like numbers
and the length of a string. That doesn’t help with such things as a social security or
a phone number. Desktop RAD tools usually handle this with a MaskEdit control of
some sort, but in the JSF world, this can be done with a validator. Instead of defin-
ing a specialized edit mask format, however, we might as well use regular expressions.

NOTE Remember, JSF does not have explicit support for client-side validation.
If you want to write a validator that emits JavaScript as well, you have two
choices: use the Struts validator (see chapter 14), or write a UIComponent
that outputs JavaScript based on the validators on the page. (Validators
can’t output anything, so you must write a Component instead.)
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a validator 841

Regular expressions are special strings that can be used to match patterns in text.
They’ve been around for quite a while, and are the cornerstone of the Unix
command line and languages like Perl. From our point of view, they’re a great way
to create an extremely versatile validator that can be used for not only a social
security or phone number but just about anything else.

 Each character in a regular expression has a special meaning about the char-
acters it will match in an input string. For example, the character “.” matches any
character. The character “*” will match the preceding set of characters any num-
ber of times. So the regular expression “.*” matches any string. Figure 20.1 shows
a regular expression for a U.S. social security number. For a thorough explana-
tion, see Mastering Regular Expressions [Friedl].

 Figure 20.2 shows our validator in action, validating a U.S. social security num-
ber, a U.S. phone number, and an email address.

Figure 20.1
Regular expression for a U.S. social security number. Each “\d”
represents group of possible characters, or character class, that
can be any digit. The curly braces match the previous class a
specific number of times. So, the string “\d{3}” matches any
three digits, such as 123, 234, or 456. The brackets define
specific character class, which in this case, has only one valid
character: a hyphen. So, literally the expression means any string
that starts with three digits, then has a hyphen, two digits,
another hyphen, and ends with four digits. This would match any
string in the format ###-##-####, where # is any digit.
Specific examples are 123-45-6789 or 555-55-5555.

Figure 20.2 The RegularExpressionValidator in action for validating a U.S. social security

number, a U.S.-style phone number (with optional area code), and an email address. Error messages
can be customized, and displayed via an HtmlMessage or HtmlMessages component.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

842 CHAPTER 20
Validator and converter examples

To build a regular expression validator, we’ll need two classes: RegularExpression-
Validator which provides the core functionality, and the RegexpValidatorTag
class, which is the JSP tag handler. Also, since RegularExpressionValidator has
properties that must be remembered between requests, it implements the State-
Holder interface. We’ll also need to register the validator in a JSF configuration
file, and the tag handler in a tag library definition (TLD) file. Figure 20.3 shows
all of the necessary elements.

 Let’s get started with the validator class itself.

20.2.1 Writing the RegularExpressionValidator class

The idea behind this validator is simple: the front-end developer associates it
with an input control and specifies a regular expression and an error message. If
the control’s value property (which must convert to a String) matches the regular
expression, we do nothing. Otherwise, we throw a ValidatorException with a new
FacesMessage containing the error message specified by the developer. The mes-
sage can then be displayed with a Htmlmessage or Htmlmessages component.

 This boils down to the two properties listed in table 20.1. The validator has an
errorMessage property for situations where the developer wants to customize the

Figure 20.3 Elements for the RegularExpressionValidator.
The primary class is RegularExpressionValidator, which
implements both the Validator and StateHolder interfaces. A
single tag handler, RegexpValidatorTag, provides JSP
integration for the validator.
validation error message that the user sees. This is important, because Regular-
ExpressionValidator doesn’t know what the regular expression represents—it just

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a validator 843

knows how to match input against it. With the errorMessage property, the devel-
oper can replace the default string “Validation Error: This field is not formatted
properly.” with something a little more user friendly, like “Your phone number is
not in the correct format.”

Like all validators, org.jia.validators.RegularExpressionValidator implements
the simple Validator interface. Also, to maintain state, it implements the State-
Holder interface. The source is shown in listing 20.1.

package org.jia.validators;

import javax.faces.application.FacesMessage;
import javax.faces.component.StateHolder;
import javax.faces.component.UIInput;
import javax.faces.context.FacesContext;
import javax.faces.validator.Validator;

import java.util.regex.Pattern;

public class RegularExpressionValidator
 implements Validator, StateHolder
{
 public static final String VALIDATOR_ID =
 "jia.RegularExpressionValidator";
 private String expression;
 private String errorMessage;

 private boolean transientFlag;
 protected Pattern pattern;

 public RegularExpressionValidator()
 {
 this(null, null);
 }

Table 20.1 RegularExpressionValidator properties

Property Type Description Required?

expression String Regular expression to match the input against. Yes

errorMessage String Message to be displayed if there is a validation error. No

Listing 20.1 RegularExpressionValidator.java: Validates input against a regular
expression

Import Pattern for
regular expressions

 b

Implement
StateHolder to
save properties

 c

Declare the
identifier

 d
 public RegularExpressionValidator(String expression,
 String errorMessage)

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

844 CHAPTER 20
Validator and converter examples

 {
 super();
 transientFlag = false;
 setExpression(expression);
 setErrorMessage(errorMessage);
 }

 // Validator methods

 public void validate(FacesContext context,
 UIComponent component, Object inputValue)
 throws ValidatorException
 {
 EditableValueHolder input = (EditableValueHolder)component;
 String value = null;
 try
 {
 value = (String)inputValue;
 }
 catch (ClassCastException e)
 {
 throw new ValidatorException(
 new FacesMessage(
 "Validation Error: Value " +
 "cannot be converted to String.",
 null));
 }

 if (!isValid(value))
 {
 String messageText = errorMessage;
 if (messageText == null)
 {
 messageText = "Validation Error: " +
 "This field is not formatted " +
 "properly.";
 }
 throw new ValidatorException(
 new FacesMessage(messageText,
 null));
 }
 }

 // Protected methods

 protected boolean isValid(String value)
 {
 if (pattern == null)
 {

Set transient flag to
false to save state

 e

If value isn’t a
String,
validation fails

 f

Validate and
throw exception
if it fails

 g

Place validation
logic in separate

 h
 throw new NullPointerException(
 "The expression property hasn't " +

method

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a validator 845

 " been set.");
 }

 return pattern.matcher(value).matches();
 }

 // Properties

 public String getErrorMessage()
 {
 return errorMessage;
 }

 public void setErrorMessage(String errorMessage)
 {
 this.errorMessage = errorMessage;
 }

 public String getExpression()
 {
 return expression;
 }

 public void setExpression(String expression)
 {
 this.expression = expression;
 if (expression != null)
 {
 pattern = Pattern.compile(expression);
 }
 }

 // StateHolder methods

 public void setTransient(boolean transientValue)
 {
 this.transientFlag = transientValue;
 }

 public boolean isTransient()
 {
 return transientFlag;
 }

 public Object saveState(FacesContext context)
 {
 Object[] values = new Object[3];
 values[0] = pattern;
 values[1] = expression;

Place validation
logic in separate
method

 h

Create Pattern
instance from
expression

 i

Save and restore
state for all
properties

 j
 values[2] = errorMessage;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

846 CHAPTER 20
Validator and converter examples

 return values;
 }

 public void restoreState(FacesContext context, Object state)
 {
 Object[] values = (Object[])state;
 pattern = (Pattern)values[0];
 expression = (String)values[1];
 errorMessage = (String)values[2];
 }
}

We’ll use the standard Java regular expression library to do all of the real work of
this validator. The Pattern class is the primary class in the java.util.regex
package, so we must import it.
All validators must implement the Validator interface, and since this class has
state that we want to maintain, we must also implement the StateHolder interface.
Like every other JSF user interface extension, Validators have identifiers. This
constant declares the standard identifier for this class. We’ll use this constant in
the corresponding JSP tag handler, and we’ll use its value in the application con-
figuration file.
The StateHolder interface defines a transient property, which should be false if
we want to save state.
If for some reason the value of the associated EditableValueHolder control can’t
be converted to a String, we can’t treat it as a regular expression. So, this counts
as a validation error, and we throw a ValidatorException with a new FacesMessage
instance. The message can be displayed back to the user by using an HtmlMessage
or HtmlMessages component. Note that if there was a converter associated with
this control, it would have been called before this validator.
If the EditableValueHolder control’s value property doesn’t match our validator’s
regular expression, we throw a new ValidatorException. The text of the Faces-
Message instance for this exception is based on the value of the errorMessage
property. If the property has been set, we create a new FacesMessage based on that
property; otherwise, we create one based on a default error message. These mes-
sages can be displayed back to the user by using an HtmlMessage or HtmlMessages
component. Note that if the value is valid, we do nothing.
The isValid method performs the real validation check. All it does is delegate to
the Pattern instance, which was created based on the validator’s expression
property. Note that this method’s signature doesn’t include any JSF classes.

 jSave and restore
state for all
properties

 b

 c

 d

 e

 f

 g

 h
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a validator 847

TIP It’s generally a good idea to put the core converter logic in a separate
method that doesn’t use any runtime JSF classes. (FacesMessage is okay,
because it’s a simple JavaBean with no runtime dependencies.) This
makes unit testing easier, because the tests aren’t based on the validator
method, and consequently don’t require a web container or mock objects
to create the JSF environmental objects. The sample code for this book
(available at www.manning.com/mann) includes JUnit test cases that take
advantage of this fact.

When the expression property is set, we create a new Pattern object from it for
use in the isValid method (h). Compiling regular expressions is an expensive
thing to do, so it’s worthwhile to do it up-front. A new Pattern instance will be
created only if the expression property is changed again.
In the StateHolder state management methods, we save and restore the state for
all of the properties, as well as the cached Pattern instance.
That’s all there is to it for RegularExpressionValidator. Now, let’s tell JSF about it.

20.2.2 Registering the validator

Registering this validator with JSF requires a <validator> element with child
<validator-id> and <validator-class> elements. Here’s a sample entry:

<validator>
 <description>
 Validates an input control based on a regular expression.
 </description>
 <validator-id>jia.RegularExpressionValidator</validator-id>
 <validator-class>
 org.jia.validators.RegularExpressionValidator
 </validator-class>
</validator>

This registers the class org.jia.validators.RegularExpressionValidator with the
validator identifier jia.RegularExpressionValidator and provides a simple descrip-
tion for use with tools (or for those perusing a configuration file). This entry can be
placed in any JSF configuration file.

 That’s it for JSF registration. Now, let’s look at integrating our new validator
with JSP.

20.2.3 Integrating with JSP

Just as with components, integrating validators with JSP requires developing a cus-
tom tag handler. However, the process is simpler because there are no renderers.

 i

 j
This means we don’t need to worry about renderer attributes, including HTML

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

848 CHAPTER 20
Validator and converter examples

pass-through attributes. After we’ve developed the tag handler, we’ll register it
with the tag library.

Writing the RegexpValidatorTag class
For RegularExpressionValidator, all we need is a single tag handler that supports
its expression and errorMessage properties (described in table 20.1). The han-
dler will be responsible for setting these properties on a new RegularExpression-
Validator instance based on its own properties (which are exposed as attributes
in JSP). Just as we did with component tag handlers, we’ll also support value-
binding expressions for these properties. The source for org.jia.validators.
taglib.RegexpValidatorTag is shown in listing 20.2.

package org.jia.validators.taglib;

import org.jia.util.Util;
import org.jia.validators.RegularExpressionValidator;

import javax.faces.application.Application;
import javax.faces.context.FacesContext;
import javax.faces.validator.Validator;
import javax.faces.webapp.ValidatorTag;

import javax.servlet.jsp.JspException;

public class RegexpValidatorTag
 extends ValidatorTag
{
 private String expression;
 private String errorMessage;

 public RegexpValidatorTag()
 {
 super();
 setValidatorId(
 RegularExpressionValidator.
 VALIDATOR_ID);
 }

 protected Validator createValidator()
 throws JspException
 {
 RegularExpressionValidator validator =
 (RegularExpressionValidator)
 super.createValidator();

Listing 20.2 RegexpValidatorTag.java: The tag handler for RegularExpressionValidator

Extend
ValidatorTag

 b

Set the validatorId
in constructor

 c

Override
createValidator
method

 d

Retrieve
validator

 e
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a validator 849

 FacesContext context = FacesContext.getCurrentInstance();
 Application app = context.getApplication();

 if (expression != null)
 {
 if (Util.isBindingExpression(expression))

 {
 validator.setExpression(
 (String)app.createValueBinding(
 expression).getValue(context));
 }
 else
 {
 validator.setExpression(expression);
 }
 }
 if (errorMessage != null)
 {
 if (Util.isBindingExpression(errorMessage))
 {
 validator.setErrorMessage(
 (String)app.createValueBinding(
 errorMessage).getValue(context));
 }
 else
 {
 validator.setErrorMessage(errorMessage);
 }
 }

 return validator;
 }

 public void release()
 {
 super.release();
 expression = null;
 errorMessage = null;
 }

 // Properties

 public String getExpression()
 {
 return expression;
 }

 public void setExpression(String expression)

 f Set validator
properties
based on tag
properties

Override
release
method

 g
 {
 this.expression = expression;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

850 CHAPTER 20
Validator and converter examples

 }

 public String getErrorMessage()
 {
 return errorMessage;
 }

 public void setErrorMessage(String errorMessage)
 {
 this.errorMessage = errorMessage;
 }
}

All validator tag handlers must extend the ValidatorTag class.
Instead of overriding a method like getComponentType (as is the case with sub-
classing UIComponentTag), you call the setValidatorId method in the tag handler’s
constructor. This associates the tag handler with a specific validator class. In this
case, we use the VALIDATOR_ID constant defined by RegularExpressionValidator.
When you subclass UIComponentTag, you override setProperties, which is where
all of the action takes place. With ValidatorTag subclasses, you override create-
Validator instead. This method is responsible for creating and configuring the
proper Validator instance.
ValidatorTag’s createValidator method is responsible for creating the initial
Validator instance based on the validatorId property. Before you begin config-
uring a new validator instance inside createValidator, you should retrieve it
from the superclass’s implementation of the method.
Here we set the expression and errorMessage properties on the Validator instance
based on the corresponding properties of the tag handler itself. We support
value-binding expressions by simply evaluating them directly and setting the
property based on the result. (Util.isValueBinding simply checks to make sure
the string starts with “#{” and ends with “}”.)

NOTE The Validator class doesn’t maintain a collection of ValueBinding in-
stances like UIComponentBase does. This is because unlike components,
whose value bindings may be executed at a later time, validator proper-
ties represent configuration parameters that are unlikely to change after
they’re initially set. Consequently, it’s okay to evaluate value-binding ex-
pressions for validators in the tag handler.

As is the case with any tag handler subclass, we override the release method and

 b
 c

 d

 e

 f

 g

reset any instance variables.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a validator 851

As you can see, implementing a validator tag handler is a simple process. Now,
let’s add it to the tag library.

Adding the tag to the tag library
The tag library entry for RegexpValidatorTag is pretty straightforward. It’s shown
in listing 20.3.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems,
 Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>
 <!-- Tag Library Description Elements -->
 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>JSF in Action Custom Tags</short-name>
 <uri>jsf-in-action-components</uri>
 <description>
 Sample custom components, renderers, validators, and
 converters from JSF in Action.
 </description>
 <!-- Tag declarations -->
...
 <tag>
 <name>validateRegexp</name>
 <tag-class>
 org.jia.validators.taglib.RegexpValidatorTag
 </tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>expression</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>errorMessage</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
...
</taglib>

The code in listing 20.3 registers a tag called <validateRegexp> for the class org.

Listing 20.3 Tag library entry for RegexpValidatorTag
jia.validators.taglib.RegexpValidatorTag. We’ve exposed the two properties,

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

852 CHAPTER 20
Validator and converter examples

expression and errorMessage, and expression is required (you can’t match
against an expression that isn’t set).

 Now that we’ve registered the tag, let’s use our new validator.

20.2.4 Using the validator

Using our new RegularExpressionValidator is simple. We just have to register it
with an input component:

<h:inputText id="SSNInput">
 <jia:validateRegexp expression="\\d{3}[-]\\d{2}[-]\\d{4}"/>
</h:inputText>

This registers a new RegularExpressionValidator with the HtmlInputText control,
configured to match against the regular expression for a U.S. social security num-
ber. (This is the same regular expression shown in figure 20.1.) Note that we have
escaped the backslashes, which is a requirement for Java regular expressions.
Because the errorMessage attribute wasn’t specified, the default error message “Val-
idation Error: This field is not formatted properly” will be displayed if the Html-
InputText component’s value doesn’t match the expression. The error message
can be displayed with the following tag:

<h:message for="SSNInput" styleClass="error"/>

Note that the for attribute matches the identifier of the UIInput control. We’ve
also added a CSS style to spice things up a bit.

 For cases when the standard message is a little too unfriendly, we can specify
the errorMessage attribute:

<h:inputText id="phoneInput" value="#{testForm.string}">
 <jia:validateRegexp
 expression="((\(\d{3}\)?)|(\d{3}-))?\d{3}-\d{4}"
 errorMessage=
 "Invalid phone number. Format is (###)###-####."/>
</h:inputText>

Here, we use a regular expression for matching a U.S.-style phone number. The first
three digits are optional, so “(555)555-5555” is valid, “555-555-555” is valid, and
“555-5555” is valid. However, the dash is required in between digits, so “555 5555”
is invalid. The error message is customized so that something a little more informa-
tive will be displayed if the user types in an incorrect value. Instead of using a Html-
Message component to display errors, you can also use a HtmlMessages component:

<h:messages title="You had validation errors." layout="table"

 styleClass="error"/>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a validator 853

Because the for attribute wasn’t specified, this would display all validation errors
for the page in a table format with a header and CSS class.

 RegexpValidatorTag contains extra code to deal with value-binding references.
So, let’s say you had a regular expression available in the session:

FacesContext context = FacesContext.getCurrentInstance();
context.getApplication().createValueBinding(

 "#{sessionScope.emailExpression}").setValue(context,
 "\\w+([-+.]\\w+)*@\\w+([-.]\\w+)*\\.\\w+([-.]\\w+)*");

This places String in the session under the key emailExpression. The String is
the regular expression for an email address of the usual format “name@domain.
extension”.

 Moreover, let’s say you had a resource bundle called CustomComponents-
Resources in your classpath with this line:

emailErrorMessage=Invalid e-mail address.

and that you added the following line to your JSP to import the bundle:

<f:loadBundle basename="CustomComponentResources" var="bundle"/>

Both can be referenced via the validator tag:

<h:inputText id="emailInput">
 <jia:validateRegexp expression="#{emailExpression}"
 errorMessage="#{bundle.emailErrorMessage}"/>
</h:inputText>

This will register a RegularExpressionValidator that uses the expression we stored
in the session, and the localized error message that was stored in the request by
the <f:loadBundle> tag. Anytime users input an invalid email address, they will be
shown a customized, localized, error message (assuming that the front-end devel-
oper uses a HtmlMessage or HtmlMessages component).

 That’s all there is to using our new validator class. Thanks to Java’s built-in
support for regular expressions, we’ve been able to easily develop an extremely
versatile validator that can validate almost any type of string. A more sophisti-
cated version of this component would provide default regular expressions that
work for typical use cases like the ones presented here.

 Fortunately, developing converters is as simple as developing validators. Let’s
turn our attention to that topic now.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

854 CHAPTER 20
Validator and converter examples

20.3 When custom converters are necessary

In chapter 6, we surveyed the different standard converters that ship with JSF. In
many cases, the standard converters will be sufficient; they handle all of the stan-
dard Java data types, and also provide sophisticated formatting functionality for
dates and numbers. The main goal is to allow front-end developers to associate
component data types without having to parse them or call special methods for
display. You should develop custom converters any time you want to make it easy
for a front-end developer to display data type, or accept input for that data type.

 Let’s suppose, for example, that you had written a class that represented an
algebraic equation, called Equation. A front-end developer would have a hard time
displaying your Equation object with a UIOutput component unless your toString
method displayed something that made sense. Even if you did implement toString,
that wouldn’t help translate a user’s input back into an Equation. Instead of devel-
oping application code to handle this chore, you could write a converter that
translated a user’s input string into an Equation. For conversion from an Equation
to a String, you could also add formatting options. Writing a converter would
allow you to easily use Equation objects with many types of JSF components in dif-
ferent applications, without having to rewrite the translation code each time.

20.4 Developing a converter

For our example, we’ll write a converter for the User object developed for Project-
Track. This isn’t quite as exciting as a converter for an Equation object, but it will
do for our purposes.

 Our converter will make it easy to display a User object from a JSF component.
It will also have some simple options for formatting—things like displaying the first
name (“John”, for example) by itself or the last name, a comma, and then the first
name (like “Mann, John”). This way a front-end developer doesn’t have to worry
about pulling individual properties out of the User object. Instead, the developer
can just use the UserConverter and specify a style of “lastName_firstName”.

 Because converters work in two ways, it’s also possible to create a new User
object based on user input. So an end user could type in “John Doe” and User-
Converter will automatically create a User object whose firstName property is
“John” and whose lastName property is “Doe”. Figure 20.4 shows what the con-
verter looks like in a browser.

 Developing a converter is similar to developing a validator. We start with the con-

verter class, UserConverter, which must be registered with JSF via a configuration file.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a converter 855

Because this converter maintains state, it must implement the StateHolder inter-

Figure 20.4 The UserConverter converts between a User and a String. This screenshot
shows three different styles: last name only (“Walton”), first name and last name (“John Mann”),
and last name and first name with the role displayed (“LaCalle, Ed (Business Analyst)”). The second
example shows a conversion error because the user entered a value in the wrong format. Note that
the value of the user object hasn’t changed, though, because JSF will not update an object with an
incorrect value.
face. It can be integrated with JSP through a custom tag handler, UserConverterTag,

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

856 CHAPTER 20
Validator and converter examples

which must be registered in a tag library’s tag library descriptor file. The necessary
classes and configuration files are shown in figure 20.5.

 Now, let’s examine the UserConverter class itself.

20.4.1 Writing the UserConverter class

The job of org.jia.converters.UserConverter is to display a User object as a
string to a user, and translate a string of user input into a User object. In practice,
this means that we either create a new String object based on properties of a User,
or parse a String and set properties on a newly created User object.

 In order to make things a little interesting, UserConverter has two properties:
style and showRole. style has several values that determine which combination
of first and last names will be converted. The showRole property indicates
whether or not the User’s role will be converted as well. These properties are
described in table 20.2.

Figure 20.5
Classes and files for
UserConverter. The
UserConverter class
implements both the
Converter and
StateHolder interfaces and
is integrated with JSP through
the UserConverter tag.

Table 20.2 UserConverter properties

Property Type Description Required?

style StyleType Specifies the format for converting the first name and last
names. Possible values are StyleType.FIRSTNAME,
StyleType.LASTNAME, StyleType.FIRSTNAME_LASTNAME,
and StyleType.LASTNAME_FIRSTNAME.

Yes

showRole boolean True if the role should be converted. No
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a converter 857

As the table shows, style is a StyleType object, which is a type-safe enumeration
that’s defined as a nested class. This way, when someone sets the style, it’s impos-
sible to set an incorrect value.

 All converters must implement the Converter interface, and UserConverter is
no different. It also implements the StateHolder interface so that it can properly
save the state of its properties. The source is shown in listing 20.4.

package org.jia.converters;

import org.jia.ptrack.domain.EnumeratedType;
import org.jia.ptrack.domain.EnumeratedType.EnumManager;
import org.jia.ptrack.domain.RoleType;
import org.jia.ptrack.domain.User;

import javax.faces.application.FacesMessage;
import javax.faces.component.StateHolder;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;

public class UserConverter implements
 Converter, StateHolder
{
 public final static String CONVERTER_ID =
 "jia.User";
 private boolean transientFlag;
 private boolean showRole;
 private StyleType style;

 public UserConverter()
 {
 this(StyleType.FIRSTNAME_LASTNAME, false);
 }

 public UserConverter(StyleType style, boolean showRole)
 {
 transientFlag = false;
 style = style;
 showRole = showRole;
 }

 // Converter methods

 public Object getAsObject(
 FacesContext context,
 UIComponent component,

Listing 20.4 UserConverter.java: A converter for ProjectTrack’s User object

Implement StateHolder
to save properties

 b

Declare
identifier

 c

Set transient
flag to false to
save state

 d

Implement to
return a User
from a String

 e
 String displayString)
 throws ConverterException

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

858 CHAPTER 20
Validator and converter examples

 {
 User user = new User();
 FacesMessage message =
 getStringAsUser(user, displayString);
 if (message != null)
 {
 throw new ConverterException(message);
 }
 return user;
 }

 public String getAsString(
 FacesContext context,
 UIComponent component,
 Object object)
 throws ConverterException
 {
 return getUserAsString((User)object);
 }

 // Protected methods

 protected FacesMessage getStringAsUser(
 User user,
 String displayString)
 {
 FacesMessage errorMessage = null;

 if (style == StyleType.FIRSTNAME)
 {
 errorMessage = getUserFromFirstName(user, displayString);
 }
 else
 if (style == StyleType.LASTNAME)
 {
 errorMessage = getUserFromLastName(user, displayString);
 }
 else
 if (style == StyleType.FIRSTNAME_LASTNAME)
 {
 errorMessage = getUserFromFN_LN(user, displayString);
 }
 else
 if (style == StyleType.LASTNAME_FIRSTNAME)
 {
 errorMessage = getUserFromLN_FN(user, displayString);
 }

 if (errorMessage == null && showRole == true)

If there is a
conversion error,
throw exception

 f

Implement to
return a String
from a User

 g

Perform actual
conversion from
String to User

 h
 {
 errorMessage = setUserRole(user, displayString);

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a converter 859

 }
 return errorMessage;
 }

 // Utility methods

 protected FacesMessage getUserFromFirstName(
 User user, String displayString)
 {
 String[] names = displayString.split("\\s", 2);
 if (showRole != true && names.length > 1)
 {
 return new FacesMessage(
 "Conversion error: string must be in format " +
 "'First name' (one word)",
 null);
 }
 else
 {
 user.setFirstName(displayString);
 }
 return null;
 }

 protected FacesMessage getUserFromLastName(
 User user, String displayString)
 {
 String[] names = displayString.split("\\s", 2);
 if (showRole != true && names.length > 1)
 {
 return new FacesMessage(
 "Conversion error: string must be in format " +
 "'Last name' (one word)",
 null);
 }
 else
 {
 user.setLastName(displayString);
 }
 return null;
 }

 protected FacesMessage getUserFromFN_LN(
 User user, String displayString)
 {
 String[] names = displayString.split("\\s", 3);
 if (names.length < 2 || (showRole == false && names.length > 2))
 {
 return new FacesMessage("Conversion error: string must be " +

Either create an error
message or set User
properties

 i
 "in format 'First name Last name'",
 null);

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

860 CHAPTER 20
Validator and converter examples

 }
 user.setFirstName(names[0]);
 user.setLastName(names[1]);
 return null;
 }

 protected FacesMessage getUserFromLN_FN(
 User user, String displayString)
 {
 String[] names = displayString.split(",\\s", 2);
 String firstNames[] = null;
 if (names.length > 1)
 {
 firstNames = names[1].split("\\s", 2);
 }
 if (names.length != 2 ||
 (showRole == false && firstNames.length > 1))
 {
 return new FacesMessage("Conversion error: string must be " +
 "in format 'Last name, First name'",
 null);
 }
 user.setLastName(names[0]);
 user.setFirstName(firstNames[0]);
 return null;
 }

 protected FacesMessage setUserRole(
 User user, String displayString)
 {
 int startIndex = displayString.indexOf(" (");
 int endIndex = displayString.lastIndexOf(')');
 if (startIndex == -1 || endIndex == -1)
 {
 return new FacesMessage("Conversion error: no role found; " +
 "string must end in format '(Role)'",
 null);
 }
 String roleString = displayString.substring(startIndex + 2,
 endIndex);
 try
 {
 user.setRole((RoleType)RoleType.getEnumManager().
 getInstance(roleString));
 }
 catch (IllegalArgumentException e)
 {
 return new FacesMessage("Conversion error: invalid role. " +
 "Try capitalizing each word.",

 null);
 }

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a converter 861

 return null;
 }
 protected String getUserAsString(User user)
 {
 StringBuffer buffer = new StringBuffer();
 if (style == StyleType.FIRSTNAME && user.getFirstName() != null)
 {
 buffer.append(user.getFirstName());
 }
 else
 if (style == StyleType.LASTNAME && user.getLastName() != null)
 {
 buffer.append(user.getLastName());
 }
 else
 if (style == StyleType.FIRSTNAME_LASTNAME)
 {
 if (user.getFirstName() != null)
 {
 buffer.append(user.getFirstName());
 buffer.append(" ");
 }
 if (user.getLastName() != null)
 {
 buffer.append(user.getLastName());
 }
 }
 else
 if (style == StyleType.LASTNAME_FIRSTNAME)
 {
 if (user.getLastName() != null)
 {
 buffer.append(user.getLastName());
 buffer.append(", ");
 }
 if (user.getFirstName() != null)
 {
 buffer.append(user.getFirstName());
 }
 }

 if (showRole == true && user.getRole() != null)
 {
 buffer.append(" (");
 buffer.append(user.getRole().getDescription());
 buffer.append(")");
 }
 return buffer.toString();
 }

Perform actual conversion
from User to String

 j
 // Properties

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

862 CHAPTER 20
Validator and converter examples

 public StyleType getStyle()
 {
 return style;
 }

 public void setStyle(StyleType style)
 {
 this.style = style;
 }

 public boolean isShowRole()
 {
 return showRole;
 }

 public void setShowRole(boolean showRole)
 {
 this.showRole = showRole;
 }

 // StateHolder

 public boolean isTransient()
 {
 return transientFlag;
 }

 public void setTransient(boolean transientFlag)
 {
 this.transientFlag = transientFlag;
 }

 public Object saveState(FacesContext context)
 {
 Object[] values = new Object[2];
 values[0] =
 new Integer(style.getValue());
 values[1] =
 (showRole == true ?
 Boolean.TRUE : Boolean.FALSE);
 return values;
 }

 public void restoreState(
 FacesContext context,
 Object state)
 {
 Object[] values = (Object[])state;
 int styleValue =

 1) Save and
restore
properties
 ((Integer)values[0]).intValue();
 style =

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a converter 863

 (StyleType)StyleType.getEnumManager().
 getInstance(styleValue);
 showRole = ((Boolean)values[1]).booleanValue();
 }

 // Nested top-level class

 public static class StyleType extends
 EnumeratedType
 {
 public final static StyleType FIRSTNAME =
 new StyleType(0, "firstname");
 public final static StyleType LASTNAME =
 new StyleType(10, "lastname");
 public final static StyleType FIRSTNAME_LASTNAME =
 new StyleType(20, "firstname_lastname");
 public final static StyleType LASTNAME_FIRSTNAME =
 new StyleType(30, "lastname_firstname");

 private static EnumManager enumManager;

 static
 {
 enumManager = new EnumManager();
 enumManager.addInstance(FIRSTNAME);
 enumManager.addInstance(LASTNAME);
 enumManager.addInstance(FIRSTNAME_LASTNAME);
 enumManager.addInstance(LASTNAME_FIRSTNAME);
 }

 public static EnumManager getEnumManager()
 {
 return enumManager;
 }

 private UserDisplayType(int value, String description)
 {
 super(value, description);
 }
 }
}

All converters must implement the Converter interface, but we also implement
the StateHolder interface so that JSF can maintain the value of the converter’s
properties between requests.
Like all of the other user interface extensions, converters have identifiers, which

Save and
restore
properties

 1)

Use for style
property

 1!

 b

 c

are configured in a JSF configuration file. Here, we declare the default identifier
for this converter.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

864 CHAPTER 20
Validator and converter examples

We set the transientFlag (used by the StateHolder interface’s transient prop-
erty) to false, to ensure that the state will be saved.
All converters must implement the getAsObject method. In this case, we trans-
late the user’s input into a new User instance.
If we receive a FacesMessage instance from the getAsUser method (described in
i), it means that there’s a conversion error. We can report this error simply by
throwing a ConversionException with this FacesMessage instance. These mes-
sages will automatically be associated with the proper control, and can be dis-
played back to the user by using a HtmlMessage or HtmlMessages component. If
no FacesMessage was returned, then the conversion went successfully, and we can
return a new User object.
All converters must implement getAsString. In this case, it converts a User object
into a String based on the properties of the converter. The actual work is per-
formed by the getUserAsString method (j). Note that we don’t throw any
exceptions because there’s no chance for error—we convert as little or as much
information as the User object has. There’s also no need to worry about the User
object being null, because JSF won’t even call the converter in that case.
The getStringAsUser method performs the core work of converting a String
into a User object. This method is implemented without any dependencies on
the JSF environment so that it can be easily unit-tested. For each possible style
value, it delegates to another utility method. It also delegates processing to
another method if the showRole property is true. All of these methods work sim-
ilarly (see i).

TIP If possible, you should put the core converter logic in separate methods
that don’t use any runtime JSF classes. (FacesMessage is okay, because
it’s a simple JavaBean with no runtime dependencies.) This simplifies
unit testing because there’s no requirement for a web container or mock
objects. The sample code for this book includes JUnit test cases that take
advantage of this fact.

This class has one utility method for each display style. All of these methods have
the same basic algorithm. For the given style type, split up the input string and
check to make sure it has the proper number of elements. If not, create a new
FacesMessage and return it. If so, update the properties of the newly created User
object based on the different pieces of the string.
The getUserAsString method is responsible for the real work of translating a User
object into a String. Like getStringAsUser, it’s not dependent on JSF runtime

 d

 e

 f

 g

 h

 i

 j
classes so that it can be easily unit-tested. Unlike getStringAsUser, it performs all
of the necessary work rather than delegating to other methods. All it does is build

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a converter 865

a new String based on the current style and showRole properties. The format of
the String will always match the format that getUserAsString expects.
We store and retrieve all properties with the saveState and restoreState meth-
ods of the StateHolder interface. Because style is a StyleType (1!) instance that
has a fixed number possible of static values, there’s no reason to serialize the whole
object. Instead, we just save its value, which is used to retrieve the associated
object during the restoration process.
The style property is represented using an instance of StyleType, which is a
nested top-level class. (It can be instantiated outside our UserConverter class,
using the notation UserConverter.StyleType.) StyleType is a type-safe enumera-
tion that represents all of the possible values for the style property.

That’s it for the UserConverter class. The next step is to register it with JSF.

20.4.2 Registering the converter

Registering a converter requires, at a minimum, a <converter> entry that has
<converter-id> and <converter-class>. This entry must be added to a JSF con-
figuration file that can be found by your application. Here’s the entry for User-
Converter:

<converter>
 <description>
 Converts a User object to and from a String.
 </description>
 <converter-id>jia.User</converter-id>
 <converter-class>
 org.jia.converters.UserConverter
 </converter-class>
</converter>

This registers the class org.jia.converters.UserConverter under the identifier
jia.User, and provides a simple description. Note that the identifier has the same
value as the constant UserConverter.CONVERTER_ID.

 UserConverter is registered by identifier, but recall that you can also register a
converter by the type of class it is converting. So, UserConverter would be regis-
tered like so:

<converter>
 <description>
 Converts a User object to and from a String.
 </description>
 <converter-for-class>
 org.jia.ptrack.domain.User

 1)

 1!
 </converter-for-class>
 <converter-class>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

866 CHAPTER 20
Validator and converter examples

 org.jia.converters.UserConverter
 </converter-class>
</converter>

When a converter is registered by type, JSF automatically uses it anytime it
encounters that type (as long as no other converter is registered for the compo-
nent). This means that the developer has no control over when the converter is
applied, and cannot set any properties.

 We’d like to give developers control over when and how UserConverter is
used—this is why it is registered by identifier as opposed to type. Remember,
however, that it’s possible for the same converter to be registered both ways.

 Now, let’s examine the JSP side of the coin.

20.4.3 JSP integration

Integrating a converter with JSP is not always necessary. Converters that are reg-
istered by type don’t require JSP tags because they’re not registered explicitly. Con-
verters that are registered by identifier can always be registered with the converter
attribute of many component tags:

<h:outputText value="#{myUser}" converter="jia.User"/>

This applies our new UserConverter to a HtmlOutputText component without cre-
ating any additional tags. This works fine for converters that have no properties,
as is often the case. (The converter we developed for ProjectTrack in chapter 12
was used this way.) You can also use the <f:converter> tag to achieve the same
effect. However, if your converter has properties, or you want to provide a more
concrete interface for front-end developers, you will need to develop a custom
JSP tag handler.

 This process is as simple as it is with validators: develop a tag handler class and
then register it with a tag library. Because there are no renderers, there’s no need to
handle extra attributes—only the properties of the corresponding converter must
be supported.

Writing the UserConverterTag class
org.jia.converters.taglib.UserConvertTag subclasses ConverterTag, which is
designed almost exactly like ValidatorTag. Our new tag handler will support
the same two properties as UserConverter (see table 20.2); all we need to do is
pass through the tag handler’s property values to those of the newly created
UserConverter instance. To make life easier for the tag’s user, we’ll support value-

binding expressions as well. The source is shown in listing 20.5.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a converter 867

package org.jia.converters.taglib;

import org.jia.converters.UserConverter;
import org.jia.util.Util;

import javax.faces.application.Application;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;
import javax.faces.webapp.ConverterTag;

public class UserConverterTag
 extends ConverterTag
{
 private String style;
 private String showRole;

 public UserConverterTag()
 {
 super();
 setConverterId(
 UserConverter.CONVERTER_ID);
 }

 // ConverterTag methods

 protected Converter createConverter()
 throws JspException
 {
 UserConverter converter =
 (UserConverter)super.createConverter();

 FacesContext context = FacesContext.getCurrentInstance();
 Application app = context.getApplication();

 if (style != null)
 {
 if (Util.isBindingExpression(style))
 {
 converter.setStyle(
 (UserConverter.StyleType)app.
 createValueBinding(style).
 getValue(context));
 }
 else
 {
 UserConverter.StyleType styleType =
 (UserConverter.StyleType)

Listing 20.5 UserConverterTag.java: JSP tag handler for UserConverter

Subclass
ConverterTag

 b

Set the
converterId in
constructor

 c

Override the
createConverter
method

 d

Get converter
instance from
superclass

 e

 f Set converter
properties based
on tag handler
properties
 UserConverter.StyleType.
 getEnumManager().getInstance(

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

868 CHAPTER 20
Validator and converter examples

 style.toLowerCase());
 converter.setStyle(styleType);
 }
 }

 if (showRole != null)
 {
 if (Util.isBindingExpression(
 showRole))
 {
 converter.setShowRole((Boolean)
 app.createValueBinding(showRole).
 getValue(context)).booleanValue());
 }
 else
 {
 converter.setShowRole(
 Boolean.valueOf(showRole).
 booleanValue());
 }
 }

 return converter;
 }

 public void release()
 {
 super.release();
 style = null;
 showRole = null;
 }

 // Properties

 public String getStyle()
 {
 return style;
 }

 public void setStyle(String style)
 {
 this.style = style;
 }

 public String getShowRole()
 {
 return showRole;
 }

 f Set converter
properties based
on tag handler
properties

Override the
release
method

 G
 public void setShowRole(String showRole)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a converter 869

 this.showRole = showRole;
 }
}

All converter tag handlers should subclass ConverterTag.
In the constructor, we call setConverterId to associate this tag with a particular
converter. Note that we use UserConverter’s constant, which matches the value
under which we registered the class in the JSF configuration file.
All of the work happens in the createConverter method, so we must override it.
Before we begin processing, we retrieve a Converter instance from the super-
class’s implementation of createConverter, which creates a new instance based
on the converterId property, which we set in C.
Here, we set the properties of our new UserConverter instance based on the
properties of the tag handler itself. Note that for the style property, the tag han-
dler does the work of retrieving a UserConverter.StyleType instance. In essence,
it’s translating between its own property (which is a String) and the converter’s
property (which is a UserConverter.StyleType instance).

 For both properties, we support value-binding expressions. (The Util.isBinding
method just checks to see if a string starts with “#{” and ends with “}”.) Like val-
idators, converters don’t keep a list of ValueBinding instances to be evaluated at a
later date, because their properties are generally onetime configuration values.
So, instead of adding a new ValueBinding instance, as we would for a UIComponent,
we simply evaluate the expression and set the property to equal its result.
Finally, we override the release method to reset all of our values. (As always, we
call the superclass’s version of the method first.)
Fortunately, implementing UserConverterTag was a fairly trivial exercise. Now,
let’s add it to the tag library.

Adding the tags to the tag library
The tag handler entry for UserConverterTag is pretty simple because there are only
two attributes. It’s shown in listing 20.6.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems,
 Inc.//DTD JSP Tag Library 1.2//EN"
 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">
<taglib>

 b
 C

 D
 E

 F

 G

Listing 20.6 Tag library entry for UserConverterTag
 <!-- Tag Library Description Elements -->

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

870 CHAPTER 20
Validator and converter examples

 <tlib-version>1.0</tlib-version>
 <jsp-version>1.2</jsp-version>
 <short-name>JSF in Action Custom Tags</short-name>
 <uri>jsf-in-action-components</uri>
 <description>
 Sample custom components, renderers, validatos, and
 converters from JSF in Action.
 </description>
 <!-- Tag declarations -->
...
 <tag>
 <name>userConverter</name>
 <tag-class>
 org.jia.converters.taglib.UserConverterTag
 </tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>style</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>
 <name>showRole</name>
 <required>false</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>
...
</taglib>

The code in listing 20.6 registers a tag called <userConverter> for the class org.
jia.converters.taglib.UserConverterTag with style and showRole attributes.
The style attribute is required.

 This completes the fairly mundane task of integrating UserConverter with JSP.
Let’s move on to actually using the converter.

20.4.4 Using the converter

UserConverter can be used to either display a User object with an output compo-
nent like HtmlOutputText, or to create a User object from an input component like
HtmlInputText. Let’s examine the former scenario first.

 Let’s say that we have a User object stored in the session under the key user. We
can use our converter to display this object with an HtmlOutputText component like so:

<h:outputText value="#{user}">

 <jia:userConverter style="lastName"/>
</h:outputText>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Developing a converter 871

This displays only the user’s last name. This happens to be equivalent to the
following tag:

<h:outputText value="#{user.lastName}"/>

Here, we reference the lastName property of the User object directly. So far, our
converter isn’t offering us a lot of value.

 Things get more interesting when you use UserConverter with a HtmlInput-
Text control:

<h:inputText id="firstNameLastNameInput" value="#{user}" size="30">
 <jia:userConverter style="firstName_LastName"/>
</h:inputText>

Now, if anyone enters a two-word name into this HtmlInputText, a new User object
will be created and stored in the session under the key user. So, if the input was
“Eduardo LaCalle”, the User object’s firstName property would be “Eduardo”
and the lastName property would be “LaCalle”. If the value isn’t two words,
UserConverter will create an error message, which can be displayed with a Html-
Message component:

<h:message for="firstNameLastNameInput" styleClass="error"/>

This tag displays all the messages for the HtmlInputText above, with a CSS style
of “error”.

 Displaying a User with this converter makes more sense if you use style and
set the showRole property to true:

<h:outputText value="#{user}">
 <jia:userConverter style="lastName_FirstName" showRole="true"/>
</h:outputText >

So, if Eduardo LaCalle’s role was Business Analyst, this would display “LaCalle,
Eduardo (Business Analyst)”. Displaying such output without the converter is a lit-
tle more involved. Moreover, using the converter results in consistent formatting—
it’s a canonical way to display the User.

 That’s all there is to using UserConverter. A more sophisticated version of this
class might support displaying the login property and check to make sure that
the words contained all letters. While this particular converter is more suited for
displaying an object in a specific, repeatable way, others can be quite useful for
input as well.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

872 CHAPTER 20
Validator and converter examples

20.5 Summary

In this chapter, we examined specific examples of building a custom validator and
converter. We began with a custom RegularExpressionValidator, which allows the
front-end developer to specify a regular expression that can match against user
input. Because regular expressions can describe a variety of possible string formats,
we were able to validate a phone number, a social security number, and an email
address all with the same validator. Developing the validator required a single val-
idator class that had to be registered with JSF, and a tag handler class that needed
to be registered with a JSP tag library.

 Our converter example, UserConverter, was responsible for converting a User
object to and from a String. The converter had properties for converting a User in
different ways, like using the last name, first name, and role. Using this converter
provides a specific way of displaying a User object that eliminates the need to
access specific User properties. Developing the converter required a single con-
verter class and a tag handler class. The converter class had to be registered with
JSF through a configuration file, and the tag handler had to be registered with a
tag library.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

A survey of JSF IDEs
and implementations
873

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

874 APPENDIX B
A survey of JSF IDEs and implementations

One of the key goals of JavaServer Faces is to support integrated development envi-
ronments (IDEs). JSF is a standard, so many developers will interact with it through
IDEs. Throughout this book, we have shown how these tools expose different parts
of the standard. In this appendix, we take a closer look at Oracle’s JDeveloper
[Oracle, JDeveloper], IBM’s WebSphere Studio [IBM, WSAD], and Sun’s Java Studio
Creator [Sun, Creator]. Using each of one of these tools, we’ll build ProjectTrack’s.
Login page step by step. This should give you a feel for each tool’s feature set, and
an understanding of how tools can differ from vanilla Faces development.

NOTE The code used in these examples is not exactly the same as the code used
earlier in this book. Specifically, we’ve left out the servlet context listen-
er, and some other design choices, such as a base backing bean class,
have been avoided for the sake of simplicity. Our goal here is to give you
a flavor of how the tools work with a familiar example, as opposed to
building the application in exactly the same manner as we have earlier in
this book.

In addition, the UI component names used within IDEs and in this ap-
pendix aren’t necessarily the same as the names we’ve been using through-
out this book, like HtmlPanelGrid. In chapter 4 (table 4.1), we list common
IDE names for all of the standard components.

B.1 Using JSF with Oracle JDeveloper

Contributed by Jonas Jacobi, Oracle Application Server Technologies

In the spring of 2004, Oracle introduced a new version of its Java development
tool: Oracle JDeveloper 10g [Oracle, JDeveloper]. JDeveloper provides an exten-
sive range of tools for developing, debugging, testing, tuning, deploying, and
versioning J2EE applications and web services. Furthermore, JDeveloper is a com-
plete SQL and PL/SQL development environment, enabling developers to work
on all tiers of their applications.

 With JDeveloper, you can build J2EE applications and web services either from
scratch or by using a J2EE framework such as the Oracle Application Develop-
ment Framework (ADF) [Oracle, ADF]. Whichever implementation you choose,
JDeveloper offers powerful tools needed to get the job done, including UML mod-
elers, visual editors, wizards, dialogs, and code editors.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with Oracle JDeveloper 875

 Oracle ADF is a flexible and extensible framework, based on industry standards.
It offers pluggable technologies for the model, view, and controller, allowing devel-
opers to make implementation choices at various layers of the architecture.

 You can already use JSF with the current production version of Oracle JDevel-
oper 10g,1 but Oracle will fully support JSF in the next major release of JDeveloper.
This version will include a sophisticated and rich set of user interface compo-
nents, called ADF Faces Components, in addition to fully supporting develop-
ment with the standard JSF components.

B.1.1 Oracle’s view on JSF

Although JavaServer Faces is a young technology, Oracle is putting a lot of effort
behind this new component-based view framework. Oracle believes that JSF as a
component-based technology will provide developers with a productive way of
building J2EE applications—close to what established tools like Oracle Forms or
Visual Basic can provide. Oracle also believes that with a component-based archi-
tecture, developers can provide end users with a richer user experience. For
example, Oracle’s ADF Faces Components support partial page rendering (PPR),
which makes applications appear more responsive.

 As a technology, JSF is not a new thing. Several component frameworks are
already available, such as Tapestry [ASF, Tapestry] and Oracle’s ADF UIX [Oracle,
ADF UIX]. As one of the leading members of the JSF expert group, Oracle has
devoted time and resources toward developing JSF, and consequently, JSF is archi-
tecturally similar to ADF UIX.

B.1.2 What are ADF Faces Components?

The ADF Faces Components are already available in the current production
release of Oracle JDeveloper 10g in the form of ADF UIX components. ADF UIX is
a user interface framework for building J2EE-compliant web applications that are
component based and XML metadata driven; it is one of the view technologies
available in Oracle ADF. ADF Faces Components are a new version of these com-
ponents based on JSF.

 As a technology, ADF UIX has been extensively used within Oracle for several
years to produce products like Oracle iLearning, Oracle Enterprise Manager, and

1 JDeveloper 10g has full support for working with JSP tag libraries visually, and it’s quite easy to inte-

grate a JSF implementation into your project. See Chris Schalk’s article [Schalk] for details on using
JDeveloper 10g with JSF.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

876 APPENDIX B
A survey of JSF IDEs and implementations

the Oracle’s eBusiness Suite. In figure B.1, you can see a set of the currently available
ADF UIX Components that are all being migrated over to the new JSF standard.

 Although the initial release of JavaServer Faces provides developers with a rich
architecture, there are limitations in the functionality and only a small number of
standard UI components are available. In order for developers to create an enter-
prise application, they may need additional libraries of reusable user interface
components and render kits. Oracle ADF Faces Components have a wide range of
benefits that can be broken into two main categories: design-time and runtime.

 Design-time benefits of Oracle ADF Components and JDeveloper include
the following:

■ A WYSIWYG development environment—With the next release of Oracle
JDeveloper 10g, developers will be able to build JSF applications with a
WYSIWYG approach within the Visual Editor and Page Flow Editor. For
third-party component providers, no extra layers or metadata need to be
applied to a custom component in order to have a nice rendering experi-
ence in the Visual Editor. Oracle JDeveloper’s Visual Editor will use the
same renderers as are used during runtime.

■ A rich set of UI components—ADF Faces provide the developer with a rich set

Figure B.1 A set of ADF Faces Components.
of UI components such as Table, hGrid, Color Picker, and Calendar, that
can be customized and reused.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with Oracle JDeveloper 877

■ A declarative development environment—Because ADF Faces is based on XML
metadata, the JDeveloper IDE provides a declarative environment where
the developer can, for example, use a Property Inspector to modify the UI
components instead of writing code.

■ ADF Face features—You can choose to use all, some, or no ADF Faces fea-
tures, depending on your application development needs.

■ Full support—Full support for the JSF EL.
■ Drag-and-drop—Drag-and-drop access to different business services, which

allows you to apply them without knowing the details of the underlying
technology.

■ Customization—ADF Faces applications are easily customized for different end-
user environments. Different layouts and styles can also be implemented.

■ A consistent look and feel—Using ADF Faces to create user interfaces ensures
a consistent look and feel, allowing you to focus more on user interface
interaction than look-and-feel compliance.

■ Data binding—Access to the ADF Data Binding framework allows developers
to drag and drop data-bound JSF components directly onto the page with-
out worrying about the underlying business services. The ADF Data Binding
framework is a standard, declarative way to bind data from a business ser-
vice, such as web services, Enterprise JavaBeans (EJB), Java, J2EE Connector
Architecture (JCA), and JDBC, to other entities, such as UI components. For
more information, see JSR 227, “A Standard Data Binding and Data Access
Facility for J2EE” [JSR 227].

ADF Faces’ runtime benefits include:

■ Standards—ADF Faces is based solely on JSF. No other Oracle products are
required at runtime to use ADF Faces, so you can use them with a standard
web container (like Tomcat) and any JSF implementation.

■ High interactivity—The ADF Faces Components provide a high level of
interactivity during runtime. ADF Faces Components’ support for PPR
allows the page to just render a piece of the page instead of the entire
page, which is the default in most cases. Perhaps, for example, you would
like scroll through records in a table; this would normally require the entire
page to be refreshed, but with PPR only the table will be refreshed.

■ Internationalization and accessibility support—ADF Faces UI components have
built-in support for internationalization and accessibility.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

878 APPENDIX B
A survey of JSF IDEs and implementations

While the first-generation ADF Faces Components are still in transition from their
former shell (ADF UIX), Oracle is already working on its next generation of Faces
components. These new components will extend the current web interface into a
richer interface that will have the same functionality as a traditional thick client
(such as a Swing application). Examples of such components are menus, trees,
and splitters. In figure B.2 you can see an early release of Menu and Tree compo-
nents. The difference between these components and a menu implemented in
JSP is that these components will behave like a desktop component, with live
updates in the browser.

B.1.3 Exploring JDeveloper

Before we start building ProjectTrack’s Login page, let’s explore JDeveloper’s
workspace. If you look at figure B.3, you can see that there are five windows, each
with specific functionality.

 In the far upper left-hand corner, you can see the Application Navigator,
which contains a tree view of work area and files. Underneath it is the Structure
window, which displays the structure of the selected object, which may be a JSP
page or an EJB. The center of the screen is the actual content of the page or nav-
igation rule you are currently editing, with tabs for the design and source views.

 In the upper right-hand corner, you can see the Component Palette, which
contains UI components and tags that you can drag and drop onto your page
or navigation rule. Underneath the palette is the Property Inspector, which dis-
plays any relevant information available for the current selected object (such as a
UI component).

Figure B.2 Next-generation ADF Faces Menu and Tree components.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with Oracle JDeveloper 879

B.1.4 Building ProjectTrack’s Login page

In this section, we will look at how you would build the ProjectTrack Login page
using Oracle’s JDeveloper. The release used in this appendix is an early build of
the next generation of JDeveloper, so some of the features covered in this appen-
dix may change before the actual production release.

Creating a new project
Because we already have a project containing all the logic we need, it makes sense to
reuse this for our Login page. To import a WAR file, we need to first create a work-
space. This can be done by right-clicking on the Application node in the Applica-
tion Navigator. You can create a new workspace through the Create Application
Workspace dialog box, shown in figure B.4.

 In this dialog box you can enter the name of the application and select the
application template. In this sample we will be importing a project created in

Figure B.3 Next generation of Oracle JDeveloper with a set of ADF Faces Components.
another tool, so just keep the default selection and click OK.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

880 APPENDIX B
A survey of JSF IDEs and implementations

Right-click on the newly created workspace and select New Project. You should
now see the New Gallery dialog box, shown in figure B.5. Select Project from WAR
file and click OK.

 Step through the wizard that launches and enter a proper name for the
project, and then select the WAR file to import to the workspace. Your workspace
should look something like figure B.6.

Creating a new page
The page that we are going to build using JDeveloper is already available in the
project, so let’s see what the page should look like when we have finished. By dou-
ble-clicking on the page in the Application Navigator, you can open the file in the
Visual Editor, as shown in figure B.7.

 As you can see, the page renders, and by clicking on the different components
in either the Structure window or the Visual Editor, you can see its properties in
the Property Inspector. Now, let’s build this page in JDeveloper.

 First we need to create a new JSF page. Do that by right-clicking on the
project node and selecting New, which displays the New Gallery dialog box shown
in figure B.8.

 In the dialog box, expand the WebTier node and select JavaServer Pages (JSP).
In the right pane select the Faces JSP node to create a Faces page and click OK.

Figure B.4
The Create Application
Workspace dialog box.
JDeveloper displays the Create Faces JSP dialog box, shown in figure B.9. Enter a
name for the page and select the JSP type that you would like use.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with Oracle JDeveloper 881

Selecting a Type of Document in this dialog box will create a proper XML-based
document, which allows better support for XML tools. However, for this sample
we will be using the regular Page type, so click Page. Now click Finish. You should
now see an empty page in the IDE (figure B.10).

Figure B.5 Creating a new workspace with the New Gallery dialog box.

Figure B.6
Application Navigator with
imported ProjectTrack files.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

882 APPENDIX B
A survey of JSF IDEs and implementations

This is an empty page containing only the bare minimum that a developer needs
in order to start building a JSF application. The red dotted border indicates the
area covered by the HtmlForm component by default. In this area we will add the
username and password input fields, as well as the Submit button.

Designing the page
By using the Component Palette (figure B.11), you can drag and drop compo-
nents onto the page as needed. For this page we are going to use the following
JSF HTML components: PanelGrid, InputText, InputSecret, OutputLabel, Image,
Message, and CommandButton.

 In order for us to lay out our components as shown in figure B.7, we can use a
PanelGrid component. Drag a PanelGrid component onto the page from the
Component Palette. When you have the PanelGrid in your page, you can set its
properties through the Property Inspector. Set the Cellpadding property to 3,

Figure B.7 JDeveloper with the original Login page displayed.
Cellspacing to 3, and Columns to 2, as shown in figure B.12.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with Oracle JDeveloper 883

Figure B.8 Creating a new page with the New Gallery dialog box.

Figure B.9 The Create Faces JSP dialog box.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

884 APPENDIX B
A survey of JSF IDEs and implementations

Next, we must place an image into the left column of the PanelGrid. You can drag
the image from your desktop, from the Application Navigator, or directly from a
browser. The image you want is logo.gif (which has already been imported); fig-
ure B.13 shows it selected in the Application Navigator.

 Drag the image to the page and release the mouse button. This will create a
GraphicImage component with a reference to the image you selected. Your page
should look something like figure B.14.

 Before you continue, you should change the size of the image to be less prom-
inent. You can do so either by using the Property Inspector or by using the drag
points on the image to visually change the size of the image.

 In JDeveloper, you can use the Structure window to customize your page, as
well as view its structure. To illustrate this, right-click on the PanelGrid compo-
nent in the Structure window. Select Insert Inside PanelGrid and then choose JSF
HTML, as shown in figure B.15.

Figure B.10 New empty Faces page.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with Oracle JDeveloper 885

Set the following properties on the new PanelGrid: Cellpadding to 5, Cellspacing
to 3, and Columns to 2, as shown in figure B.16.

 Continue by adding the InputText and InputSecret components to the newly
added PanelGrid. Set the following properties on the InputText component: Max-
Length to 30, Required to true, Size to 20, and Id to “userNameInput”. Figure B.17

Figure B.12 The Property
Inspector for PanelGrid.

Figure B.13 Selecting the
logo.gif image in the
Application Navigator.

Figure B.11 The
Component Palette.
Figure B.14 Login page with image. The PanelGrid is represented by the outer
dotted lines.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

886 APPENDIX B
A survey of JSF IDEs and implementations

shows these properties in the Property Inspector. For the InputSecret compo-
nent, set the following properties: MaxLength to 20, Required to true, Size to 20,
and Id to “passwordInput”.

 We also need to add some labels to our text fields. From the Component Pal-
ette, drag and drop two OutputLabel components to the page. Set the for property
on the two components to “userNameInput” and “passwordInput” to associate
them with their respective text fields. In each of these OutputLabel components
we need to add an OutputText component in order to render a string that will be

Figure B.15 Inserting another PanelGrid in the
Structure window. Figure B.16 Property

Inspector for the inner
PanelGrid.

Figure B.17

Property Inspector for the
InputText component.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with Oracle JDeveloper 887

our text field’s prompt. Drag and drop an OutputText component to each Output-
Label component and set the value property to “Enter your user name:” and
“Password:”, respectively. The location of the newly added OutputLabel compo-
nents are not what we wanted, so in order to adjust this we can drag and drop
them to the right location either in the Visual Editor or in the Structure window
(see figure B.18).

 For the user to be able to submit his or her username and password, we need a
CommandButton. Drag and drop a CommandButton component from the Component
Palette onto the page below the Password text field. If you want the CommandButton
to align with the text fields you can add an empty PanelGroup component before
it. Your page should now look something like figure B.19.

 For the button we also want to add an image through the Property Inspector.
Make sure you have selected the button, and in the Property Inspector select the
image property and enter the needed URI: “/images/submit.gif ”. Your Login page
should now look like figure B.20.

 Next, we will use the header facet of the PanelGrid component to add the title
“ProjectTrack” to our page.

 Drag and drop a facet from the JSF Core panel in the Component Palette to
the nested PanelGrid component and set the name to “header”. Inside this facet,
add an OutputText component. You can edit text for components like OutputText

Figure B.18
Structure window for the OutputLabel
and OutputText components.
directly in the Visual Editor by placing the cursor where you want to modify or

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

888 APPENDIX B
A survey of JSF IDEs and implementations

add text. Use this feature to change the text of the OutputText component in the
header facet to “ProjectTrack”. The result should look like figure B.21.

Adding validation
Next, we must add validation to make sure that the password and username are in
the right format. For this we will use the standard JSF validators. First, let’s add a
validator to each of the text fields to ensure the length of the string entered is
within our requirements.

 In the JDeveloper IDE, change the panel grouping for the Component Palette
to display the JSF Core components. In this section, select the ValidateLength val-
idator and drag it on to the InputText component either in the Visual Editor or in
the Structure window. Validators are nonvisual, so they can only be viewed in the
Structure window, underneath the InputText component, as shown in figure B.22.

 Set the maximum and minimum properties on the validator to 30 and 5, respec-

Figure B.19 The Login page, partially designed.
tively. Add another ValidateLength validator to the InputSecret component in
the same way and set the maximum and minimum properties to 20 and 5, respectively.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with Oracle JDeveloper 889

Validation errors can be displayed by adding Message components after the
InputText and InputSecret components.

Figure B.20 Login page with an added image for the button.

Figure B.21 The completely designed Login page.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

890 APPENDIX B
A survey of JSF IDEs and implementations

Editing the configuration file
JDeveloper has several options for editing your faces-config.xml file. You can
launch the Faces Config Editor by double-clicking on the file in the Application
Navigator. In this editor you can declaratively edit the faces-config.xml file, or
edit the XML source directly by clicking on the Source tab at the bottom of the
window. You can also edit the file through the Structure window or the Property
Inspector, and even add elements to it through the Component Palette.

 To finish this page, we need to wire it up to our authentication implementa-
tion and configure the page’s navigation rules. Checking authorization for a user
in this sample application is done with the AuthenticationBean. To get access to
this bean in our application, we need to reference it from a managed bean in the
faces-config.xml file. In the Visual Editor we will then select our components and
point to the bean using the JSF EL.

 Because we imported ProjectTrack’s existing faces-config.xml file, the man-
aged beans have already been configured. JDeveloper’s Faces Config Editor dis-
plays them visually, as shown in figure B.23.

Binding components to backing beans
Because AuthenticationBean has already been configured, let’s continue by binding
this bean to our CommandButton, InputText, and InputSecret components. Return

Figure B.22
The Structure window displaying the
ValidateLength validator.
to the login_jdev.jsp page and select the Submit button. In the Property Inspec-
tor, select the Action property and click the Data binding button at the top of the

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with Oracle JDeveloper 891

Property Inspector. This will enable the property to use the EL Binding Editor.
Optionally you could type the expression directly in the Property Inspector with-
out clicking this button. Your Property Inspector should look like figure B.24.

Figure B.23 The Faces Config Editor, Structure window, Property Inspector, and Component Palette.

Figure B.24

Data-enabled properties.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

892 APPENDIX B
A survey of JSF IDEs and implementations

Click on the “…” button next to the Action property in the Property Inspector to
launch the EL Binding Editor. From here you can select the managed bean to
bind to your action. In the EL Binding Editor, expand the Faces Managed Beans
node and select the login method underneath the authenticationBean node.
Click the Insert button to insert the expression to bind the CommandButton to the
login method, as shown in figure B.25. Click OK to close the editor.

 If you don’t have an existing backing bean to bind to your page, JDeveloper
can automatically create a backing bean for you. For example, double-clicking on
a CommandButton generates a new backing bean and creates an action method for
that button. When the backing bean is generated, the tool will also create compo-
nent bindings for all UI components available in the page. When new components
are added to the page, new component bindings will automatically be added to
the backing bean.

 Instead of using the EL Binding Editor, you can use the Property Inspector to
enter the expression directly. To illustrate this, select the InputText component on
the page and change its value property to “#{authenticationBean.loginName}”
in the Property Inspector. Next, do the same for InputSecret, but set its value prop-
erty to “#{authenticationBean.password}”.

Adding navigation
Although a full-fledged editor for navigation rules (called Page Flows in JDeveloper)
is planned for the production release of Oracle’s next generation of JDeveloper, it
is not supported in the early build used in this book. It is simple, however, to edit

Figure B.25
EL Binding Editor.
navigation rules inside the Faces Config Editor by selecting the Navigation Rules

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with Oracle JDeveloper 893

node in the left pane. First we need to add the From View ID, which in this case is
the login_jdev.jsp file. Click the New button at the right side of Navigation Rules
pane in the editor and enter the name of the file we are navigating from—/login_
jdev.jsp, as shown in figure B.26.

 After we have added the login_jdev.jsp file to our navigation rules, we must add
two navigation cases: one for a failure to log in and one for a successful login. Click
the New button to the right of the Navigation Cases pane and set the first naviga-
tion case as follows: set the To View ID property to “/protected/inbox.jsp” and the
From Outcome property to “success_readwrite”. The second navigation case should
have the To View ID property set to “/login_jdev.jsp” and the From Outcome prop-
erty set to “failure”, as shown in figure B.27.

Figure B.26 Faces Config Editor—navigation rules.

Figure B.27 Faces Config Editor—navigation cases.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

894 APPENDIX B
A survey of JSF IDEs and implementations

Testing
Oracle JDeveloper provides both local and remote debugging, so developers can
examine code as it is executed on remote J2EE containers. For J2EE applications,
developers can use the built-in J2EE container that comes with Oracle JDeveloper
to test their JSP, Servlets, and EJBs without having to install a stand-alone appli-
cation server. You can also deploy directly from the IDE into a J2EE container of
your choice, such as Oracle Application Server, BEA’s WebLogic, JBoss, and Tomcat.

 We have now finished our ProjectTrack’s Login page. You can test it by right-
clicking on the page in the Application Navigator and selecting Run (as shown in
figure B.28), or by clicking the Run button on the toolbar.

 The first time you run the page, the embedded J2EE container will start up,
and subsequent runs will only deploy the project and launch a browser. After you
run the page, it should like figure B.29.

B.1.5 Wrapping up

Oracle’s JDeveloper will supply developers with an IDE supporting JSF visually
and declaratively. Developers will also have access to the infrastructure—ADF
Faces and ADF Data Binding—needed to successfully build rich web applications
as well as nearly a hundred ADF Faces Components. Third-party component

Figure B.28
Running the page.
providers will also enjoy the rendering facilities built into their visual editor
without worrying about having to write proprietary solutions for quality rendering

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 895

support in the IDE. As one of the active members of the JavaServer Faces Expert
Group, Oracle has committed itself to evolve and support the standard. This
early preview of Oracle JDeveloper is evidence of the company’s commitment.

B.2 Using JSF with WebSphere Studio

Contributed by Roland Barcia, IBM Software Group

The IBM WebSphere Studio [IBM, WSAD] fulfills the vision of JSF by providing full
RAD capabilities for developing enterprise-class web applications. Using drag-
and-drop technology, developers can quickly assemble their web pages and link
visual controls using various data components, such as Service Data Objects (SDO),2

Enterprise JavaBeans, or web services. In addition, you can use the Portal Toolkit
to develop JSF-enabled portlets that run inside WebSphere Portal Server.

 Version 5.1.1 of WebSphere Studio provided a technical preview based on an
early JSF draft specification. Version 5.1.2 is the official production-ready release
with full support for JSF 1.0. It lets you develop standard J2EE applications as well
as Java Specification Request (JSR) 168 portlets using JSF.

 The following sections provide an overview of WebSphere Studio’s JSF capabil-
ities, and an example using ProjectTrack. For a more complete tutorial, see Roland

Figure B.29 Running the Login page.

2 SDO is a specification developed by IBM and BEA that provides a simple API to access heterogeneous

data sources (web services, relational databases, XML files, EJBs, and so on). It has been submitted as
JSR 235.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

896 APPENDIX B
A survey of JSF IDEs and implementations

Barcia’s Developing JSF Applications Using WebSphere Studio V5.1.1 series [Bar-
cia Series 2004].

B.2.1 Exploring WebSphere Studio

WebSphere Studio is based on the open source Eclipse project, so it allows devel-
opers to write plug-ins to extend the IDE and make use of the many plug-ins cur-
rently on the market. Eclipse works on the notion of perspectives and views. JSF
developers will work in the web perspective, which provides all the views needed
to assemble JSF pages. Figure B.30 shows the overall workbench.

 The web perspective provides access to the standard Project Navigator view
and a Visual Design editor. It also has a few views specifically for web development:

■ Page Data—The Page Data view enables you to define JSP and/or JavaScript
variables on the page. You can then use the Attributes view to bind a visual
component to that data. Data can be as simple as a String or as complex as
a web service.
Figure B.30 WebSphere Studio web perspective.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 897

■ Palette—The Palette view contains various palettes with many components
that you can drag on a page, ranging from standard JSF components to
WebSphere data components.

■ Quick Edit—The Quick Edit view lets you write code snippets that respond
to various server-side JSF events or client-side events (with JavaScript).

■ Attributes—Every component has attributes (also called properties) that you
must configure. The Attributes view enables you to configure the current
highlighted component.

In addition to the views, these features are available to JSF developers:

■ Special palettes
❏ Faces palette—Contains the standard JSF components mandated by the

specification. In addition, you will find some IBM components that
extend the standard components.

❏ Faces Client components—These are special components with embedded
JavaScript that aid in caching data and enhance performance.

❏ Data components—Allow developers to drag special components that are
automatically bound to data. These components include JavaBeans,
SDOs, and web services.

❏ Struts palette—For Struts applications, there is a palette of standard
Struts constructs, such as the HTML tags that you can drag on a page.

❏ Standard palettes (JSP, HTML)—You can also drag standard JSP or HTML
constructs onto a page.

❏ Web site navigation—Allows you to drag navigation components and build
site maps for a page.

❏ Page template—Allows developers to build static page templates.
❏ Portlet palette—Contains special components for portlet developers who

wish to deploy to WebSphere Portal (part of the WebSphere Portal Toolkit).

■ Wizards
❏ Create Projects—This wizard lets you create many different project types,

such as web services, EJB projects, and database projects. JSF developers
will create dynamic web pages most of the time.

❏ Create Pages—Allows you to quickly create pages and apply templates
and models.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

898 APPENDIX B
A survey of JSF IDEs and implementations

B.2.2 Building ProjectTrack’s Login page

To demonstrate some of the capabilities of WebSphere Studio, we will examine
the steps necessary to build ProjectTrack’s Login page.

Creating a new project
The first step in JSF development is setting up the right type of project. In Web-
Sphere Studio, you can create what is called a dynamic web project, which maps to a
J2EE WAR file. A wizard that steps you through the project creation process is
accessible from the main menu (choose File, then New) or via certain context
menus, depending on the view you are in. The New Dynamic Web Project wizard
is shown in figure B.31.

Figure B.31 The New Dynamic Web Project wizard.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 899

After creating the web project, import the ProjectTrack domain classes into the Java
Resources folder in the Project Navigator. Classes placed here are automatically
compiled into the classes directory of the WAR file, as shown in figure B.32.

 Similarly, you import web artifacts such as images into the WebContent folder,
as shown in figure B.33.

Creating a new page
Once your project is set up with the necessary artifacts, you can create a Faces JSP
page just by right-clicking the desired folder and selecting New, then Faces JSP
File, as shown in figure B.34.

Figure B.32 Importing Java resources. Figure B.33 Importing web artifacts.

Figure B.34
Creating a JSF page.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

900 APPENDIX B
A survey of JSF IDEs and implementations

Designing the page
Once the JSF page is created, open it using the WebSphere Studio web page edi-
tor. The editor contains various tabs. The Design tab serves as the canvas for JSF
components that you drag and drop from the Palette view. As you’ll recall, many
of the ProjectTrack pages made use of nested panels, and WebSphere Studio has
strong support for panels.

 The first step is to drag and drop the panel layout desired, as shown in fig-
ure B.35. You can drag a panel inside another panel to get the effect you want.

 As you drag each panel, a dialog box appears in which you specify the type of
panel you want (see figure B.36).

Figure B.35 Dragging a panel into the design page.
Figure B.36
Selecting the panel type.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 901

After you finish setting up your panels, you can drag the desired component into
the panel. In figure B.37, we’ve dragged the Image component into the outer panel.

 Once you have placed the component on the page, you can modify its
attributes for the page. Select the component and use the Attributes view to spec-
ify the attributes. In figure B.38, we’ve assigned the actual image file to the JSF
Image component.

 Figure B.39 shows the Image component after we’ve assigned the correct
attribute. The set of attributes displayed in the Attributes view changes depend-
ing on the currently selected UI component.

 Let’s continue building the page by dragging the desired components and
modifying their attributes. Figure B.40 shows an overview of the components
we’re using for the Login page.

Adding validation
You can also use the Attributes view to add validation to the component. Simply
select the Validation tab of the Attributes view, as shown in figure B.41.

 You can add standard validation to each component and even generate an
HtmlMessage component to display error messages. Figure B.42 shows a closer
view of the Validation tab. As you can see, you can add behavior based on the val-
idation results by selecting the Add Display Error checkbox.

 This tab resembles a wizard for configuring the most common set of validation
options. It generates the standard validation tags nested in the component, like so:

<f:validateLength minimum="6" maximum="20"></f:validateLength>

Figure B.37 Dragging an image into a panel.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

902 APPENDIX B
A survey of JSF IDEs and implementations

Binding components to backing beans
UI components properties can be bound to backing beans through the Attributes
view. The first step is to define some page data, which you can do easily by using
the Page Data view. You just select the desired JSP scope and define variables.
These variables can be simple types, such as String, or more complex types,

Figure B.38 Associating the Image component with logo.gif
such as JavaBeans or web service proxies. For ProjectTrack, you must define two

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 903

variables: userName and password. You can do this by right-clicking on the request-
Scope node and selecting Add Request Scope Variable, as shown figure B.43.

 This will bring up a dialog box asking you to define its name and type. (See
figure B.44.)

 Once both variables have been added, the Page Data view displays the data
available to the page, as shown in figure B.45.

 Once you have defined the data on the page, you can bind dynamic controls to
the variables. From the Attributes view, go to the Basics tab and select the search
box next to the Value text box. This will bring up a dialog box containing the
available page data, as shown in figure B.46.

 In addition to server-side variables, controls can be bound to client-side Java-
Script elements.

 By exposing data on the page, you can access it with the standard JSF expres-
sion language. In addition, you can access the data in action listeners using spe-
cial HashMap helpers as shown here:

String userName = (String)requestScope.get("userName");
String password = (String)requestScope.get("password");

Because the login page accesses the IUserCoordinator, which is stored in the
application scope, you can add this class to the application scope through the
Page Data view, as shown in figure B.47.

Figure B.39
The Image component
with the ProjectTrack
graphic.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

904 APPENDIX B
A survey of JSF IDEs and implementations

This will bring up a dialog box similar to the one shown in figure B.48. You can
use the help box (click the ellipsis button next to the Type text box) to find the
appropriate class.

 Once the userCoordinator has been added, it appears in the Page Data view,
as shown in figure B.49.

Adding action listeners
In WebSphere Studio, you can handle UI component events with the Quick Edit
view. This view allows you to add snippets of Java code for server events or snip-
pets of JavaScript for client events. The Quick Edit view also shows all possible

Figure B.40 The various components used in the Login page.
events (server or client) for a component. For ProjectTrack, we are interested in

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 905

server events. By clicking the Command button, you can access the Quick Edit
view and select the Command event. Then you can write the code for the action
method that handles the event (called a Java snippet), as shown in figure B.50.

 We added the appropriate code into the Quick Edit view, as shown in figure B.51.
 The code in listing B.1 is the full Java snippet from figure B.51. This is the

same as the login method shown in listing 13.1 from chapter 13, modified to use
instance variables generated by WebSphere Studio.

Figure B.41 Adding component validation.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

906 APPENDIX B
A survey of JSF IDEs and implementations

Figure B.42 Adding validation with the Attributes view.

Figure B.43 Defining page data.

Figure B.44 Adding a request-scoped variable.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 907

 // Type Java code to handle command event here
// Note, this code must return an object of type String (or null)
String userName =
 (String)requestScope.get("userName");
String password =
 (String)requestScope.get("password");
IUserCoordinator coordinator = (IUserCoordinator)
 applicationScope.get(Constants.USER_COORDINATOR_KEY);
User newUser;
try
{
 newUser = coordinator.getUser(userName, password);
}
catch (ObjectNotFoundException e) {
 return Constants.FAILURE_OUTCOME;
} catch (DataStoreException e) {
 return Constants.ERROR_OUTCOME;
}
Visit visit = new Visit();
visit.setUser(newUser);
 FacesContext fContext = FacesContext.getCurrentInstance();
fContext.getApplication().createValueBinding(
 "#{" + Constants.VISIT_KEY_SCOPE + Constants.VISIT_KEY +
 "}").setValue(facesContext, visit);
if (newUser.getRole().equals(RoleType.UPPER_MANAGER))
{
 return Constants.SUCCESS_READONLY_OUTCOME;
}
return Constants.SUCCESS_READWRITE_OUTCOME;

Listing B.1 Java code for the login action method under WebSphere Studio

Figure B.45
The Page Data view displaying
request-scoped variables.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

908 APPENDIX B
A survey of JSF IDEs and implementations

Figure B.46 Binding controls to page data.

Figure B.47
Adding an application-scoped
variable.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 909

In case you are wondering, WebSphere Studio creates one backing bean for each
page, called page code. The code snippets are added as event listener methods in
the page code. Page code classes subclass a WebSphere Studio-specific class that
initializes the data from the component tree and handles many repetitious JSF
programming tasks, much like ProjectTrack’s BaseBean class.

 Instead of using backing bean properties, we use the WebSphere Studio-
generated instance variables (marked in bold in listing B.1) in the page code to
access the userName and password variables. Also, if you’re wondering why we’re
retrieving these values from the request scope instead of through properties of the
backing bean, it’s because we added these variables as page data instead of add-
ing properties to the bean itself.

 Figure B.52 shows the page code for the Login page and its superclass,
PageCodeBase.

Figure B.48 Adding the IUserCoordinator to application scope.

Figure B.49 Page Data view with IUserCoordinator.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

910 APPENDIX B
A survey of JSF IDEs and implementations
Figure B.50 Selecting a server event.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 911
Figure B.51 Writing an event listener.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

912 APPENDIX B
A survey of JSF IDEs and implementations

Page code classes are also added to the faces-config.xml as managed beans. The
managed bean declaration for the Login page is shown here:

<managed-bean>
 <managed-bean-name>loginBean</managed-bean-name>
 <managed-bean-class>pagecode.Login</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

Adding navigation
You can use the Attributes view to quickly add navigation to your JSF application.
Select the UI component that triggers the server event (in our case the Submit
button) and go to the Attributes view. From there you can select the Navigation
tab and quickly add a new rule, as shown in figure B.53. This will bring up a dia-
log box that allows you to create a standard JSF navigation rule (see figure B.54).

 The Attributes view will automatically add the navigation rule to the faces-con-
fig.xml file. Listing B.2 contains the navigation rule generated by the dialog box
in figure B.54.

<navigation-rule>
 <from-view-id>/login.jsp</from-view-id>
 <navigation-case>
 <from-action>#{pc_Login.doButton1Action}</from-action>
 <from-outcome>success_readonly</from-outcome>
 <to-view-id>/general/show_all.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

Listing B.2 The navigation rule generated by the dialog box in figure B.53

Figure B.52
WebSphere Studio–generated backing
beans (called page code) selected in
the Project Navigator view.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 913

NOTE The dialog box in figure B.54 refers to a logical outcome as an alias. IDEs
will sometimes use different terminology for standard JSF concepts.

Once a new navigation rule has been added, it is listed in the Attributes view, as
shown in figure B.55.

Testing
WebSphere Studio provides the ability to test JSF pages at various levels. You can
use the Preview mode to view the page layout, as shown in figure B.56.

 In addition, you can deploy the application to application servers such as Tomcat
or WebSphere Application Server. You can generate a WebSphere test environment

Figure B.53 Adding a navigation rule.
by right-clicking the page and selecting Run On Server, as shown in figure B.57.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

914 APPENDIX B
A survey of JSF IDEs and implementations

Figure B.54
Creating a navigation rule.
This dialog box generates the
output shown in listing B.2.

Figure B.55
All navigation rules for
the Submit button.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 915

If this is the first time you’ve attempted to run on a server, WebSphere Studio will
allow you to select the target server. In this example we chose WebSphere version
5.1, as shown in figure B.58.

 For WebSphere Application Server version 5.1, you can choose to generate a
local WebSphere Application Server configuration or attach to a running server,
as shown in figure B.59.

 Once configured, WebSphere Studio will bring up a browser accessing your
application, which you can test as you see fit. The browser is shown in figure B.60.

Figure B.56 Previewing the page.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

916 APPENDIX B
A survey of JSF IDEs and implementations

B.2.3 Wrapping up

In this section, we only touched the surface of WebSphere Studio’s feature set.
The IDE provides many different ways you can build JSF applications. For example,
you can choose to bind more complex data grids to complex objects. Figure B.61
shows the Page Data view and the available complex objects you can bind. You can

Figure B.57
Running the application on a server.

Figure B.58

Selecting an application server.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Using JSF with WebSphere Studio 917

create data components and then visually drag them from the palette or Page
Data view and generate JSF data grid components.

Figure B.59
Selecting a local server.

Figure B.60 The Login page shown in a browser.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

918 APPENDIX B
A survey of JSF IDEs and implementations

B.3 JSF and Java Studio Creator

At the JavaOne conference in June of 2004, Sun released version 1.0 of its long-
awaited Java Studio Creator [Sun, Creator] IDE, which is based on its NetBeans
IDE. Creator (formerly code-named Rave) is a different breed of Java IDE, simply
because it doesn’t have a plethora of features. It’s designed to visually build Java
web applications that communicate directly with a database or a web service. Cre-
ator is simple because it allows you to build only Faces applications (it doesn’t
expose any additional NetBeans functionality). There’s no support for JSTL or
any other custom JSP tag libraries. The product is targeted toward the so-called
corporate developer, who is more interested in getting results quickly than wast-
ing time deciding which type of project to build.

B.3.1 Using Java Studio Creator

When you launch Creator, you’ll be struck by its similarity to Microsoft Visual
Studio .NET. The workspace consists of a set of dockable windows, including a
palette, the Server Navigator, a property sheet, and so on. Figure B.62 shows
Creator’s workspace.

 Creator is visually oriented—you can make a lot of progress simply by drag-
ging and dropping UI components, validators, converters, and even data sources
onto the page, and then customizing their properties.

 The tool has several key windows that can be utilized within the workspace:

■ Palette—The Palette has two modes: JSF and Clips. The JSF mode displays
UI components, validators, converters, and some core JSF tags (such as
<f:loadBundle>). UI components can be dragged from the Palette and
dropped into the Editing Area (when it is in design mode) or the Applica-
tion Outline. The Clips mode contains code snippets (ranging from simple

Figure B.61
Creating new data components.
conditionals to code for manipulating data sources) that can be dragged
and dropped into the Editing Area in source mode.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF and Java Studio Creator 919

■ Server Navigator—Like Visual Studio .NET, Creator allows you to navigate
through configured data sources, which include databases and web ser-
vices. Data sources from the navigator can be dragged and dropped into
the Editing Area (in design mode) or the Application Outline.

■ Editing Area—This is where you manipulate a page with UI components,
edit source code (JSP, Java, or XML), or visually build your application’s
navigation rules.

■ Property sheet—The property sheet allows you to edit the properties of the
selected object. Most often it is used to edit the properties of a UI compo-
nent, but it can also manipulate validators, converters, the entire page,
and even Java classes.

■ Application Outline—This window shows the tree structure for pages—all of
its UI components, as well as HTML elements. It also displays properties
exposed in any beans your project contains. You can drag and drop JSF
user interface extensions (UI components, validators, and converters), as

Figure B.62 The Creator workspace consists of several dockable windows.
well as data sources into this window. Any time you select an item, its prop-
erties can be edited in the property sheet.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

920 APPENDIX B
A survey of JSF IDEs and implementations

■ Output—This window has tabs like Build Output and Process Output.
■ Project Navigator—The Project Navigator lists all of the resources in your

project, including JSP pages, images, style sheets, Java source files, and a
list of referenced libraries.

Creator has several other useful features, including the following:

■ Extensive support for building JavaBeans (including creating BeanInfo)
■ The ability to import existing data sources and web services (and generate

the appropriate wrappers)
■ Deep integration with data sources, including a visual SQL editor, and exten-

sive use of JDBC RowSets
■ Easy testing (no need to configure a server)

B.3.2 Building ProjectTrack’s Login page

Now that we’ve discussed Creator from a bird’s-eye view, let’s delve into some
details by building ProjectTrack’s Login page.

Creating a new project
When you first start up the IDE, the Editing Area has a welcome page (much like
the page in Visual Studio .NET). You can create a new JSF project by clicking
the Create New Project button in that page, or by selecting New Project from
the File menu. Either way, Creator will display the New Project dialog box, shown
in figure B.63.

Figure B.63 The New Project dialog box.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF and Java Studio Creator 921

As you can see, there’s no choice for the type of application you’d like to create—
all Creator projects generate JSF applications. It is possible, however, to define
different project templates.

 Once you’ve created a project, you can add existing resources using the File
menu’s Add Existing Item command, as shown in figure B.64. In our case, this
command can be used to import ProjectTrack’s domain classes, images, and
style sheet.

NOTE The Add Existing Item command allows you to import only a single
file at a time. If you have several files, you can copy them into the
project’s directory structure, and Creator will notice them (if you reopen
the project).

When you create a new project, Creator will generate a default view called Page1.
jsp. It will also generate three beans: Page1 (the backing bean), SessionBean1 (for
session data), and ApplicationBean1 (for application-scoped properties). All three
of these classes subclass Creator-specific base classes that have helper methods
(much like the ones in ProjectTrack’s BaseBean). The superclasses also implement
the PhaseListener interface, so that they can handle lifecycle-related events. All
of these beans are registered as managed beans:

<faces-config>
 <managed-bean>
 <managed-bean-name>Page1</managed-bean-name>

Figure B.64
Importing existing items.
 <managed-bean-class>projecttrack.Page1</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

922 APPENDIX B
A survey of JSF IDEs and implementations

 </managed-bean>
 <managed-bean>
 <managed-bean-name>SessionBean1</managed-bean-name>
 <managed-bean-class>
 projecttrack.SessionBean1
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
 <managed-bean>
 <managed-bean-name>ApplicationBean1</managed-bean-name>
 <managed-bean-class>
 projecttrack.ApplicationBean1
 </managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
 </managed-bean>
</faces-config>

Creator generates a default CSS stylesheet as well.

Building pages with JSF components
The first step for the Login page is renaming Page1.jsp as login.jsp, which you can
do in the Project Navigator. Changing the page’s name automatically changes the
name of the corresponding backing bean and updates any dependent resources.

 When you’re designing the page, you must select one of two component layout
types: Grid or Flow. Grid layout is absolute positioning—your components are
placed exactly where you drop them on the page. With Flow layout, your compo-
nents are displayed from left to right, and simply wrap around when the width of
the screen has been reached. Creator uses Grid layout by default, but Flow layout
is a better choice for web applications that must work with a variety of browsers. You
can change the layout in the property sheet for the page, as shown in figure B.65.

 Once you have the proper layout, all you need to do is drag the UI components
from the Palette into the page. Let’s start with a panel, as shown in figure B.66.

 Once the panel is on the page, you can customize its properties in the
property sheet.

 Let’s continue building this page by adding an image to the panel, as shown
in figure B.67.

 As soon as the component is dropped onto the page, Creator pops up a dia-
log box asking you which image to select (either a file or URL). Also, as with any
component, the Application Outline shows the new component within the page’s
tree view.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF and Java Studio Creator 923

Building the rest of the page’s UI is as simple as dropping the remaining compo-
nents on their page and customizing their properties. Figure B.68 shows the com-
pleted page and its corresponding components.

NOTE If you’re wondering why some of the controls appear in the wrong order
in figure B.68, it’s because there is a bug in the version of Creator used in
this book that causes components in nested panels to be displayed incor-
rectly. The generated application works as expected, however.

Adding validation
Now that we have designed the page, let’s add validation. In Creator, you can add
validators by dragging them from the Palette and dropping them into the Appli-
cation Outline, or through the property sheet, as shown in figure B.69.

 Once you’ve created a new validator, it appears in the Application Outline. In
this window, you can select it and edit its properties through the property sheet,
as shown in figure B.70.

Figure B.66 Adding a panel to the page.

Figure B.65 Changing the
page layout with the
property sheet.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

924 APPENDIX B
A survey of JSF IDEs and implementations

Binding components to properties
In Creator, you usually bind UI components properties to properties of the cur-
rent page’s backing bean. Data sources are added as properties automatically
when you drop them onto the page. You can create your own properties by edit-
ing the backing bean manually, or by right-clicking on the bean in the Project
Navigator, as shown in figure B.71.

 This menu brings up a New Property dialog box, like the one shown in fig-
ure B.72. We can use this method to create the loginName and password proper-
ties of our backing bean.

 You can add properties to any bean in a project, not just backing beans. Project-
Track’s login process requires access to an IUserCoordinator instance, so we must
add a reference to it in the project somewhere. Because the IUserCoordinator lives
for the application’s lifespan, we can add it as a property of the ApplicationBean.
Once we’ve added the property, we also need to initialize it. We can access a bean’s

Figure B.67 Adding an image to the panel.
code by double-clicking on the class in the Project Navigator. In figure B.73, we’re

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF and Java Studio Creator 925

editing ApplicationBean’s constructor to create a new MemoryUserCoordinator (which
implements IUserCoordinator).

 Now that we’ve added all of the necessary properties, it’s time to bind them to
UI components. This can be done by editing the value property of the selected
component with the property sheet, as shown in figure B.74. The dialog box Cre-
ator displays when editing an expression greatly simplifies the process of creat-
ing value-binding expressions. You can also set value-binding expressions for

Figure B.68 The completed Login page and its corresponding UI components.
many other properties at once with the Property Bindings dialog box (shown in

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

926 APPENDIX B
A survey of JSF IDEs and implementations

figure B.75), which you open by right-clicking on a UI component and choosing
Property Bindings. This dialog box should be familiar to users of Visual Studio .NET.

Adding action listeners
In the world of Creator, event listeners are called event handlers. If you double-
click on a component, the IDE will take you to the default event handler in its backing

Figure B.69 Creating a new validator for an input field.

Figure B.70
Editing a validator’s

properties.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF and Java Studio Creator 927

bean. For Command components, the default event handler is an action method,
and for Input components, it is a value-change listener method. You can also
access an event handler by right-clicking on a component, as shown in figure B.76.

 This displays the code editor inside of the Editing Area. Here, we can fill in
the logic for the login action method, which is shown in listing B.3.

public String login() {

 FacesContext facesContext = getContext();

 User newUser = null;
 try
 {
 newUser = getApplicationBean().getUserCoordinator().
 getUser(loginName, password);
 }
 catch (ObjectNotFoundException e)
 {
 info("Incorrect name or password.");
 return Constants.FAILURE_OUTCOME;
 }
 catch (DataStoreException d)
 {

Listing B.3 ProjectTrack’s login method inside Java Studio Creator

Figure B.71
Adding a new property to
the backing bean.
 Utils.reportError(facesContext,
 "A database error has occurred.",

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

928 APPENDIX B
A survey of JSF IDEs and implementations

 "Error loading User object", d);
 return Constants.ERROR_OUTCOME;
 }

 Visit visit = new Visit();
 visit.setUser(newUser);

 setBean(Constants.VISIT_KEY_SCOPE +
 Constants.VISIT_KEY, visit);

 if (newUser.getRole().equals(RoleType.UPPER_MANAGER))
 {
 return Constants.SUCCESS_READONLY_OUTCOME;
 }

 return Constants.SUCCESS_READWRITE_OUTCOME;
}

The methods marked in bold are implemented by the backing bean’s super-
class; note that they provide much of the same functionality as ProjectTrack’s
BaseBean class.

Adding navigation
Creator has a nice visual editor for the application’s navigation rules. You can
access the page navigation editor through the Project Navigator, as shown in
figure B.77.

Figure B.72

The New Property dialog box.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF and Java Studio Creator 929

Figure B.73 Creating a new MemoryUserCoordinator in ApplicationBean’s constructor.
Figure B.74 Binding the button’s value to a backing bean property.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

930 APPENDIX B
A survey of JSF IDEs and implementations

This displays a visual representation of the navigation rules in the Editing Area.
When you click on a page inside the editor, all of the page’s action sources are dis-
played as shown in figure B.78.

Figure B.75
The Property Bindings dialog box
allows you to visually create a
value-binding for any value-binding
enabled property.

Figure B.76
Editing an event handler.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF and Java Studio Creator 931

After you’ve selected the proper action source, you can draw a line to the next
page, as shown in figure B.79.

Figure B.77
Selecting page navigation
in the Project Navigator.

Figure B.78
Clicking on a page in the page
navigation editor displays all
of its action sources.

Figure B.79

Drawing a navigation case
between two pages.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

932 APPENDIX B
A survey of JSF IDEs and implementations

Once you’ve drawn the line, you can fill in its caption, which is the logical out-
come for the navigation case. This generates the following navigation rule:

<faces-config>
 <navigation-rule>
 <from-view-id>/login.jsp</from-view-id>
 <navigation-case>
 <from-outcome>success_readonly</from-outcome>
 <to-view-id>/general/show_all.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
</faces-config>

Testing
Our Login page is now complete. To get a rough idea of how it will appear,
choose the Preview in a Browser option that’s available when you right-click on
the page in design mode. This launches a browser with a static HTML mock-up.
You can also launch the application by clicking the Run Project toolbar button, as
shown in figure B.80.

 Because Creator is bundled with the J2EE SDK, there’s no need to configure
servers—you can test your application as soon as it’s finished. Figure B.81 shows
our completed Login page in a browser.

B.3.3 Wrapping up

Sun’s Java Studio Creator was designed first and foremost for ease of use. Its sim-
plified development model—based solely on JSF—speeds up the development
process by limiting the number of choices. Creator offers an attractive, intuitive,
drag-and-drop development environment that should be familiar to users of
Visual Studio .NET. In addition, its ability to work natively with web services and
relational databases makes it a one-stop shop for building simpler applications.
However, Creator alone isn’t the tool for heavy-duty J2EE applications or integra-
tion with multiple Java technologies.

Figure B.80
Running the application.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF implementations 933

B.4 JSF implementations

Like most Java standards, there are several different JSF implementations.
Table B.1 lists a few of the implementations currently on the market.

Figure B.81
The Login page
shown in a browser.

Table B.1 Several JSF implementations are currently available.

Implementation URL
Open

Source?
Description

Reference
Implementation

http://java.sun.com/j2ee/
javaserverfaces

No The official reference implementation. The
source code is now available under the
Java Research License [Sun, JRL],
which allows for modification and use of
the source for educational purposes.
Version 1.1 is a maintenance release that
fixes several bugs, and is backward
compatible with 1.0.

MyFaces http://www.myfaces.org Yes MyFaces is the first free open source
implementation of JavaServer Faces. It
features extensions to standard
components and has many simple-to-use
custom components (such as Calendar,
FileUpload, or Tabbed Pane), as well as
custom validators (credit card, email, and
so on). As of this writing, MyFaces is in the
process of moving to Apache, so this URL
could change.

continued on next page
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

934 APPENDIX B
A survey of JSF IDEs and implementations

This table includes only existing or announced implementations at the time this
book was written. Some of the major vendors, such as IBM and Oracle, will be
enhancing the RI with specific optimizations, and you can expect other imple-
mentations to appear as the industry matures. You can find an up-to-date list at
JSF Central [JSF Central].

Smile http://smile.sourceforge.net Yes An open source implementation of the
JavaServer Faces API. Special attention
will be given to the non-JSP programming
model. The main goals are specifications
compliance, a rich set of GUI controls, and
a designer application for creating JSF
pages.

Simplica
ECruiser

http://www.simplica.com/
overview.html

No Simplica’s ECruiser is an implementation
of the basic JSF runtime environment and
a library of advanced components.

Keel http://www.keelframework.org Yes The Keel Meta-Framework now includes
an early implementation of JavaServer
Faces that integrates with Cocoon. Keel is
a highly extensible backbone for
integrating Java projects that’s fleshed out
and ready to use.

Table B.1 Several JSF implementations are currently available. (continued)

Implementation URL
Open

Source?
Description
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Extending the
core JSF classes
935

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

936 APPENDIX C
Extending the core JSF classes

As we’ve stated previously, one of JSF’s most compelling benefits is its pluggable
architecture. Most of its features are handled by classes that can easily be replaced
with alternate implementations, which can either enhance or replace the default
behavior. This is how you can use display technologies other than JSP (see appen-
dix A), but it also allows you to change the way JSF handles expressions, naviga-
tion, state management, the default action listener, and more.

 In this appendix, we examine JSF’s architecture and discuss how to extend its
core features.

If you’re wondering why we placed coverage of these classes in an appen-
dix instead of a chapter, there’s a simple reason: most developers will be
happy with the defaults, and don’t need to worry about the internals.
However, if you’re doing advanced JSF development, you’re interested
in JSF’s architecture, or you simply need to customize an implementa-
tion in some way, this appendix is for you.

C.1 The classes behind the scenes

The core JSF classes can be broken into two categories: infrastructure and plug-
gable. The infrastructure classes are Lifecycle, RenderKit, Application, and Faces-
Context. Lifecycle is used to execute the Request Processing Lifecycle. RenderKit
is used to manage a set of renderers, and Application maintains references to
instances of pluggable classes and provides access to additional configuration infor-
mation. Finally, there is the venerable FacesContext, which handles all per-
request functionality.

 All of these classes are created by factories, which are configurable in an appli-
cation configuration file, and can be located with the FactoryFinder (which is a
singleton). These classes are listed in table C.1.

BY THE
WAY

Table C.1 The infrastructure classes form the backbone of JSF’s functionality.

Class Description Configurable?

javax.faces.
FactoryFinder

Creates and stores factory instances. The
concrete factory implementations are found by
searching available configuration files or retrieved
from the first line of a file called META-INF/
services/{factory-class-name} (located in the web
application itself or any JARs in its library path).

No

javax.faces.lifecycle.
LifecycleFactory

Creates and stores Lifecycle instances. Yes
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The classes behind the scenes 937

Note that the concrete subclasses of the factories (as well as RenderKit subclasses)
are configurable through an application configuration file. These classes, and
their relationships, are shown in figure C.1.

 For most developers, there is no need to create customized Lifecycle, Appli-
cation, RenderKit, or FacesContext instances, and consequently no need to cus-
tomize their factory classes. The ability to replace the factories is useful, however,
for developers of JSF implementations.

 The only exception to this rule is the RenderKit class; you can configure one or
more RenderKit subclasses in addition (or instead of) the standard HTML Render-
Kit. Note, however, that RenderKitFactory only stores RenderKit instances—it
doesn’t create them. Usually, that responsibility is left for the JSF implementa-
tion’s configuration loader, which creates new RenderKit instances based on any
application configuration files it finds. The upshot is that while you might write
your own RenderKit, you would usually not need to implement a new RenderKit-
Factory because it just maintains RenderKit instances.

javax.faces.lifecycle.
Lifecycle

Runs the Request Processing Lifecycle. Usually
functionality is added through
PhaseListeners, which can either be
registered in code or in a configuration file.

No

javax.faces.render.
RenderKitFactory

Manages a collection of RenderKit instances. Yes

javax.faces.render.
RenderKit

Manages a collection of Renderer instances.
Contains a reference to a ResponseState-
Manager instance, which handles renderer-
specific state-management work.

Yes

javax.faces.application.
ApplicationFactory

Creates and stores a single Application
instance (per web application).

Yes

javax.faces.application.
Application

Holds references to instances of pluggable
classes and configuration information.

Yes

javax.faces.context.
FacesContextFactory

Creates a new (or returns a pooled)
FacesContext instance.

Yes

javax.faces.context.
FacesContext

Manages all per-request state, including the
message queue.

No

Table C.1 The infrastructure classes form the backbone of JSF’s functionality. (continued)

Class Description Configurable?
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

938 APPENDIX C
Extending the core JSF classes

NOTE If you write your own RenderKit, you may also have to write a new
ResponseStateManager to handle saving and restoring state on the client.

You normally wouldn’t replace the LifecycleFactory implementation, but you
can integrate with the JSF lifecycle by writing PhaseListener classes, which are
executed before and after specific Request Processing Lifecycle phases (see chap-
ter 11 for more information). PhaseListeners can be registered in code or in a JSF
configuration file.

 In general, it’s more likely that you (or third parties) will replace the pluggable
classes. This is, after all, why the JSF Expert Group made them pluggable in the
first place. The classes in this category are VariableResolver, PropertyResolver,
ActionListener, NavigationHandler, ViewHandler, and StateManager. These are
all abstract base classes, except for ActionListener, which is an interface.

 The VariableResolver is responsible for evaluating the left identifier of a JSF
EL expression, and the PropertyResolver evaluates identifiers after the “.” or
inside the “[]”. So, for the expression "#{foo.bar}", the VariableResolver returns
the object referenced by foo, and the PropertyResolver returns the value of the

Figure C.1 JSF’s infrastructure classes consist of the objects that execute JSF’s core processing
(Lifecycle, Application, RenderKit, and FacesContext) and factories that manage
instances of them.
foo’s bar property. The expression "#{foo[bar][baz]}" would be evaluated the
same, except that the PropertyResolver would evaluate bar’s baz property as well.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

The classes behind the scenes 939

 The default instance of VariableResolver looks for an object stored in differ-
ent application scopes under the specified key and attempts to create it with the
Managed Bean Creation facility if it doesn’t already exist. The default Property-
Resolver searches for properties, List items, or Map values on the object retrieved
by the VariableResolver. (This is the standard JSF EL processing we’ve discussed
throughout this book; see chapter 2 for details.)

 The pluggable ActionListener handles all action events (regardless of any
additional action listeners that are registered by the application). The default
instance performs the behavior we have discussed so far: it executes an action
method, retrieves its logical outcome, and executes the NavigationHandler with
that outcome.

 The NavigationHandler’s job is to select a new view based on the current view,
the calling action method, and the logical outcome. The default Navigation-
Handler instance selects a new view identifier based on the outcome and any con-
figured navigation rules, uses the ViewHandler to create the new view, and sets it
as the current view on the FacesContext. The selected view is then displayed by
the ViewHandler during the Render Response phase of the Request Processing
Lifecycle. The default ViewHandler handles this by forwarding the request to the
web container, which processes the JSP page normally.

 The ViewHandler is also responsible for restoring views when they are requested
more than once. It delegates state-saving and restoration to the StateManager.
The default StateManager implementation either saves the component tree in the
session if the state-saving mode is server or saves it as a hidden form field if the
state-saving mode is client. State-saving work for the client mode is delegated
to the RenderKit’s ResponseStateManager, which saves and restores the state in a
renderer-specific manner.

 All of these classes are listed in table C.2, and depicted graphically in figure C.2.

Table C.2 The pluggable classes perform key JSF functions. The default implementations can be
replaced in an application configuration file (usually faces-config.xml).

Class Description Default Functionality

javax.faces.el.
VariableResolver

Evaluates the leftmost
identifier of a JSF EL
expression.

Searches for an object in request,
session, or application scope with the
specified key. If the object does not
exist, attempts to create it through the
Managed Bean Creation facility.

continued on next page
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

940 APPENDIX C
Extending the core JSF classes

Now that you know which classes perform JSF’s key functionality, let’s look at how
you can modify that functionality.

C.2 Replacing or extending the pluggable classes

Most of the time, there’s no need to replace the default implementations of the
pluggable classes. However, doing so offers some powerful possibilities and may be
necessary, especially if you’re integrating JSF with another framework. Table C.3
lists some possible reasons you may want to replace or augment the default imple-
mentations of these classes.

javax.faces.el.
PropertyResolver

Evaluates the
identifiers of a JSF EL
expression after “.” or
inside “[]”.

Returns the property, array element,
List element, or Map element.

javax.faces.application.
ActionListener

Executed for all action
events during the
Invoke Application
phase.

Calls the associated action method (if
any), and then executes the
NavigationHandler with the
retrieved outcome.

javax.faces.navigation.
NavigationHandler

Selects a view based on
the current view, the
action method (if any),
and an outcome.

Selects the view identifier based on con-
figured navigation rules, asks the
ViewHandler to create the view, and
the sets it as the current view on the
FacesContext.

javax.faces.application.
ViewHandler

Creates, displays, and
restores views.
Delegates to
StateManager to
save and restore view
state.

Performs basic functionality of creating
views and delegating to
StateManager, but relies on the JSP
container to build and display the
component tree. (The tree is built by the
JSF component tags.)

javax.faces.application.
StateManager

Stores and restores the
view.

If the state-saving mode is server,
stores the view in the session; if it is
client, delegates to the current
RenderKit’s
ResponseStateManager.

Table C.2 The pluggable classes perform key JSF functions. The default implementations can be
replaced in an application configuration file (usually faces-config.xml). (continued)

Class Description Default Functionality
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Replacing or extending the pluggable classes 941

Table C.3 The pluggable classes perform key JSF functions. In some cases, you may want to replace
or decorate them.

Class Possible Reasons to Replace or Decorate

VariableResolver • To add your own implicit variables
• To provide shorthand or alternate names for commonly used variable names
• To access variables in other contexts (web applications, web services, EJB

servers, and so on)
• To add a default property

PropertyResolver • To provide shorthand or alternate names for commonly used properties
• To access properties of variables in other contexts (web applications, web

services, EJB servers, and so on)
• To retrieve other attributes of a variable, like methods or other nonproperty

attributes
• To access attributes of specialized objects (like a DOM tree)

ActionListener • To add default behavior that is executed for all action events, like logging
• To execute action methods with different signatures
• To execute application logic from a different framework (like Struts Actions)

NavigationHandler • To select a view identifier based on criteria other than navigation rules
• To forward control to another resource (bypassing the ViewHandler)

Figure C.2 The Application class has references to instances of pluggable classes. These
classes perform much of JSF’s processing. Each of them can be replaced with alternate
implementations.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

942 APPENDIX C
Extending the core JSF classes

Now that it’s clear when you may want to replace or decorate a pluggable class,
let’s examine the process.

C.2.1 Configuring a pluggable class

Replacing the default implementation of any of these pluggable classes is han-
dled in an application configuration file. Every class listed in table C.3 has a cor-
responding XML element that is a child of the <application> node. For example,
here is a configuration file snippet that configures a custom action listener and
state manager:

<application>
 <action-listener>
 com.foo.jsf.MyCustomActionListener
 </action-listener>
 <state-manager>
 com.foo.jsf.MyCustomStateManager
 </state-handler>
</application>

Remember, each JSF application can have multiple configuration files (often
located in JARs that may contain UI components, renderers, or other extensions).
So, if more than one file replaces a pluggable class, how does JSF know which one
to use? Recall that JSF searches for the following configuration files in this order:

1 Files named META-INF/faces-config.xml in the resource path (includ-
ing JARs)

2 Files specified by the javax.faces.CONFIG_FILES servlet initialization
parameter

3 The WEB-INF/faces-config.xml file (in the current web application)

ViewHandler • To use a non-JSP display technology (such as XUL [XUL], Velocity [ASF,
Velocity], or Java classes)

• To decorate the view

StateManager • To store state in another manner (such as a data store)
• To optimize the state-saving algorithms
• To perform customized clustering

Table C.3 The pluggable classes perform key JSF functions. In some cases, you may want to replace
or decorate them. (continued)

Class Possible Reasons to Replace or Decorate
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Replacing or extending the pluggable classes 943

Each time the implementation reads a configuration file, it will register any plug-
gable classes that have been configured, so the most recently parsed file always wins.

 For example, let’s say there was a custom ViewHandler configured in the META-
INF/faces-config.xml file of a specific JAR, the WEB-INF/trading_module.xml file
of the current web application, and the WEB-INF/faces_config.xml file of the cur-
rent application. Each ViewHandler would be configured but overwritten by the
next file that was processed. Consequently, the ViewHandler available to the appli-
cation would be the one defined in WEB-INF/faces-config.xml.

 If you’re simply replacing a pluggable class (rather than extending it), this is
all you need to know: the last file processed takes precedence. However, if you want
to extend a class, the processing order becomes important; we discuss this next.

C.2.2 Decorating a pluggable class

It’s never fun to reinvent the wheel, so JSF allows you to add functionality to the
previous pluggable class implementation rather than requiring you to write default
logic. This is possible thanks to the decorator pattern [GoF], which allows you to
extend a class but delegate most of the work to an existing instance. The word pre-
vious is key here, because it refers to the last implementation registered. In the sce-
nario we discussed at the end of the preceding section, there would be three
distinct ViewHandler instances, each of which could add functionality to the one
loaded before it. This allows you to chain multiple pluggable classes together, which
is important in cases where multiple parties want to customize JSF’s functionality.

 An example of such a situation is the Struts-Faces integration library [ASF,
Struts-Faces], which registers a custom ActionListener and PropertyResolver. If
you develop an application that uses this library, you can still add your own cus-
tom implementations of these classes. Assuming you decorated the Struts-Faces
functionality, your application would be able to take advantage of the extensions
you made in addition to the ones made by Struts-Faces.

NOTE We recommend that you decorate existing classes rather than write en-
tirely new ones, unless you know exactly what you’re doing. Otherwise,
you may break some existing functionality.

Decorating a pluggable class is straightforward (the process is the same for facto-
ries as well). The only requirement is that you have a constructor that takes an
instance of the pluggable class as a parameter. JSF will pass in the previously reg-
istered instance—all you have to do is execute its methods at the appropriate

times. Here’s an example:

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

944 APPENDIX C
Extending the core JSF classes

public class MyCustomActionListener implements ActionListener
{
 private ActionListener previous;

 public ActionListenerImpl(ActionListener previous)
 {
 this.previous = previous;
 }

 public void processAction(ActionEvent event)
 throws AbortProcessingException
 {
 // Perform custom processing here
 previous.processAction(event);
 }
}

The example shows a custom ActionListener that delegates additional process-
ing to the previously registered ActionListener after performing some custom
processing. In cases where several methods must be implemented, you may decide
to delegate directly for some (and add no processing) and either override com-
pletely or add custom processing to others.

 Now that you understand how to decorate a pluggable class, let’s look at a
concrete example.

Example: Struts-Faces ActionListener
A good example of extending JSF is the Struts-Faces integration library [ASF,
Struts-Faces]. This library makes good use of pluggable JSF classes, providing a
customized ActionListener (for integrating Struts Actions) and PropertyResolver
(for adding DynaBean support). Let’s take a look at the custom ActionListener,
which delegates processing to Struts if the form that submitted the request was a
FormComponent instance (which is a Struts-Faces custom component). The source is
shown in listing C.1.

package org.apache.struts.faces.application;

import javax.faces.component.*;
import javax.faces.context.FacesContext;
import javax.faces.event.*;
import javax.servlet.ServletContext;

Listing C.1 The Struts-Faces custom ActionListener implementation (portions
omitted for simplicity)
import javax.servlet.http.*;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Replacing or extending the pluggable classes 945

import org.apache.struts.Globals;
import org.apache.struts.action.*;
import org.apache.struts.config.ModuleConfig;
import org.apache.struts.faces.Constants;
import org.apache.struts.faces.component.FormComponent;
import org.apache.struts.util.RequestUtils;

public final class ActionListenerImpl implements ActionListener
{

 private ActionListener original;

 public ActionListenerImpl(
 ActionListener original)
 {
 if (original == null)
 {
 throw new NullPointerException();
 }
 this.original = original;
 }

 public void processAction(ActionEvent event)
 throws AbortProcessingException
 {

 // If this is an immediate action, or we are NOT nested in a
 // Struts form, perform the standard processing
 UIComponent component = event.getComponent();
 ActionSource source = (ActionSource)component;
 boolean standard = source.isImmediate();
 if (!standard)
 {
 UIComponent parent =
 component.getParent();
 while (parent != null)
 {
 if (parent instanceof UIForm)
 {
 if (!(parent instanceof
 FormComponent))
 {
 standard = true;
 }
 break;
 }
 parent = parent.getParent();
 }
 }

Takes
delegate as
argument

 b

Stores
delegate
instance

 c

Overrides
primary
method

 d

Determines if
standard
request

 e
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

946 APPENDIX C
Extending the core JSF classes

 if (standard)
 {
 original.processAction(event);
 return;
 }

 // Acquire Servlet API Object References
 FacesContext context = FacesContext.getCurrentInstance();
 ServletContext servletContext = (ServletContext)
 context.getExternalContext().getContext();
 HttpServletRequest request = (HttpServletRequest)
 context.getExternalContext().getRequest();
 HttpServletResponse response = (HttpServletResponse)
 context.getExternalContext().getResponse();

 // Invoke the appropriate request processor for this request
 try
 {
 request.setAttribute(
 Constants.ACTION_EVENT_KEY, event);
 RequestUtils.selectModule(request,
 servletContext);
 ModuleConfig moduleConfig =
 (ModuleConfig)request.getAttribute(
 Globals.MODULE_KEY);
 RequestProcessor processor =
 getRequestProcessor(moduleConfig,
 servletContext);
 processor.process(request, response);
 context.responseComplete();
 }
 catch (Exception e)
 {
 // log the exception
 }
 finally
 {
 request.removeAttribute(Constants.ACTION_EVENT_KEY);
 }

 }

 // Protected Methods
 protected RequestProcessor getRequestProcessor(ModuleConfig config,
 ServletContext context)
 {

 String key = Globals.REQUEST_PROCESSOR_KEY + config.getPrefix();
 RequestProcessor processor =

If standard,
delegates to
original instance

 f

Otherwise,
forwards to
Struts
processor

 g
 (RequestProcessor)context.getAttribute(key);
 ...

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Replacing or extending the pluggable classes 947

 return (processor);
 }
}

This class’s goal is to integrate Struts processing with JSF. In order to delegate
control to the previous ActionListener instance, the constructor has a single
ActionListener argument (b), which we store for later use (c).

 The work takes place in the processAction method (d). The first step is to
determine whether this is a standard JSF request, or if it should be processed by
Struts. Recall from chapter 14 that any page that uses the Struts-Faces tags must
use the <s:form> component tag. This tag represents the Struts-Faces FormComponent
class, which has special support for Struts ActionForms and Actions.

 This is a standard JSF request if the UI component that fired the event has its
immediate property set to true, or if it is not the child of a FormComponent (e). If
this is a standard request, we delegate processing to the original ActionListener
(f), which results in normal JSF processing. Otherwise, we delegate processing to
the Struts RequestProcessor, which handles normal Struts requests (g). This
ensures that the Struts Action associated with the FormComponent is executed
instead of a JSF action method.

 This class is registered in the Struts-Faces configuration file, which is located in
the META-INF directory of its JAR file. Here’s the relevant snippet:

<application>
 <action-listener>
 org.apache.struts.faces.application.ActionListenerImpl
 </action-listener>
</application>

That’s it for our example of decorating a pluggable class. As you can see, it’s rel-
atively easy to augment JSF’s existing functionality as necessary. Now, let’s look at
an example that replaces a class’s functionality altogether.

C.2.3 Replacing a pluggable class

Most of the time, you will decorate a pluggable class instead of simply replacing
its functionality. However, in some cases, such as supporting alternate display
technologies, it makes sense to write a class that does not depend on the default
implementation. The process is the same as decorating a pluggable class, except
that your new class should have a no-argument constructor instead of a construc-
tor that takes the pluggable type as a parameter. In the next section, we provide

an example of this process.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

948 APPENDIX C
Extending the core JSF classes

Example: XUL ViewHandler
In appendix A, we covered the XML User Interface Language (XUL) [XUL] exam-
ple included with the JSF reference implementation [Sun, JSF RI]. This example
uses XUL (a powerful language for describing user interfaces) to define views
instead of JSP. Let’s take a look at how this functionality was implemented.

 Replacing JSP with an alternative display technology like XUL is as simple as
replacing the ViewHandler. Table C.4 lists the ViewHandler methods, all of which
must be overridden by subclasses.

Listing C.2 shows the source for XulViewHandlerImpl, a ViewHandler replacement
that creates the view from an XUL file.

NOTE This example is meant to illustrate how to write a ViewHandler, but it is
not a definitive, production-ready implementation. Consequently, it uses
the default RenderKit, hardcodes the character encoding, and doesn’t
handle state management. These are all issues that a production-quality
ViewHandler must address.

package nonjsp.application;

Table C.4 ViewHandler methods (all must be overridden by subclasses)

Method Description

createView Creates a new view based on a view identifier

renderView Displays the currently selected view

restoreView Restores a previously requested view, possibly delegating to the
StateManager

getActionURL Translates a view identifier into a full URL

getResourceURL Translates a resource path into a full URL

writeState Writes out state (usually delegating to the StateManager)

calculateLocale Determines the user’s locale for this request (and subsequent requests)

calcluateRenderKit Returns the correct RenderKit for this request (and subsequent requests)

Listing C.2 A ViewHandler replacement that parses XUL files instead of JSP (parts
have been omitted for simplicity)
import nonjsp.util.RIConstants;

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Replacing or extending the pluggable classes 949

import org.apache.commons.digester.*;

import javax.faces.*;
import javax.faces.application.ViewHandler;
import javax.faces.component.*;
import javax.faces.context.*;
import javax.faces.render.*;
import javax.servlet.*;
import javax.servlet.http.HttpServletResponse;

import java.io.*;
import java.net.URL;
import java.util.*;

public class XulViewHandlerImpl extends ViewHandler
{
 // Log instance for this class
 protected static Log log =
 LogFactory.getLog(XulViewHandlerImpl.class);
 protected static final String CHAR_ENCODING = "ISO-8859-1";
 protected static final String CONTENT_TYPE = "text/html";

 protected boolean validate = false;
 ...
 protected XmlDialectProvider dialectProvider = null;

 public XulViewHandlerImpl()
 {
 super();
 dialectProvider = new XulDialectProvider();
 }

 // Render the components
 public void renderView(FacesContext context,
 UIViewRoot viewToRender)
 throws IOException, FacesException
 {
 if (context == null || viewToRender == null)
 {
 throw new NullPointerException(
 "RenderView: FacesContext is null");
 }

 HttpServletResponse response = (HttpServletResponse)
 (context.getExternalContext().getResponse());

 RenderKitFactory factory = (RenderKitFactory)
 FactoryFinder.getFactory(FactoryFinder.RENDER_KIT_FACTORY);

 b

 c
 RenderKit renderKit = factory.getRenderKit(context,
 calculateRenderKitId(context));

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

950 APPENDIX C
Extending the core JSF classes

 ResponseWriter writer = renderKit.createResponseWriter(
 response.getWriter(), CONTENT_TYPE,
 CHAR_ENCODING);

 context.setResponseWriter(writer);
 response.setContentType(CONTENT_TYPE);

 createHeader(context);
 renderResponse(context);
 createFooter(context);

 Map sessionMap = getSessionMap(context);
 sessionMap.put(RIConstants.REQUEST_LOCALE,
 context.getViewRoot().getLocale());
 sessionMap.put(RIConstants.FACES_VIEW, context.getViewRoot());
 }

 // Create the header components for this page
 private void createHeader(FacesContext context)
 throws IOException
 {
 ResponseWriter writer = context.getResponseWriter();

 writer.startElement("html", null);
 writer.writeText("\n", null);
 writer.startElement("head", null);
 writer.writeText("\n", null);
 writer.startElement("title", null);
 writer.writeText(
 context.getExternalContext().getRequestContextPath(),
 null);
 writer.endElement("title");
 writer.writeText("\n", null);
 writer.endElement("head");
 writer.writeText("\n", null);
 writer.startElement("body", null);
 writer.writeText("\n", null);
 }

 // Create the footer components for this page
 private void createFooter(FacesContext context)
 throws IOException
 {
 ResponseWriter writer = context.getResponseWriter();

 writer.endElement("body");
 writer.writeText("\n", null);
 writer.endElement("html");

 d

 d
 writer.writeText("\n", null);
 }

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Replacing or extending the pluggable classes 951

 // Render the response content for the completed page
 private void renderResponse(FacesContext context)
 throws IOException
 {
 UIComponent root = context.getViewRoot();
 renderResponse(context, root);
 }

 // Render the response content for an individual component
 private void renderResponse(
 FacesContext context,
 UIComponent component)
 throws IOException
 {
 component.encodeBegin(context);
 if (component.getRendersChildren())
 {
 component.encodeChildren(context);
 }
 else
 {
 Iterator kids = component.getChildren().iterator();
 while (kids.hasNext())
 {
 renderResponse(context, (UIComponent)kids.next());
 }
 }
 component.encodeEnd(context);
 }

 public UIViewRoot createView(
 FacesContext context,
 String viewId)
 {
 if (context == null)
 {
 throw new NullPointerException(
 "CreateView: FacesContext is null");
 }

 return restoreView(context, viewId);
 }

 public UIViewRoot restoreView(
 FacesContext context,
 String viewId)
 {

 e

 e

 f

 f
 if (context == null)
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

952 APPENDIX C
Extending the core JSF classes

 throw new NullPointerException(
 "RestoreView: FacesContext is null");
 }

 UIViewRoot root = null;
 InputStream viewInput = null;
 RuleSetBase ruleSet = null;

 root = new UIViewRoot();
 root.setRenderKitId(calculateRenderKit(context));

 if (null == viewId)
 {
 root.setViewId("default");
 context.setViewRoot(root);
 Locale locale = calculateLocale(context);
 root.setLocale(locale);
 return root;
 }

 try
 {
 viewInput =
 context.getExternalContext().getResourceAsStream(viewId);
 if (null == viewInput)
 {
 throw new NullPointerException();
 }
 }
 catch (Throwable e)
 {
 throw new FacesException("Can't get stream for " + viewId, e);
 }

 Digester digester = new Digester();
 ...
 ruleSet = dialectProvider.getRuleSet();
 digester.addRuleSet(ruleSet);
 ...
 digester.push(root);
 try
 {
 root = (UIViewRoot)digester.parse(viewInput);
 }
 catch (Throwable e)
 {
 throw new FacesException(
 "Can't parse stream for " + viewId, e);
 }
 root.setViewId(viewId);

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Replacing or extending the pluggable classes 953

 context.setViewRoot(root);

 return root;
 }

 public Locale calculateLocale(FacesContext context)
 {
 Locale result = null;
 // determine the locales that are acceptable to the client based on
 // the Accept-Language header and the find the best match among the
 // supported locales specified by the client.
 Enumeration enum = ((ServletRequest)
 context.getExternalContext().getRequest()).getLocales();
 while (enum.hasMoreElements())
 {
 Locale perf = (Locale)enum.nextElement();
 result = findMatch(context, perf);
 if (result != null)
 {
 break;
 }
 }
 // no match is found.
 if (result == null)
 {
 if (context.getApplication().getDefaultLocale() == null)
 {
 result = Locale.getDefault();
 }
 else
 {
 result = context.getApplication().getDefaultLocale();
 }
 }
 return result;
 }

 /**
 * Attempts to find a matching locale based on <code>perf></code>
 * and list of supported locales, using the matching algorithm
 * as described in JSTL 8.3.2.
 */
 protected Locale findMatch(FacesContext context, Locale perf)
 {
 Locale result = null;
 Iterator it = context.getApplication().getSupportedLocales();
 while (it.hasNext())
 {
 Locale supportedLocale = (Locale)it.next();

 g

 g
 if (perf.equals(supportedLocale))

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

954 APPENDIX C
Extending the core JSF classes

 {
 // exact match
 result = supportedLocale;
 break;
 }
 else
 {
 // Make sure the preferred locale doesn’t have a country set,
 // when doing a language match, For ex., if the preferred
 // locale is "en-US", if one of supported locales is "en-UK",
 // even though its language matches that of the preferred
 // locale, we must ignore it.
 if (perf.getLanguage().equals(supportedLocale.getLanguage()) &&
 supportedLocale.getCountry().equals(""))
 {
 result = supportedLocale;
 }
 }
 }
 return result;
 }

 public String calculateRenderKitId(
 FacesContext context)
 {
 return RenderKitFactory.HTML_BASIC_RENDER_KIT;
 }

 public String getActionURL(
 FacesContext context,
 String viewId)
 {
 if (viewId.charAt(0) != '/')
 {
 throw new IllegalArgumentException(
 "Illegal view ID " + viewId + ". the ID must begin with '
 /'");
 }
 if (!viewId.startsWith("/faces"))
 {
 viewId = "/faces" + viewId;
 }
 return context.getExternalContext().getRequestContextPath() + viewId;
 }

 public String getResourceURL(
 FacesContext context,
 String path)
 {

 h

 i

 j
 if (path.startsWith("/"))
 {

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Replacing or extending the pluggable classes 955

 return context.getExternalContext().
 getRequestContextPath() + path;
 }
 else
 {
 return (path);
 }
 }

 public void writeState(FacesContext context)
 throws IOException
 {
 }

 private Map getSessionMap(FacesContext context)
 {
 // retrieve session map, creating session if necessary
 ...
 return sessionMap;
 }
}

Because we aren’t decorating the previous ViewHandler, we have a no-argument
constructor. (The dialectProvider instance variable creates rules that will be
used to process the XUL files in f.)
The renderView method is responsible for displaying the current view to the user.
The process is simple: retrieve a new ResponseWriter from the current RenderKit,
use the ResponseWriter to render the view, and then place any necessary vari-
ables in the session. The real work of displaying the view is performed by create-
Header, createFooter (d) and renderResponse (e).
The createHeader and createFooter methods simply output the HTML before
and after the actual view (note that the last parameter of startElement and write-
Text is null because this output is not associated with a specific component).

The fact that we’re outputting the beginning and end of the HTML doc-
ument underscores an important point: JSF view definitions do not re-
quire hardcoded HTML template text (as is often included in JSPs).

These two renderResponse methods are responsible for displaying the compo-
nents in the view. Again the process is simple: for each component, call encode-
Begin, call encodeChildren (if rendersChildren is true) or render each child indi-
vidually (if rendersChildren is false), and then call encodeEnd. Recall that each UI

 1)

 b

 c

 d

BY THE
WAY

 e
component will delegate this work to the associated renderer if necessary.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

956 APPENDIX C
Extending the core JSF classes

The createView method simply calls restoreView, which actually builds the com-
ponent tree from the XUL file with a filename that matches the view identifier.
(The XML file is parsed using the Apache Digester [ASF, Digester], based on a set
of rules that were instantiated in the constructor (b).)

 Usually, restoreView would retrieve the component tree from the session, the
request, or some other source. However, our sample ViewHandler doesn’t support
state-saving—it simply rebuilds the tree each time.
The calculateLocales method (and the findMatch utility method) are used to
determine the user’s locale based on the locale of the incoming request and the
locales configured for the application.
The calculateRenderKitId method determines the correct render kit for the
current request. Because this implementation only works with the standard HTML
render kit, we return its identifier. (The default ViewHandler implementation
simply returns the application’s default render kit identifier, or the default ren-
der kit if the application has no default configured.)
The getActionURL method returns a URL based on a view identifier. In this case,
we prefix the view identifier with the request context path and the string “/faces”.
A complete implementation would also support suffix mapping (.faces), and
would make the proper selection based on servlet context init parameters.
The getResourceURL method generates the appropriate URL for any resources
that are not views. Here, we simply prefix the path with the request context path
if it starts with a slash (“/”); this is exactly what the default ViewHandler does.
Usually, the writeState method would save the view’s state, depending on the
StateManager for the real work. Since this ViewHandler doesn’t support state sav-
ing, this method does nothing.
In the example, this class is registered in code via a ServletContextListener, as
shown in listing C.3.

package nonjsp.lifecycle;

import nonjsp.application.XulViewHandlerImpl;

import javax.faces.FactoryFinder;
import javax.faces.application.*;
import javax.servlet.*;

public class XulServletContextListener
 implements ServletContextListener
{

 f

 g

 h

 i

 j

 1)

Listing C.3 Registering a ViewHandler with a ServletContextListener
 public XulServletContextListener()

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Replacing or extending the pluggable classes 957

 {
 }

 public void contextInitialized(ServletContextEvent event)
 {
 ViewHandler handler = new XulViewHandlerImpl();
 ApplicationFactory factory = (ApplicationFactory)
 FactoryFinder.getFactory(FactoryFinder.APPLICATION_FACTORY);
 Application application = factory.getApplication();
 application.setViewHandler(handler);
 }

 public void contextDestroyed(ServletContextEvent e)
 {
 }
}

All of the work happens in the contextInitialized method (which is called when
the web application is loaded), where we create a new XulViewHandlerImpl instance,
retrieve an Application instance, and then set its viewHandler property to equal
our new XulViewHandlerImpl instance. We use the ApplicationFactory to retrieve
the Application instance because no FacesContext is available when the applica-
tion initializes.

 This ServletContextListener is a good example of how to use FactoryFinder
to retrieve a factory, but there’s no usually no need to initialize a pluggable class
in code. Instead, you can simply use an application configuration file:

<application>
...
 <view-handler>nonjsp.application.XulViewHandlerImpl</view-handler>
...
</application>

That’s all there is to it. With this simple declaration, we’ve replaced JSP with XUL
for this application’s display technology. This is the power of JSF’s pluggable
architecture: you can replace or enhance core functionality simply by writing a
class and adding it to a configuration file.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF configuration
958

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

JSF configuration 959

Like most Java web frameworks, JSF application configuration is handled in an
XML file, usually called faces-config.xml. In this file, you can configure supported
locales, managed beans, and navigation rules, as well as replace pluggable JSF
classes. You can also configure UI extensions (components, renderers, validators,
and converters) and other advanced features in this file. All of these items can be
set in code, although doing so is generally only useful in dynamic scenarios.

If you’re not fond of editing XML files, tools are available to help you.
There’s a freely available configuration file editor called the Faces Con-
sole [Holmes] that plugs into many popular IDEs and also runs as a
stand-alone application. Exadel also offers its JSF Studio product Eclipse
plugin [JSF Studio] that simplifies configuration and navigation, among
other things. In addition, most IDEs provide visual editors for some or
all aspects of configuration. The JSF Central community site [JSF Cen-
tral] maintains a product directory of JSF tools.

Recall that JSF can support several configuration files. By default, it will look for a
file named WEB-INF/faces-config.xml, and indeed this is where you’ll put most of
your application configuration. You can also specify additional files with the
javax.faces.CONFIG_FILES context parameter. This parameter can be useful in
cases where you want to segment your configuration for easier maintenance. For
example, two different teams might be working on different modules that have
different configuration files. JSF will also search for configuration files named
META-INF/faces-config.xml in JAR files (or any other resource path); this allows
you or third parties to create libraries of components, renderers, validators, and/
or converters that are automatically registered by your application.

 All application configuration files must reference the JSF configuration Docu-
ment Type Definition (DTD) like so:

<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

(If you're using JSF 1.0, the URI would be “http://java.sun.com/dtd/web-facesconfig_
1_0.dtd”). Figure D.1 depicts the basic structure of a configuration file.

 The following sections explain each element of the DTD in detail; see chap-
ter 3 for an overview and examples, as well as information about web application
configuration via web.xml. Note that many elements are optional, especially for
UI extensions. Often, the optional elements are useful for IDE integration.

BY THE
WAY
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

960 APPENDIX D
JSF configuration

D.1 Common attributes

JSF configuration elements don’t have many attributes. As a matter of fact, there
are only two (see table D.1), which are used by several different elements.

Figure D.1
Basic structure of a
JSF configuration file.

Table D.1 Common attributes

Attribute
Name

Required? Description Supported By

id No The unique identifier for the element. This is an XML
identifier (of type ID), and should not be confused
with a JSF identifier.

All elements

xml:lang No The locale string for this element’s content. A locale
string is made up of a language code, a country code
(optional), and a variant (optional), with an
underscore (“_”) or hyphen (“-”) in between. For
example, U.S. English is “en_US” (see online

<icon>,
<description>,
<display-name>
extension appendix E for a list of language and
country codes).

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Common elements 961

D.2 Common elements

The following sections describe common child elements that are used by the top-
level configuration elements.

D.2.1 <icon>

For integration with tools, several configuration elements support icons. Usually
an icon is displayed to help represent the associated element. For example, UI
components usually have an icon displayed next to the component’s name in a
component palette. The <icon> element accepts the xml:lang attribute, and its
child elements are described in table D.2.

D.2.2 <property>

UI extensions, such as UI components and validators, have JavaBean properties
that can optionally be described in a configuration file for use by tools. These are
defined with the <property> element, whose child elements are listed in table D.3.

Table D.2 Child elements for <icon>

Element Name
Number of
Instances

Description

<small-icon> 0 or 1 The resource path of the small icon (16x16) in either GIF or JPEG format

<large-icon> 0 or 1 The resource path of the large icon (32x32) in either GIF or JPEG format

Table D.3 Child elements for <property>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would
usually have one instance per language (see section D.1).

<display-name> 0 or more The name to be displayed in tools. You would usually have
one instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1).
You would usually have one instance per language (see
section D.1).

<property-name> 1 The canonical name of the property (must be a JavaBean
property).

<property-class> 1 The fully qualified Java class name for this property.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

962 APPENDIX D
JSF configuration

D.2.3 <attribute>

UI extensions, such as UI components and converters, may accept attributes that
modify their behavior. These are usually added dynamically (via the attributes
property), unlike strongly typed properties. The <attribute> element’s child ele-
ments are listed in table D.4.

<default-value> 0 or 1 The property’s default value.

<suggested-value> 0 or 1 The property's suggested value. In tools, the property
may be initialized to this value (for instance, in a
property inspector).

<property-extension> 0 or more Extra element for use by tools and implementations.

Table D.3 Child elements for <property> (continued)

Element Name
Number of
Instances

Description

Table D.4 Child elements for <attribute>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would
usually have one instance per language (see section D.1).

<display-name> 0 or more The name to be displayed in tools. You would usually have
one instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1).
You would usually have one instance per language (see
section D.1).

<attribute-name> 1 The attribute name.

<attribute-class> 1 The fully qualified Java class name for this attribute.

<default-value> 0 or 1 The attribute’s default value.

<suggested-value> 0 or 1 The attribute’s suggested value. In tools, the attribute
may be initialized to this value (for instance, in a
property inspector).

<attribute-extension> 0 or more Extra element for use by tools and implementations.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Everyday configuration and pluggable classes 963

D.2.4 <facet>

UI components and renderers support name child-like components called facets.
Facets are declared using the <facet> element, usually to help with tool support;
table D.5 lists all of the child elements.

D.3 Everyday configuration and pluggable classes

In this section, we examine the configuration elements you use during the course
of normal application development.

D.3.1 <application>

The <application> element contains basic configuration information, such as the
supported locales, default render kit, and message bundle. It’s also where you
extend JSF’s functionality with pluggable classes. The child elements are listed
in table D.6.

Table D.5 Child elements for <facet>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would usually
have one instance per language (see section D.1).

<display-name> 0 or more The name to be displayed in tools. You would usually have one
instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1). You would
usually have one instance per language (see section D.1).

<facet-name> 1 The facet name.

<facet-extension> 0 or more Extra element for use by tools and implementations.

Table D.6 Child elements for <application>

Element Name
Number of
Instances

Description

<action-listener> 0 or 1 The fully qualified Java class name for a replacement
action listener.

<default-render-kit-id> 0 or 1 The default render kit identifier; must map to a render kit
identifier defined in a configuration file (either the appli-
cation's configuration file or one included in a JAR).
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

964 APPENDIX D
JSF configuration

For more information on pluggable classes, see online extension appendix C.

<locale-config>
The <locale-config> element is used within an <application> element to define
the locales that the application supports. A locale string is made up of a language
code, a country code (optional), and a variant (optional), with an underscore (_)
or hyphen (-) in between. For example, U.S. English is “en_US” (see online exten-
sion appendix E for a list of language and country codes). Table D.7 lists the
<locale-config> required elements.

<message-bundle> 0 or 1 The base name of the application's message resource
bundle, which should exist somewhere in the resource
path. Strings defined in this bundle can replace standard
validation and conversion error messages.

<navigation-handler> 0 or 1 The fully qualified Java class name for a replacement
NavigationHandler.

<view-handler> 0 or 1 The fully qualified Java class name for a replacement
ViewHandler.

<state-manager> 0 or 1 The fully qualified Java class name for a replacement
StateManager.

<property-resolver> 0 or 1 The fully qualified Java class name for a replacement
PropertyResolver.

<variable-resolver> 0 or 1 The fully qualified Java class name for a replacement
VariableResolver.

<locale-config> 0 or 1 The list of supported locales and the default locale. See
the <locale-config> section.

Table D.7 Child elements for <locale-config>

Element Name
Number of
Instances

Description

<default-locale> 0 or 1 The locale string for the default locale this application
should support. If not specified, the default locale for the
VM will be used.

Table D.6 Child elements for <application> (continued)

Element Name
Number of
Instances

Description
<supported-locale> 0 or
more

The locale string for a locale supported by the application.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Everyday configuration and pluggable classes 965

The user’s current locale is determined based on a client application’s locale set-
tings and the locales supported by the application itself. Web browsers send an
HTTP header that specifies the languages they support. So, for JSF HTML appli-
cations, the user’s locale is selected based on the union of the browser’s locales
and the application’s supported locales.

 For example, if your browser’s primary language is Spanish (es_ES) and you
access a JSF application that supports French (fr or fr_FR) as the default and Span-
ish, you’ll see Spanish text. But, if the JSF application doesn’t support Spanish,
you’ll see French instead.

D.3.2 <managed-bean>

The <managed-bean> element is used to configure a managed bean, which will be
created and initialized by the Managed Bean Creation facility the first time it is
requested by a JSF EL expression. For a detailed discussion of managed bean con-
figuration, see chapter 3. The supported child elements are listed in table D.8.

Table D.8 Child elements for <managed-bean>

Element name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would
usually have one instance per language (see section D.1).

<display-name> 0 or more The name to be displayed in tools. You would usually have
one instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1). You
would usually have one instance per language (see
section D.1).

<managed-bean-name> 1 The name of this bean (used in JSP, JSTL, or JSF EL
expressions).

<managed-bean-class> 1 Fully qualified Java class name for this bean.

<managed-bean-scope> 1 Web application scope for this bean (application, session,
or request).

<managed-property> 0 or more Specific properties to be initialized when this bean is cre-
ated (see the <managed-property> section). Any prop-
erties not explicitly declared will retain any values set in the
bean's no-argument constructor. If you specify a
<managed-property> element, you cannot specify
<map-entries> or <list-entries>.
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

966 APPENDIX D
JSF configuration

<managed-property>
The <managed-property> element describes a property that can be initialized when
a managed bean is first created; its child elements are listed in table D.9.

<map-entries> 0 or 1 List of entries if this managed bean is a Map instance (see
the <map-entries> section.) If you specify a
<map-entries> element, you cannot specify a
<managed-property> or <list-entries> element.

<list-entries> 0 or 1 List of elements if this managed bean is a List (see the
<list-entries> section). If you specify a
<list-entries> element, you cannot specify a
<managed-property> or <map-entries> element.

Table D.9 Child elements for <managed-property>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You
would usually have one instance per language (see
section D.1).

<display-name> 0 or more The name to be displayed in tools. You would usually
have one instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1).
You would usually have one instance per language (see
section D.1).

<managed-property-name> 1 The canonical name of the property (must be a Java-
Bean property).

<managed-property-class> 1 The fully qualified Java class name for this property, or
primitive type (int, boolean, char, and so on).

<value> 0 or 1 Value to initialize this property with. Must be
convertible to the property's class. You must select
either this element or <null-value>,
<map-entries>, or <list-entries>.

<null-value> 0 or 1 Initialize this property to null. This is only valid if the
property's type is not a primitive. You must select either
this element or <value>, <map-entries>, or
<list-entries>.

Table D.8 Child elements for <managed-bean> (continued)

Element name
Number of
Instances

Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Everyday configuration and pluggable classes 967

<map-entries>
The <map-entries> element initializes either a managed bean or managed bean
property that is a Map. Its child elements are listed in table D.10.

<map-entry>
The <map-entry> element specifies an individual name/value pair within a <map-
entries> element. Its child elements are listed in table D.11.

<map-entries> 0 or 1 Initialize a property of type Map (see the
<map-entries> section). If the property is null, a
new HashMap will be created. If the property has
already been initialized, any specified entries will be
added to it. You must select either this element or
<value>, <null-value>, or <list-entries>.

<list-entries> 0 or 1 Initialize a property of type List or array (see the
<list-entries> section). If the property is null, a
new ArrayList will be created. If the property has
already been initialized, any specified entries will be
added to it. You must select either this element or
<value>, <null-value>, or <map-entries>.

Table D.10 Child elements for <map-entries>

Element Name
Number of
Instances

Description

<key-class> 0 or 1 The fully qualified Java class name for keys in this Map. If omitted, keys
are assumed to be strings.

<value-class> 0 or 1 The fully qualified Java class name for values in this Map. If omitted,
values are assumed to be strings.

<map-entry> 0 or more The actual entry to be added to the Map (see the <map-entry> section).

Table D.11 Child elements for <map-entry>

Element Name
Number of
Instances

Description

<key> 0 or 1 The value of this entry's key. Must be convertible to the type specified in
the <key-class> element (which is a child of <map-entries>).

Table D.9 Child elements for <managed-property> (continued)

Element Name
Number of
Instances

Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

968 APPENDIX D
JSF configuration

<list-entries>
The <list-entries> element initializes a managed bean that is a List, or a man-
aged bean property that is a List or array. Its child elements are listed in table D.12.

D.3.3 <referenced-bean>

Applications may use scoped variables, which are set in code instead of by the
Managed Bean Creation facility. Such variables can be declared with the <refer-
enced-bean> element so that tools know when they’re available. The child ele-
ments for <referenced-bean> are listed in table D.13.

<value> 0 or 1 This entry’s value. Must be convertible to the type specified in the
<value-class> element (which is a child of <map-entries>).

<null-value> 0 or 1 Sets this entry's value to null.

Table D.12 Child elements for <list-entries>

Element Name
Number of
Instances

Description

<value-class> 0 or 1 The fully qualified Java class name or primitive type for values in this
List or array. If omitted, values are assumed to be strings.

<value> 0 or more An entry's value. Must be convertible to the type specified in the
<value-class> element.

<null-value> 0 or more Sets an entry's value to null. Not valid if the type specified in the
<value-class> element is a primitive type.

Table D.11 Child elements for <map-entry> (continued)

Element Name
Number of
Instances

Description

Table D.13 Child elements for <referenced-bean>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You
would usually have one instance per language (see
section D.1).

<display-name> 0 or more The name to be displayed in tools. You would usually
have one instance per language (see section D.1).
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Everyday configuration and pluggable classes 969

D.3.4 <navigation-rule>

Navigation rules, configured with the <navigation-rule> element, control the
flow from one view to another. The child elements for <navigation-rule> are
listed in table D.14.

<navigation-case>
Within a <navigation-rule> element, a <navigation-case> maps a specific logical
outcome and/or action method to another view. Its child elements are shown in

<icon> 0 or more The icon to be displayed in tools (see section D.2.1).
You would usually have one instance per language (see
section D.1).

<referenced-bean-name> 1 The name of this bean will be stored under (used in
JSP, JSTL, or JSF EL expressions).

<referenced-bean-class> 1 Fully qualified Java class name for this bean.

Table D.13 Child elements for <referenced-bean> (continued)

Element Name
Number of
Instances

Description

Table D.14 Child elements for <navigation-rule>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would usually
have one instance per language (see section D.1).

<display-name> 0 or more The name to be displayed in tools. You would usually have one
instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1). You would
usually have one instance per language (see section D.1).

<from-view-id> 0 or 1 The view identifier (such as “/login.jsp”) for which this rule
applies. For the default view handler (JSP), all identifiers must
begin with a slash “/”, and you can use trailing wildcards to per-
form partial matches, such as “/protected/*”. Also, “*” (or omit-
ting this element altogether) matches all views. You can have
multiple rules with the same view identifier.

<navigation-case> 0 or more Maps a specific logical outcome and/or action method to
another view (see the <navigation-case> section).
table D.15.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

970 APPENDIX D
JSF configuration

D.4 User interface extensions

All of JSF’s UI extensions—components, renderers, validators, and converters—
are configured through an application configuration file. You can use these con-
figuration elements to add new UI extensions or replace existing ones.

NOTE Even though you can specify metadata for UI extensions with standard
JSF configuration files, most IDE vendors require additional work to in-
tegrate extensions into their IDEs. This process should be standardized
in the future.

D.4.1 <component>

Table D.15 Child elements for <navigation-rule>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would usually
have one instance per language (see section D.1).

<display-name> 0 or more The name to be displayed in tools. You would usually have one
instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1). You would
usually have one instance per language (see section D.1).

from-action 0 or 1 The method-binding expression for the action method executed by
the user; must have the proper syntax (i.e., "#{myBean.
myMethod}"). If not specified, this case will match regardless of
the action method.

from-outcome 0 or 1 The logical outcome for this navigation case. It should be
returned by a UI component or action method on the view for which
this case applies. If not specified, this case will match regardless of
the outcome.

to-view-id 1 The identifier of the view to display to the user if this navigation case
matches. With the default view handler (JSP), this should be a JSP
patch with a leading slash (“/content/about.jsp”).

redirect 0 or 1 Indicates whether navigation should be handled via an HTTP redirect
as opposed to a forward inside the web container. The primary
benefit is that users see the actual URL of the page they are viewing.
If not specified, a web container forward will be executed.
The <component> element registers a single UI component with JSF. Only two
child elements are required, but if you are integrating your component with a

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

User interface extensions 971

tool, you should supply as much metadata as possible. This element’s children are
listed in table D.16.

D.4.2 <render-kit>

The <render-kit> element can be used to add new renderers to the standard
HTML render kit, or create a new render kit. Its child elements are described
in table D.17.

Table D.16 Child elements for <component>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would usually have
one instance per language (see section D.1).

<display-
name>

0 or more The name to be displayed in tools. You would usually have one
instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1). You would
usually have one instance per language (see section D.1).

<component-
type>

1 The unique name for this component (usually a qualified string like
“javax.faces.UIOutput”). The “javax.faces” prefix is reserved for use by
the JSF implementation, but you can change the class of standard
components by using the standard component's type.

<component-
class>

1 The fully qualified Java class name for this component. Must imple-
ment the javax.faces.component.UIComponent interface.

<facet> 0 or more A subordinate named component, like a header or footer (see s
ection D.2.4). Used by tools.

<attribute> 0 or more A named attribute recognized by this UI component (see
section D.2.3). Used by tools.

<property> 0 or more A JavaBean property exposed by this UI component for use with tools
(see section D.2.2).

<component-
extension>

0 or more Extra element for use by tools and implementations.

Table D.17 Child elements for <render-kit>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would usually
have one instance per language (see section D.1).
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

972 APPENDIX D
JSF configuration

<renderer>
The <renderer> element defines a single renderer, adds it to the render kit refer-
enced by the enclosing <render-kit> element, and associates it with a component
family. Its child elements are listed in table D.18.

<display-name> 0 or more The name to be displayed in tools. You would usually have one
instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1). You would
usually have one instance per language (see section D.1).

<render-kit-id> 0 or 1 The unique name for this render kit. If not specified, the default
render kit (“HTML_BASIC”) will be used.

<render-kit-class> 0 or 1 The fully qualified Java class name for this render kit. Must be a
subclass of javax.faces.renderer.RenderKit. If not
specified, the implementation's default RenderKit
implementation will be used.

<renderer> 0 or more Specifies a renderer that should be added to this render kit (see
the <renderer> section).

Table D.18 Child elements for <renderer>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would
usually have one instance per language (see section D.1).

<display-name> 0 or more The name to be displayed in tools.

<icon> 0 or more The icon to be displayed in tools (see section D.2.1).

<renderer-type> 1 The unique name for this renderer (usually a qualified string
like “javax.faces.Form”). The “javax.faces” prefix is reserved for
use by the JSF implementation, but you can change the class
of a standard renderer by using the standard renderer's type.

<renderer-class> 1 The fully qualified Java class name for this renderer. Must be
a subclass of javax.faces.renderer.Renderer.

<facet> 0 or more A subordinate named component, like a header or footer,
expected in the rendered UI component (see section D.2.4).
Used by tools.

Table D.17 Child elements for <render-kit> (continued)

Element Name
Number of
Instances

Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

User interface extensions 973

D.4.3 <validator>

The <validator> element defines a named validator class (not a validator
method) that can be associated with an input control. Its child elements are
shown in table D.19.

D.4.4 <converter>

The <converter> element defines a converter, which can be registered by type or
identifier. If you want to register a converter by both type and identifier, simply

<attribute> 0 or more A renderer-specific named attribute expected in the renderer
UI component (see section D.2.3). Used by tools.

<renderer-extension> 0 or more Extra element for use by tools and implementations.

Table D.18 Child elements for <renderer> (continued)

Element Name
Number of
Instances

Description

Table D.19 Child elements for <validator>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would usually
have one instance per language (see section D.1).

<display-name> 0 or more The name to be displayed in tools. You would usually have one
instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1). You would
usually have one instance per language (see section D.1).

<validator-id> 1 The unique name for this validator, such as “javax.faces.
LongRange”. The “javax.faces” prefix is reserved for use by the
JSF implementation, but you can change the class of standard
validators by using the standard validator’s type.

<validator-class> 1 The fully qualified Java class name for this validator. Must
implement the javax.faces.validator.Validator
interface.

<attribute> 0 or more A named attribute recognized by this validator (see
section D.2.3). Used by tools.

<property> 0 or more A JavaBean property exposed by this validator for use with tools
(see section D.2.2).
declare it twice. The child elements are listed in table D.20.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

974 APPENDIX D
JSF configuration

D.5 Advanced features

The following sections describe configuration elements that are not commonly
used but that are useful for extending JSF’s capabilities in some cases.

D.5.1 <lifecycle>

The <lifecycle> element allows you to register one or more phase listeners,
which are executed before or after phases of the Request Processing Lifecycle. It
accepts a single element, which is described in table D.21.

Table D.20 Child elements for <converter>

Element Name
Number of
Instances

Description

<description> 0 or more A text description, usually only one sentence. You would
usually have one instance per language (see section D.1).

<display-name> 0 or more The name to be displayed in tools. You would usually have
one instance per language (see section D.1).

<icon> 0 or more The icon to be displayed in tools (see section D.2.1).
You would usually have one instance per language (see
section D.1).

<converter-id> 0 or 1 The unique name for this converter, such as “javax.faces.
DateTime”. The “javax.faces” prefix is reserved for use by
the JSF implementation, but you can change the class of
standard converters by using the standard converter’s type.
You can specify either a <converter-id> element or a
<converter-for-class> element.

<converter-for-class> 0 or 1 The fully qualified Java class name this converter handles. If
this element is specified, JSF will automatically use this
converter every time the class is encountered. You can
specify either a <converter-id> element or a
<converter-for-class> element.

<converter-class> 1 The fully qualified Java class name for this component.
Must implement the javax.faces.convert.
Converter interface.

<attribute> 0 or more A named attribute recognized by this validator (see
section D.2.3). Used by tools.

<property> 0 or more A JavaBean property exposed by this validator for use with
tools (see section D.2.2).
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Advanced features 975

D.5.2 <factory>

All of JSF’s core classes (other than pluggable classes) are created via factories that
can be configured with the <factory> element. Multiple factories of the same type
can be specified, and they will be chained together (see appendix C). If this ele-
ment is not specified, the default factories are used. This element is described in
table D.22.

Table D.21 Child element for <lifecycle>

Element Name
Number of
Instances

Description

<phase-listener> 0 or more The fully qualified Java class name for a PhaseListener
implementation.

Table D.22 Child elements for <factory>

Element Name
Number of
Instances

Description

<application-factory> 0 or more The fully qualified Java class name for an
ApplicationFactory subclass

<faces-context-factory> 0 or more The fully qualified Java class name for a
FacesContextFactory subclass

<lifecycle-factory> 0 or more The fully qualified Java class name for a
LifecycleFactory subclass

<render-kit-factory> 0 or more The fully qualified Java class name for a
RenderKitFactory subclass
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Time zone,
country, language,
and currency codes
976

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Time zone codes 977

In chapter 6, we covered internationalization, localization, and type conversion.
All of these features have one unique property: they allow your application to work
for users from parts of the world. The world is a big place, so the software devel-
opment industry has categorized different regions with codes to make life easier.
Time zone codes categorize different regions by their relation to Greenwich Mean
Time (GMT). Language codes represent specific languages, and country codes
represent specific countries. (A language code and a country code combined make
up a locale.) Currency codes represent specific currencies.

 This appendix provides listings of all of these codes. See chapter 6 for details
about where to use them.

E.1 Time zone codes

When using the DateTime converter, you can specify a timeZone property, so that
the value is converted to the appropriate time zone. (Converters are covered in
chapter 6.) To do this, you need to use a time zone identifier. The valid time zone
identifiers, as of JDK 1.4.2, are listed in table E.1.

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT.

Time zone identifier Description Time zone identifier Description

Etc/GMT+12 GMT-12:00 Africa/Luanda Western African Time

Etc/GMT+11 GMT-11:00 Africa/Malabo Western African Time

MIT West Samoa Time Africa/Ndjamena Western African Time

Pacific/Apia West Samoa Time Africa/Niamey Western African Time

Pacific/Midway Samoa Standard Time Africa/Porto-Novo Western African Time

Pacific/Niue Niue Time Africa/Tunis Central European Time

Pacific/Pago_Pago Samoa Standard Time Africa/Windhoek Western African Time

Pacific/Samoa Samoa Standard Time Arctic/Longyearbyen Central European Time

US/Samoa Samoa Standard Time Atlantic/Jan_Mayen Eastern Greenland Time

America/Adak Hawaii-Aleutian
Standard Time

CET Central European Time

continued on next page
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

978 APPENDIX E
Time zone, country, language, and currency codes

America/Atka Hawaii-Aleutian
Standard Time

ECT Central European Time

Etc/GMT+10 GMT-10:00 Etc/GMT-1 GMT+01:00

HST Hawaii Standard Time Europe/Amsterdam Central European Time

Pacific/Fakaofo Tokelau Time Europe/Andorra Central European Time

Pacific/Honolulu Hawaii Standard Time Europe/Belgrade Central European Time

Pacific/Johnston Hawaii Standard Time Europe/Berlin Central European Time

Pacific/Rarotonga Cook Is. Time Europe/Bratislava Central European Time

Pacific/Tahiti Tahiti Time Europe/Brussels Central European Time

SystemV/HST10 Hawaii Standard Time Europe/Budapest Central European Time

US/Aleutian Hawaii-Aleutian
Standard Time

Europe/Copenhagen Central European Time

US/Hawaii Hawaii Standard Time Europe/Gibraltar Central European Time

Pacific/Marquesas Marquesas Time Europe/Ljubljana Central European Time

AST Alaska Standard Time Europe/Luxembourg Central European Time

America/Anchorage Alaska Standard Time Europe/Madrid Central European Time

America/Juneau Alaska Standard Time Europe/Malta Central European Time

America/Nome Alaska Standard Time Europe/Monaco Central European Time

America/Yakutat Alaska Standard Time Europe/Oslo Central European Time

Etc/GMT+9 GMT-09:00 Europe/Paris Central European Time

Pacific/Gambier Gambier Time Europe/Prague Central European Time

SystemV/YST9 Gambier Time Europe/Rome Central European Time

SystemV/YST9YDT Alaska Standard Time Europe/San_Marino Central European Time

US/Alaska Alaska Standard Time Europe/Sarajevo Central European Time

America/Dawson Pacific Standard Time Europe/Skopje Central European Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Time zone codes 979

America/Ensenada Pacific Standard Time Europe/Stockholm Central European Time

America/Los_Angeles Pacific Standard Time Europe/Tirane Central European Time

America/Tijuana Pacific Standard Time Europe/Vaduz Central European Time

America/Vancouver Pacific Standard Time Europe/Vatican Central European Time

America/Whitehorse Pacific Standard Time Europe/Vienna Central European Time

Canada/Pacific Pacific Standard Time Europe/Warsaw Central European Time

Canada/Yukon Pacific Standard Time Europe/Zagreb Central European Time

Etc/GMT+8 GMT-08:00 Europe/Zurich Central European Time

Mexico/BajaNorte Pacific Standard Time MET Middle Europe Time

PST Pacific Standard Time Poland Central European Time

PST8PDT Pacific Standard Time ART Eastern European Time

Pacific/Pitcairn Pitcairn Standard Time Africa/Blantyre Central African Time

SystemV/PST8 Pitcairn Standard Time Africa/Bujumbura Central African Time

SystemV/PST8PDT Pacific Standard Time Africa/Cairo Eastern European Time

US/Pacific Pacific Standard Time Africa/Gaborone Central African Time

US/Pacific-New Pacific Standard Time Africa/Harare Central African Time

America/Boise Mountain Standard Time Africa/Johannesburg South Africa Standard Time

America/
Cambridge_Bay

Mountain Standard Time Africa/Kigali Central African Time

America/Chihuahua Mountain Standard Time Africa/Lubumbashi Central African Time

America/
Dawson_Creek

Mountain Standard Time Africa/Lusaka Central African Time

America/Denver Mountain Standard Time Africa/Maputo Central African Time

America/Edmonton Mountain Standard Time Africa/Maseru South Africa Standard Time

America/Hermosillo Mountain Standard Time Africa/Mbabane South Africa Standard Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

980 APPENDIX E
Time zone, country, language, and currency codes

America/Inuvik Mountain Standard Time Africa/Tripoli Eastern European Time

America/Mazatlan Mountain Standard Time Asia/Amman Eastern European Time

America/Phoenix Mountain Standard Time Asia/Beirut Eastern European Time

America/Shiprock Mountain Standard Time Asia/Damascus Eastern European Time

America/Yellowknife Mountain Standard Time Asia/Gaza Eastern European Time

Canada/Mountain Mountain Standard Time Asia/Istanbul Eastern European Time

Etc/GMT+7 GMT-07:00 Asia/Jerusalem Israel Standard Time

MST Mountain Standard Time Asia/Nicosia Eastern European Time

MST7MDT Mountain Standard Time Asia/Tel_Aviv Israel Standard Time

Mexico/BajaSur Mountain Standard Time CAT Central African Time

Navajo Mountain Standard Time EET Eastern European Time

PNT Mountain Standard Time Egypt Eastern European Time

SystemV/MST7 Mountain Standard Time Etc/GMT-2 GMT+02:00

SystemV/MST7MDT Mountain Standard Time Europe/Athens Eastern European Time

US/Arizona Mountain Standard Time Europe/Bucharest Eastern European Time

US/Mountain Mountain Standard Time Europe/Chisinau Eastern European Time

America/Belize Central Standard Time Europe/Helsinki Eastern European Time

America/Cancun Central Standard Time Europe/Istanbul Eastern European Time

America/Chicago Central Standard Time Europe/Kaliningrad Eastern European Time

America/Costa_Rica Central Standard Time Europe/Kiev Eastern European Time

America/El_Salvador Central Standard Time Europe/Minsk Eastern European Time

America/Guatemala Central Standard Time Europe/Nicosia Eastern European Time

America/Managua Central Standard Time Europe/Riga Eastern European Time

America/Menominee Central Standard Time Europe/Simferopol Eastern European Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Time zone codes 981

America/Merida Central Standard Time Europe/Sofia Eastern European Time

America/Mexico_City Central Standard Time Europe/Tallinn Eastern European Time

America/Monterrey Central Standard Time Europe/Tiraspol Eastern European Time

America/
North_Dakota/Center

Central Standard Time Europe/Uzhgorod Eastern European Time

America/Rainy_River Central Standard Time Europe/Vilnius Eastern European Time

America/Rankin_Inlet Eastern Standard Time Europe/Zaporozhye Eastern European Time

America/Regina Central Standard Time Israel Israel Standard Time

America/Swift_Current Central Standard Time Libya Eastern European Time

America/Tegucigalpa Central Standard Time Turkey Eastern European Time

America/Winnipeg Central Standard Time Africa/Addis_Ababa Eastern African Time

CST Central Standard Time Africa/Asmera Eastern African Time

CST6CDT Central Standard Time Africa/
Dar_es_Salaam

Eastern African Time

Canada/Central Central Standard Time Africa/Djibouti Eastern African Time

Canada/
East-Saskatchewan

Central Standard Time Africa/Kampala Eastern African Time

Canada/Saskatchewan Central Standard Time Africa/Khartoum Eastern African Time

Chile/EasterIsland Easter Is. Time Africa/Mogadishu Eastern African Time

Etc/GMT+6 GMT-06:00 Africa/Nairobi Eastern African Time

Mexico/General Central Standard Time Antarctica/Syowa Syowa Time

Pacific/Easter Easter Is. Time Asia/Aden Arabia Standard Time

Pacific/Galapagos Galapagos Time Asia/Baghdad Arabia Standard Time

SystemV/CST6 Central Standard Time Asia/Bahrain Arabia Standard Time

SystemV/CST6CDT Central Standard Time Asia/Kuwait Arabia Standard Time

US/Central Central Standard Time Asia/Qatar Arabia Standard Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

982 APPENDIX E
Time zone, country, language, and currency codes

America/Bogota Colombia Time Asia/Riyadh Arabia Standard Time

America/Cayman Eastern Standard Time EAT Eastern African Time

America/Detroit Eastern Standard Time Etc/GMT-3 GMT+03:00

America/Eirunepe Acre Time Europe/Moscow Moscow Standard Time

America/Fort_Wayne Eastern Standard Time Indian/Antananarivo Eastern African Time

America/Grand_Turk Eastern Standard Time Indian/Comoro Eastern African Time

America/Guayaquil Ecuador Time Indian/Mayotte Eastern African Time

America/Havana Central Standard Time W-SU Moscow Standard Time

America/Indiana/
Indianapolis

Eastern Standard Time Asia/Riyadh87 GMT+03:07

America/Indiana/Knox Eastern Standard Time Asia/Riyadh88 GMT+03:07

America/Indiana/
Marengo

Eastern Standard Time Asia/Riyadh89 GMT+03:07

America/Indiana/Vevay Eastern Standard Time Mideast/Riyadh87 GMT+03:07

America/Indianapolis Eastern Standard Time Mideast/Riyadh88 GMT+03:07

America/Iqaluit Eastern Standard Time Mideast/Riyadh89 GMT+03:07

America/Jamaica Eastern Standard Time Asia/Tehran Iran Standard Time

America/Kentucky/
Louisville

Eastern Standard Time Iran Iran Standard Time

America/Kentucky/
Monticello

Eastern Standard Time Asia/Aqtau Aqtau Time

America/Knox_IN Eastern Standard Time Asia/Baku Azerbaijan Time

America/Lima Peru Time Asia/Dubai Gulf Standard Time

America/Louisville Eastern Standard Time Asia/Muscat Gulf Standard Time

America/Montreal Eastern Standard Time Asia/Oral Oral Time

America/Nassau Eastern Standard Time Asia/Tbilisi Georgia Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Time zone codes 983

America/New_York Eastern Standard Time Asia/Yerevan Armenia Time

America/Nipigon Eastern Standard Time Etc/GMT-4 GMT+04:00

America/Panama Eastern Standard Time Europe/Samara Samara Time

America/Pangnirtung Eastern Standard Time Indian/Mahe Seychelles Time

America/Port-au-
Prince

Eastern Standard Time Indian/Mauritius Mauritius Time

America/Porto_Acre Acre Time Indian/Reunion Reunion Time

America/Rio_Branco Acre Time NET Armenia Time

America/Thunder_Bay Eastern Standard Time Asia/Kabul Afghanistan Time

Brazil/Acre Acre Time Asia/Aqtobe Aqtobe Time

Canada/Eastern Eastern Standard Time Asia/Ashgabat Turkmenistan Time

Cuba Central Standard Time Asia/Ashkhabad Turkmenistan Time

EST Eastern Standard Time Asia/Bishkek Kirgizstan Time

EST5EDT Eastern Standard Time Asia/Dushanbe Tajikistan Time

Etc/GMT+5 GMT-05:00 Asia/Karachi Pakistan Time

IET Eastern Standard Time Asia/Samarkand Turkmenistan Time

Jamaica Eastern Standard Time Asia/Tashkent Uzbekistan Time

SystemV/EST5 Eastern Standard Time Asia/Yekaterinburg Yekaterinburg Time

SystemV/EST5EDT Eastern Standard Time Etc/GMT-5 GMT+05:00

US/East-Indiana Eastern Standard Time Indian/Kerguelen French Southern &
Antarctic Lands Time

US/Eastern Eastern Standard Time Indian/Maldives Maldives Time

US/Indiana-Starke Eastern Standard Time PLT Pakistan Time

US/Michigan Eastern Standard Time Asia/Calcutta India Standard Time

America/Anguilla Atlantic Standard Time IST India Standard Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

984 APPENDIX E
Time zone, country, language, and currency codes

America/Antigua Atlantic Standard Time Asia/Katmandu Nepal Time

America/Aruba Atlantic Standard Time Antarctica/Mawson Mawson Time

America/Asuncion Paraguay Time Antarctica/Vostok Vostok Time

America/Barbados Atlantic Standard Time Asia/Almaty Alma-Ata Time

America/Boa_Vista Amazon Standard Time Asia/Colombo Sri Lanka Time

America/Caracas Venezuela Time Asia/Dacca Bangladesh Time

America/Cuiaba Amazon Standard Time Asia/Dhaka Bangladesh Time

America/Curacao Atlantic Standard Time Asia/Novosibirsk Novosibirsk Time

America/Dominica Atlantic Standard Time Asia/Omsk Omsk Time

America/Glace_Bay Atlantic Standard Time Asia/Qyzylorda Qyzylorda Time

America/Goose_Bay Atlantic Standard Time Asia/Thimbu Bhutan Time

America/Grenada Atlantic Standard Time Asia/Thimphu Bhutan Time

America/Guadeloupe Atlantic Standard Time BST Bangladesh Time

America/Guyana Guyana Time Etc/GMT-6 GMT+06:00

America/Halifax Atlantic Standard Time Indian/Chagos Indian Ocean Territory Time

America/La_Paz Bolivia Time Asia/Rangoon Myanmar Time

America/Manaus Amazon Standard Time Indian/Cocos Cocos Islands Time

America/Martinique Atlantic Standard Time Antarctica/Davis Davis Time

America/Montserrat Atlantic Standard Time Asia/Bangkok Indochina Time

America/Port_of_Spain Atlantic Standard Time Asia/Hovd Hovd Time

America/Porto_Velho Amazon Standard Time Asia/Jakarta West Indonesia Time

America/Puerto_Rico Atlantic Standard Time Asia/Krasnoyarsk Krasnoyarsk Time

America/Santiago Chile Time Asia/Phnom_Penh Indochina Time

America/
Santo_Domingo

Atlantic Standard Time Asia/Pontianak West Indonesia Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Time zone codes 985

America/St_Kitts Atlantic Standard Time Asia/Saigon Indochina Time

America/St_Lucia Atlantic Standard Time Asia/Vientiane Indochina Time

America/St_Thomas Atlantic Standard Time Etc/GMT-7 GMT+07:00

America/St_Vincent Atlantic Standard Time Indian/Christmas Christmas Island Time

America/Thule Atlantic Standard Time VST Indochina Time

America/Tortola Atlantic Standard Time Antarctica/Casey Western Standard Time
(Australia)

America/Virgin Atlantic Standard Time Asia/Brunei Brunei Time

Antarctica/Palmer Chile Time Asia/Chongqing China Standard Time

Atlantic/Bermuda Atlantic Standard Time Asia/Chungking China Standard Time

Atlantic/Stanley Falkland Is. Time Asia/Harbin China Standard Time

Brazil/West Amazon Standard Time Asia/Hong_Kong Hong Kong Time

Canada/Atlantic Atlantic Standard Time Asia/Irkutsk Irkutsk Time

Chile/Continental Chile Time Asia/Kashgar China Standard Time

Etc/GMT+4 GMT-04:00 Asia/Kuala_Lumpur Malaysia Time

PRT Atlantic Standard Time Asia/Kuching Malaysia Time

SystemV/AST4 Atlantic Standard Time Asia/Macao China Standard Time

SystemV/AST4ADT Atlantic Standard Time Asia/Macau China Standard Time

America/St_Johns Newfoundland Standard
Time

Asia/Makassar Central Indonesia Time

CNT Newfoundland Standard
Time

Asia/Manila Philippines Time

Canada/Newfoundland Newfoundland Standard
Time

Asia/Shanghai China Standard Time

AGT Argentine Time Asia/Singapore Singapore Time

America/Araguaina Brazil Time Asia/Taipei China Standard Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

986 APPENDIX E
Time zone, country, language, and currency codes

America/Belem Brazil Time Asia/Ujung_Pandang Central Indonesia Time

America/Buenos_Aires Argentine Time Asia/Ulaanbaatar Ulaanbaatar Time

America/Catamarca Argentine Time Asia/Ulan_Bator Ulaanbaatar Time

America/Cayenne French Guiana Time Asia/Urumqi China Standard Time

America/Cordoba Argentine Time Australia/Perth Western Standard Time
(Australia)

America/Fortaleza Brazil Time Australia/West Western Standard Time
(Australia)

America/Godthab Western Greenland Time CTT China Standard Time

America/Jujuy Argentine Time Etc/GMT-8 GMT+08:00

America/Maceio Brazil Time Hongkong Hong Kong Time

America/Mendoza Argentine Time PRC China Standard Time

America/Miquelon Pierre & Miquelon
Standard Time

Singapore Singapore Time

America/Montevideo Uruguay Time Asia/Choibalsan Choibalsan Time

America/Paramaribo Suriname Time Asia/Dili East Timor Time

America/Recife Brazil Time Asia/Jayapura East Indonesia Time

America/Rosario Argentine Time Asia/Pyongyang Korea Standard Time

America/Sao_Paulo Brazil Time Asia/Seoul Korea Standard Time

Antarctica/Rothera Rothera Time Asia/Tokyo Japan Standard Time

BET Brazil Time Asia/Yakutsk Yakutsk Time

Brazil/East Brazil Time Etc/GMT-9 GMT+09:00

Etc/GMT+3 GMT-03:00 JST Japan Standard Time

America/Noronha Fernando de Noronha
Time

Japan Japan Standard Time

Atlantic/
South_Georgia

South Georgia Standard
Time

Pacific/Palau Palau Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Time zone codes 987

Brazil/DeNoronha Fernando de Noronha
Time

ROK Korea Standard Time

Etc/GMT+2 GMT-02:00 ACT Central Standard Time
(Northern Territory)

America/Scoresbysund Eastern Greenland Time Australia/Adelaide Central Standard Time
(South Australia)

Atlantic/Azores Azores Time Australia/Broken_Hill Central Standard Time
(South Australia/New
South Wales)

Atlantic/Cape_Verde Cape Verde Time Australia/Darwin Central Standard Time
(Northern Territory)

Etc/GMT+1 GMT-01:00 Australia/North Central Standard Time
(Northern Territory)

Africa/Abidjan Greenwich Mean Time Australia/South Central Standard Time
(South Australia)

Africa/Accra Greenwich Mean Time Australia/Yancow-
inna

Central Standard Time
(South Australia/New
South Wales)

Africa/Bamako Greenwich Mean Time AET Eastern Standard Time
(New South Wales)

Africa/Banjul Greenwich Mean Time Antarctica/Dumont-
DUrville

Dumont-d’Urville Time

Africa/Bissau Greenwich Mean Time Asia/Sakhalin Sakhalin Time

Africa/Casablanca Western European Time Asia/Vladivostok Vladivostok Time

Africa/Conakry Greenwich Mean Time Australia/ACT Eastern Standard Time
(New South Wales)

Africa/Dakar Greenwich Mean Time Australia/Brisbane Eastern Standard Time
(Queensland)

Africa/El_Aaiun Western European Time Australia/Canberra Eastern Standard Time
(New South Wales)

continued on next page

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

988 APPENDIX E
Time zone, country, language, and currency codes

Africa/Freetown Greenwich Mean Time Australia/Hobart Eastern Standard Time
(Tasmania)

Africa/Lome Greenwich Mean Time Australia/Lindeman Eastern Standard Time
(Queensland)

Africa/Monrovia Greenwich Mean Time Australia/Melbourne Eastern Standard Time
(Victoria)

Africa/Nouakchott Greenwich Mean Time Australia/NSW Eastern Standard Time
(New South Wales)

Africa/Ouagadougou Greenwich Mean Time Australia/Queen-
sland

Eastern Standard Time
(Queensland)

Africa/Sao_Tome Greenwich Mean Time Australia/Sydney Eastern Standard Time
(New South Wales)

Africa/Timbuktu Greenwich Mean Time Australia/Tasmania Eastern Standard Time
(Tasmania)

America/
Danmarkshavn

Greenwich Mean Time Australia/Victoria Eastern Standard Time
(Victoria)

Atlantic/Canary Western European Time Etc/GMT-10 GMT+10:00

Atlantic/Faeroe Western European Time Pacific/Guam Chamorro Standard Time

Atlantic/Madeira Western European Time Pacific/
Port_Moresby

Papua New Guinea Time

Atlantic/Reykjavik Greenwich Mean Time Pacific/Saipan Chamorro Standard Time

Atlantic/St_Helena Greenwich Mean Time Pacific/Truk Truk Time

Eire Greenwich Mean Time Pacific/Yap Yap Time

Etc/GMT GMT+00:00 Australia/LHI Load Howe Standard Time

Etc/GMT+0 GMT+00:00 Australia/Lord_Howe Load Howe Standard Time

Etc/GMT-0 GMT+00:00 Asia/Magadan Magadan Time

Etc/GMT0 GMT+00:00 Etc/GMT-11 GMT+11:00

Etc/Greenwich Greenwich Mean Time Pacific/Efate Vanuatu Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Time zone codes 989

Etc/UCT Coordinated Universal
Time

Pacific/Guadalcanal Solomon Is. Time

Etc/UTC Coordinated Universal
Time

Pacific/Kosrae Kosrae Time

Etc/Universal Coordinated Universal
Time

Pacific/Noumea New Caledonia Time

Etc/Zulu Coordinated Universal
Time

Pacific/Ponape Ponape Time

Europe/Belfast Greenwich Mean Time SST Solomon Is. Time

Europe/Dublin Greenwich Mean Time Pacific/Norfolk Norfolk Time

Europe/Lisbon Western European Time Antarctica/McMurdo New Zealand Standard
Time

Europe/London Greenwich Mean Time Antarctica/
South_Pole

New Zealand Standard
Time

GB Greenwich Mean Time Asia/Anadyr Anadyr Time

GB-Eire Greenwich Mean Time Asia/Kamchatka Petropavlovsk-Kamchatski
Time

GMT Greenwich Mean Time Etc/GMT-12 GMT+12:00

GMT0 GMT+00:00 Kwajalein Marshall Islands Time

Greenwich Greenwich Mean Time NST New Zealand Standard
Time

Iceland Greenwich Mean Time NZ New Zealand Standard
Time

Portugal Western European Time Pacific/Auckland New Zealand Standard
Time

UCT Coordinated Universal
Time

Pacific/Fiji Fiji Time

UTC Coordinated Universal
Time

Pacific/Funafuti Tuvalu Time

continued on next page

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

990 APPENDIX E
Time zone, country, language, and currency codes

E.2 Language codes

Anytime you want to support additional languages, you’ll need to know the Inter-
national Organization for Standardization (ISO) language code, which is a lower-
case two-letter sting. The two tables that follow list the ISO language codes and a
description of the language they represent, as of JDK 1.4.2. Table E.2 lists them
sorted by language code, and table E.3 lists them sorted by language description.

Universal Coordinated Universal
Time

Pacific/Kwajalein Marshall Islands Time

WET Western European Time Pacific/Majuro Marshall Islands Time

Zulu Coordinated Universal
Time

Pacific/Nauru Nauru Time

Africa/Algiers Central European Time Pacific/Tarawa Gilbert Is. Time

Africa/Bangui Western African Time Pacific/Wake Wake Time

Africa/Brazzaville Western African Time Pacific/Wallis Wallis & Futuna Time

Africa/Ceuta Central European Time NZ-CHAT Chatham Standard Time

Africa/Douala Western African Time Pacific/Chatham Chatham Standard Time

Africa/Kinshasa Western African Time Etc/GMT-13 GMT+13:00

Africa/Lagos Western African Time Pacific/Enderbury Phoenix Is. Time

Africa/Libreville Western African Time Pacific/Tongatapu Tonga Time

Table E.1 When using the time zone attribute with a Date-related converter, you must use one of
these identifiers. Ordered by distance from Greenwich Mean Time (GMT), starting with 12 hours
behind GMT. (continued)

Time zone identifier Description Time zone identifier Description

Table E.2 ISO language codes, as specified by ISO 639-1 (sorted by code)

Code Language Code Language Code Language

aa Afar id Indonesian ro Romanian

ab Abkhazian ie Interlingue ru Russian

af Afrikaans ik Inupiak rw Kinyarwanda

am Amharic is Icelandic sa Sanskrit
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Language codes 991

ar Arabic it Italian sd Sindhi

as Assamese iu Inuktitut (Eskimo) sg Sangro

ay Aymara ja Japanese sh Serbo-Croatian

az Azerbaijani jw Javanese si Singhalese

ba Bashkir ka Georgian sk Slovak

be Byelorussian kk Kazakh sl Slovenian

bg Bulgarian kl Greenlandic sm Samoan

bh Bihari km Cambodian sn Shona

bi Bislama kn Kannada so Somali

bn Bengali Bangla ko Korean sq Albanian

bo Tibetan ks Kashmiri sr Serbian

br Breton ku Kurdish ss Siswati

ca Catalan ky Kirghiz st Sesotho

co Corsican la Latin su Sudanese

cs Czech ln Lingala sv Swedish

cy Welsh lo Laothian sw Swahili

da Danish lt Lithuanian ta Tamil

de German lv Latvian Lettish te Tegulu

dz Bhutani mg Malagasy tg Tajik

el Greek mi Maori th Thai

en English American mk Macedonian ti Tigrinya

eo Esperanto ml Malayalam tk Turkmen

es Spanish mn Mongolian tl Tagalog

et Estonian mo Moldavian tn Setswana

eu Basque mr Marathi to Tonga

Table E.2 ISO language codes, as specified by ISO 639-1 (sorted by code) (continued)

Code Language Code Language Code Language
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

992 APPENDIX E
Time zone, country, language, and currency codes

fa Persian ms Malay tr Turkish

fi Finnish mt Maltese ts Tsonga

fj Fiji my Burmese tt Tatar

fo Faeroese na Nauru tw Twi

fr French ne Nepali ug Uigur

fy Frisian nl Dutch uk Ukrainian

ga Irish no Norwegian ur Urdu

gd Gaelic Scots Gaelic oc Occitan uz Uzbek

gl Galician om Oromo Afan vi Vietnamese

gn Guarani or Oriya vo Volapuk

gu Gujarati pa Punjabi wo Wolof

ha Hausa pl Polish xh Xhosa

he Hebrew ps Pashto Pushto yi Yiddish

hi Hindi pt Portuguese yo Yoruba

hr Croatian qu Quechua za Zhuang

hu Hungarian rm Rhaeto-Romance zh Chinese

hy Armenian rn Kirundi zu Zulu

ia Interlingua

Table E.3 ISO language codes, as specified by ISO 639-1 (sorted by language description)

Language Code Language Code Language Code

Abkhazian ab Hungarian hu Romanian ro

Afar aa Icelandic is Russian ru

Afrikaans af Indonesian id Samoan sm

Albanian sq Interlingua ia Sangro sg

continued on next page

Table E.2 ISO language codes, as specified by ISO 639-1 (sorted by code) (continued)

Code Language Code Language Code Language
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Language codes 993

Amharic am Interlingue ie Sanskrit sa

Arabic ar Inuktitut (Eskimo) iu Serbian sr

Armenian hy Inupiak ik Serbo-Croatian sh

Assamese as Irish ga Sesotho st

Aymara ay Italian it Setswana tn

Azerbaijani az Japanese ja Shona sn

Bashkir ba Javanese jw Sindhi sd

Basque eu Kannada kn Singhalese si

Bengali Bangla bn Kashmiri ks Siswati ss

Bhutani dz Kazakh kk Slovak sk

Bihari bh Kinyarwanda rw Slovenian sl

Bislama bi Kirghiz ky Somali so

Breton br Kirundi rn Spanish es

Bulgarian bg Korean ko Sudanese su

Burmese my Kurdish ku Swahili sw

Byelorussian be Laothian lo Swedish sv

Cambodian km Latin la Tagalog tl

Catalan ca Latvian Lettish lv Tajik tg

Chinese zh Lingala ln Tamil ta

Corsican co Lithuanian lt Tatar tt

Croatian hr Macedonian mk Tegulu te

Czech cs Malagasy mg Thai th

Danish da Malay ms Tibetan bo

Dutch nl Malayalam ml Tigrinya ti

English American en Maltese mt Tonga to

Table E.3 ISO language codes, as specified by ISO 639-1 (sorted by language description) (continued)

Language Code Language Code Language Code
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

994 APPENDIX E
Time zone, country, language, and currency codes

E.3 Country codes

When you’re localizing a JSF application, you can specify a country code in addi-
tion to a language code.

 Country codes are uppercase, two-letter strings, defined by the ISO. This
allows your application to handle specific dialects of a language, such as Mexican
Spanish. The two tables below list the ISO country codes and a description of the
country they represent, as of JDK 1.4.2. Table E.4 lists them sorted by country
code, and table E.5 lists them sorted by country description.

Esperanto eo Maori mi Tsonga ts

Estonian et Marathi mr Turkish tr

Faeroese fo Moldavian mo Turkmen tk

Fiji fj Mongolian mn Twi tw

Finnish fi Nauru na Uigur ug

French fr Nepali ne Ukrainian uk

Frisian fy Norwegian no Urdu ur

Gaelic Scots Gaelic gd Occitan oc Uzbek uz

Galician gl Oriya or Vietnamese vi

Georgian ka Oromo Afan om Volapuk vo

German de Pashto Pushto ps Welsh cy

Greek el Persian fa Wolof wo

Greenlandic kl Polish pl Xhosa xh

Guarani gn Portuguese pt Yiddish yi

Gujarati gu Punjabi pa Yoruba yo

Hausa ha Quechua qu Zhuang za

Hebrew he Rhaeto-Romance rm Zulu zu

Hindi hi

Table E.3 ISO language codes, as specified by ISO 639-1 (sorted by language description) (continued)

Language Code Language Code Language Code
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Country codes 995

Table E.4 ISO country codes, as specified by ISO-3166 (sorted by code)

Code Country Code Country Code Country

AD Andorra, Principality of GM Gambia NR Nauru

AE United Arab Emirates GN Guinea NU Niue

AF Afghanistan, Islamic
State of

GP Guadeloupe NZ New Zealand

AG Antigua and Barbuda GQ Equatorial Guinea OM Oman

AI Anguilla GR Greece PA Panama

AL Albania GS South Georgia and the
South Sandwich Islands

PE Peru

AM Armenia GT Guatemala PF French Polynesia

AN Netherlands Antilles GU Guam PG Papua New Guinea

AO Angola GW Guinea-Bissau PH Philippines

AQ Antarctica GY Guyana PK Pakistan

AR Argentina HK Hong Kong PL Poland

AS American Samoa HM Heard and McDonald
Islands

PM Saint Pierre and
Miquelon

AT Austria HN Honduras PN Pitcairn

AU Australia HR Croatia (Hrvatska) PR Puerto Rico

AW Aruba HT Haiti PT Portugal

AZ Azerbaijan HU Hungary PW Palau

BA Bosnia-Herzegovina ID Indonesia PY Paraguay

BB Barbados IE Ireland QA Qatar

BD Bangladesh IL Israel RE Réunion

BE Belgium IN India RO Romania

BF Burkina Faso IO British Indian Ocean
Territory

RU Russian Federation

BG Bulgaria IQ Iraq RW Rwanda

BH Bahrain IR Iran, Islamic Republic of SA Saudi Arabia
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

996 APPENDIX E
Time zone, country, language, and currency codes

BI Burundi IS Iceland SB Solomon Islands

BJ Benin IT Italy SC Seychelles

BM Bermuda JM Jamaica SD Sudan

BN Brunei Darussalam JO Jordan SE Sweden

BO Bolivia JP Japan SG Singapore

BR Brazil KE Kenya SH Saint Helena

BS Bahamas KG Kyrgyzstan SI Slovenia

BT Bhutan KH Cambodia SJ Svalbard and Jan Mayen
Islands

BV Bouvet Island KI Kiribati SK Slovakia

BW Botswana KM Comoros SL Sierra Leone

BY Belarus KN Saint Kitts and Nevis SM San Marino

BZ Belize KP Korea, Democratic
People’s Republic of
(N. Korea)

SN Senegal

CA Canada KR Korea, Republic of
(S. Korea)

SO Somalia

CC Cocos (Keeling) Islands KW Kuwait SR Suriname

CF Central African Republic KY Cayman Islands ST Sao Tome and Principe

CG Congo, People's
Republic of

KZ Kazakhstan SV El Salvador

CH Switzerland LA Laos SY Syrian Arab Republic

CI Cote D'Ivoire (Ivory
Coast)

LB Lebanon SZ Swaziland

CK Cook Islands LC Saint Lucia TC Turks and Caicos Islands

CL Chile LI Liechtenstein TD Chad

CM Cameroon LK Sri Lanka TF French Southern
Territories

Table E.4 ISO country codes, as specified by ISO-3166 (sorted by code) (continued)

Code Country Code Country Code Country
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Country codes 997

CN China LR Liberia TG Togo

CO Colombia LS Lesotho TH Thailand

CR Costa Rica LT Lithuania TJ Tajikistan

CU Cuba LU Luxembourg TK Tokelau

CV Cape Verde LV Latvia TM Turkmenistan

CX Christmas Island LY Libyan Arab Jamahiriya TN Tunisia

CY Cyprus MA Morocco TO Tonga

CZ Czech Republic MC Monaco TP East Timor

DE Germany MD Moldova, Republic of TR Turkey

DJ Djibouti MG Madagascar TT Trinidad and Tobago

DK Denmark MH Marshall Islands TV Tuvalu

DM Dominica MK Macedonia TW Taiwan, Province of China

DO Dominican Republic ML Mali TZ Tanzania, United
Republic of

DZ Algeria MM Myanmar UA Ukraine

EC Ecuador MN Mongolia UG Uganda

EE Estonia MO Macau UM US Minor Outlying Islands

EG Egypt MP Northern Mariana
Islands

US United States of America

EH Western Sahara MQ Martinique UY Uruguay

ER Eritrea MR Mauritania UZ Uzbekistan

ES Spain MS Montserrat VA Holy See (Vatican City
State)

ET Ethiopia MT Malta VC St. Vincent and the Gren-
adines

FI Finland MU Mauritius VE Venezuela

FJ Fiji MV Maldives VG Virgin Islands (British)

Table E.4 ISO country codes, as specified by ISO-3166 (sorted by code) (continued)

Code Country Code Country Code Country
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

998 APPENDIX E
Time zone, country, language, and currency codes

FK Falkland Islands
(Malvinas)

MW Malawi VI Virgin Islands (US)

FM Micronesia, Federated
States

MX Mexico VN Viet Nam

FO Faroe Islands MY Malaysia VU Vanuatu

FR France MZ Mozambique WF Wallis and Futuna Islands

FX France, Metropolitan NA Namibia WS Samoa

GA Gabon NC New Caledonia YE Yemen

GB United Kingdom NE Niger YT Mayotte

GD Grenada NF Norfolk Island YU Yugoslavia

GE Georgia NG Nigeria ZA South Africa

GF French Guiana NI Nicaragua ZM Zambia

GH Ghana NL Netherlands ZR Zaire

GI Gibraltar NO Norway ZW Zimbabwe

GL Greenland NP Nepal

Table E.5 ISO country codes, as specified by ISO-3166 (sorted by country)

Country Code Country Code Country Code

Afghanistan, Islamic
State of

AF Germany DE Norway NO

Albania AL Ghana GH Oman OM

Algeria DZ Gibraltar GI Pakistan PK

American Samoa AS Greece GR Palau PW

Andorra, Principality of AD Greenland GL Panama PA

Angola AO Grenada GD Papua New Guinea PG

Anguilla AI Guadeloupe GP Paraguay PY

Antarctica AQ Guam GU Peru PE

Table E.4 ISO country codes, as specified by ISO-3166 (sorted by code) (continued)

Code Country Code Country Code Country
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Country codes 999

Antigua and Barbuda AG Guatemala GT Philippines PH

Argentina AR Guinea GN Pitcairn PN

Armenia AM Guinea-Bissau GW Poland PL

Aruba AW Guyana GY Portugal PT

Australia AU Haiti HT Puerto Rico PR

Austria AT Heard and McDonald
Islands

HM Qatar QA

Azerbaijan AZ Holy See (Vatican City
State)

VA Réunion RE

Bahamas BS Honduras HN Romania RO

Bahrain BH Hong Kong HK Russian Federation RU

Bangladesh BD Hungary HU Rwanda RW

Barbados BB Iceland IS Saint Helena SH

Belarus BY India IN Saint Kitts and Nevis KN

Belgium BE Indonesia ID Saint Lucia LC

Belize BZ Iran, Islamic Republic of IR Saint Pierre and
Miquelon

PM

Benin BJ Iraq IQ Saint Vincent and the
Grenadines

VC

Bermuda BM Ireland IE Samoa WS

Bhutan BT Israel IL San Marino SM

Bolivia BO Italy IT Sao Tome and Principe ST

Bosnia-Herzegovina BA Jamaica JM Saudi Arabia SA

Botswana BW Japan JP Senegal SN

Bouvet Island BV Jordan JO Seychelles SC

Brazil BR Kazakhstan KZ Sierra Leone SL

British Indian Ocean
Territory

IO Kenya KE Singapore SG

Table E.5 ISO country codes, as specified by ISO-3166 (sorted by country) (continued)

Country Code Country Code Country Code
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1000 APPENDIX E
Time zone, country, language, and currency codes

Brunei Darussalam BN Kiribati KI Slovakia SK

Bulgaria BG Korea, Democratic
People’s Republic of
(N. Korea)

KP Slovenia SI

Burkina Faso BF Korea, Republic of
(S. Korea)

KR Solomon Islands SB

Burundi BI Kuwait KW Somalia SO

Cambodia KH Kyrgyzstan KG South Africa ZA

Cameroon CM Laos LA South Georgia and the
South Sandwich Islands

GS

Canada CA Latvia LV Spain ES

Cape Verde CV Lebanon LB Sri Lanka LK

Cayman Islands KY Lesotho LS Sudan SD

Central African Republic CF Liberia LR Suriname SR

Chad TD Libyan Arab Jamahiriya LY Svalbard and Jan Mayen
Islands

SJ

Chile CL Liechtenstein LI Swaziland SZ

China CN Lithuania LT Sweden SE

Christmas Island CX Luxembourg LU Switzerland CH

Cocos (Keeling) Islands CC Macau MO Syrian Arab Republic SY

Colombia CO Macedonia MK Taiwan, Province of
China

TW

Comoros KM Madagascar MG Tajikistan TJ

Congo, People’s
Republic of

CG Malawi MW Tanzania, United
Republic of

TZ

Cook Islands CK Malaysia MY Thailand TH

Costa Rica CR Maldives MV Togo TG

Cote D'Ivoire (Ivory
Coast)

CI Mali ML Tokelau TK

Table E.5 ISO country codes, as specified by ISO-3166 (sorted by country) (continued)

Country Code Country Code Country Code
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Country codes 1001

Croatia (Hrvatska) HR Malta MT Tonga TO

Cuba CU Marshall Islands MH Trinidad and Tobago TT

Cyprus CY Martinique MQ Tunisia TN

Czech Republic CZ Mauritania MR Turkey TR

Denmark DK Mauritius MU Turkmenistan TM

Djibouti DJ Mayotte YT Turks and Caicos Islands TC

Dominica DM Mexico MX Tuvalu TV

Dominican Republic DO Micronesia, Federated
States

FM Uganda UG

East Timor TP Moldova, Republic of MD Ukraine UA

Ecuador EC Monaco MC United Arab Emirates AE

Egypt EG Mongolia MN United Kingdom (Great
Britain)

GB

El Salvador SV Montserrat MS US Minor Outlying Islands UM

Equatorial Guinea GQ Morocco MA United States of America US

Eritrea ER Mozambique MZ Uruguay UY

Estonia EE Myanmar MM Uzbekistan UZ

Ethiopia ET Namibia NA Vanuatu VU

Falkland Islands
(Malvinas)

FK Nauru NR Venezuela VE

Faroe Islands FO Nepal NP Viet Nam VN

Fiji FJ Netherlands NL Virgin Islands (British) VG

Finland FI Netherlands Antilles AN Virgin Islands (US) VI

France FR New Caledonia NC Wallis and Futuna Islands WF

France, Metropolitan FX New Zealand NZ Western Sahara EH

French Guiana GF Nicaragua NI Yemen YE

French Polynesia PF Niger NE Yugoslavia YU

Table E.5 ISO country codes, as specified by ISO-3166 (sorted by country) (continued)

Country Code Country Code Country Code
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1002 APPENDIX E
Time zone, country, language, and currency codes

E.4 Currency codes

When you’re dealing with monetary values, you sometimes need to specify the spe-
cific type of currency. Because words like “dollar” aren’t terribly specific (several
countries call their currency “dollar”), the ISO has defined capitalized three-letter
strings that represent each currency. These are listed in table E.6 (as of JDK 1.4.2).
Because some of the currencies have been replaced by other codes, or represent
something besides an actual currency (e.g., precious metals or funds), there are
additional columns of information for each code.

French Southern
Territories

TF Nigeria NG Zaire ZR

Gabon GA Niue NU Zambia ZM

Gambia GM Norfolk Island NF Zimbabwe ZW

Georgia GE Northern Mariana
Islands

MP

Table E.5 ISO country codes, as specified by ISO-3166 (sorted by country) (continued)

Country Code Country Code Country Code

Table E.6 ISO currency codes, as specified by ISO 4217 (sorted by code)

Code Description Notes Discontinued?

ADP Andorran Peseta Euro Currency Yes

AED United Arab Emirates Dirham

AFA Afghanistan Afghani Replaced by AFN Yes

ALL Albanian Lek

AMD Armenian Dram

ANG Netherlands Antillian Guilder

AOA Angolan Kwanza

ARS Argentine Peso

ATS Austrian Schilling Euro Currency Yes

AUD Australian Dollar
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Currency codes 1003

AWG Aruban Guilder

AZM Azerbaijani Manat

BAM Bosnia-Herzegovina Convertible Marks

BBD Barbados Dollar

BDT Bangladesh Taka

BEF Belgian Franc Euro Currency Yes

BGL Bulgarian Lev Before 05-Jul-1999 Yes

BGN Bulgarian Lev Since 05-Jul-1999

BHD Bahraini Dinar

BIF Burundi Franc

BMD Bermudian Dollar

BND Brunei Dollar

BOB Bolivian Boliviano

BOV Bolivian Mvdol Funds Code

BRL Brazilian Real

BSD Bahamian Dollar

BTN Bhutan Ngultrum

BWP Botswana Pula

BYB Belarussian Ruble

BYR Belarussian Ruble

BZD Belize Dollar

CAD Canadian Dollar

CDF Congolese Franc

CHF Swiss Franc

CLF Chilean Unidades de Fomento Funds Code

Table E.6 ISO currency codes, as specified by ISO 4217 (sorted by code) (continued)

Code Description Notes Discontinued?
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1004 APPENDIX E
Time zone, country, language, and currency codes

CLP Chilean Peso

CNY Chinese Renminbi

COP Colombian Peso

CRC Costa Rican Colón

CUP Cuban Peso

CVE Cape Verde Escudo

CYP Cypriot Pound

CZK Czech Koruna

DEM Deutsche Mark Euro Currency Yes

DJF Djibouti Franc

DKK Danish Krone

DOP Dominican Republic Peso

DZD Algerian Dinar

EEK Estonian Kroon

EGP Egyptian Pound

ERN Eritrean Nakfa

ESP Spanish Peseta Euro Currency Yes

ETB Ethiopian Birr

EUR Euro

FIM Finnish Markka Euro Currency Yes

FJD Fiji Dollar

FKP Falkland Pound

FRF French Franc Euro Currency Yes

GBP British Pound Sterling

GEL Georgian Lari

Table E.6 ISO currency codes, as specified by ISO 4217 (sorted by code) (continued)

Code Description Notes Discontinued?
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Currency codes 1005

GHC Ghana Cedi

GIP Gibraltar Pound

GMD Gambian Dalasi

GNF Guinean Franc

GRD Greek Drachma Euro Currency Yes

GTQ Guatemalan Quetzal

GWP Guinea-Bissau Peso

GYD Guyana Dollar

HKD Hong Kong Dollar

HNL Honduran Lempira

HRK Croatian Kuna

HTG Haitian Gourde

HUF Hungarian Forint

IDR Indonesian Rupiah

IEP Irish Punt Euro Currency Yes

ILS New Israeli Shekel

INR Indian Rupee

IQD Iraqi Dinar

IRR Iranian Rial

ISK Icelandic Króna

ITL Italian Lira Euro Currency Yes

JMD Jamaican Dollar

JOD Jordanian Dinar

JPY Japanese Yen

KES Kenyan Shilling

Table E.6 ISO currency codes, as specified by ISO 4217 (sorted by code) (continued)

Code Description Notes Discontinued?
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1006 APPENDIX E
Time zone, country, language, and currency codes

KGS Kyrgyzstan Som

KHR Cambodian Riel

KMF Comorian Franc

KPW North Korean Won

KRW South Korean Won

KWD Kuwaiti Dinar

KYD Cayman Islands Dollar

KZT Kazakhstan Tenge

LAK Laotian Kip

LBP Lebanese Pound

LKR Sri Lankan Rupee

LRD Liberian Dollar

LSL Lesotho Loti

LTL Lithuanian Litus

LUF Luxembourg Franc Euro Currency Yes

LVL Latvian Lat

LYD Libyan Dinar

MAD Moroccan Dirham

MDL Moldovian Leu

MGF Malagasy Franc

MKD Macedonian Denar

MMK Myanmar Kyat

MNT Mongolian Tugrik

MOP Macau Pataca

MRO Mauritania Ouguiya

Table E.6 ISO currency codes, as specified by ISO 4217 (sorted by code) (continued)

Code Description Notes Discontinued?
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Currency codes 1007

MTL Maltese Lira

MUR Mauritius Rupee

MVR Maldives Rufiyaa

MWK Malawian Kwacha

MXN Mexican Peso

MXV Mexican Unidad de Inversion (UDI) Funds Code

MYR Malaysian Ringgit

MZM Mozambique Metical

NAD Namibian Dollar

NGN Nigerian Naira

NIO Nicaraguan Córdoba Oro

NLG Dutch Guilder Euro Currency Yes

NOK Norwegian Krone

NPR Nepalese Rupee

NZD New Zealand Dollar

OMR Omani Rial

PAB Panama Balboa

PEN Peruvian New Sol

PGK Papua New Guinea Kina

PHP Philippine Peso

PKR Pakistani Rupee

PLN Polish New Zloty

PTE Portuguese Escudo Euro Currency Yes

PYG Paraguay Guarani

QAR Qatari Rial

Table E.6 ISO currency codes, as specified by ISO 4217 (sorted by code) (continued)

Code Description Notes Discontinued?
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1008 APPENDIX E
Time zone, country, language, and currency codes

ROL Romanian Leu

RUB Russian Ruble

RUR Russian Ruble Replaced by RUB Yes

RWF Rwanda Franc

SAR Saudi Riyal

SBD Solomon Islands Dollar

SCR Seychelles Rupee

SDD Sudanese Dinar

SEK Swedish Krona

SGD Singapore Dollar

SHP St. Helena Pound

SIT Slovenian Tolar

SKK Slovak Koruna

SLL Sierra Leonean Leone

SOS Somali Shilling

SRG Suriname Guilder Replaced by SRD, which is not
supported by JDK 1.4.2.

Yes

STD São Tomé and Príncipe Dobra

SVC El Salvadorian Colón

SYP Syrian Pound

SZL Swaziland Lilangeni

THB Thai Baht

TJS Tajikistani Somoni

TMM Turkmenistani Manat

TND Tunisian Dinar

TOP Tongan Pa’anga

Table E.6 ISO currency codes, as specified by ISO 4217 (sorted by code) (continued)

Code Description Notes Discontinued?
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

Currency codes 1009

TPE Timorian Escudo

TRL Turkish Lira

TTD Trinidad and Tobago Dollar

TWD New Taiwanese Dollar

TZS Tanzanian Shilling

UAH Ukrainian Hryvnia

UGX Ugandan Shilling

USD United States Dollar

USN United States Dollar Funds Code—Next Day

USS United States Dollar Funds Code—Same Day Yes

UYU Uruguayan Peso

UZS Uzbekistani Sum

VEB Venezuelan Bolivar

VND Viet Nam Dong

VUV Vanuatu Vatu

WST Samoan Tala

XAF Communauté Financière Africaine Francs

XAG Silver Troy Ounce Precious Metal

XAU Gold Troy Ounce Precious Metal

XBA European Composite Unit Bonds Market Unit—EURCO

XBB European Monetary Unit Bonds Market Unit—E.M.U.-6

XBC European Unit of Account 9 Bonds Market Unit—E.U.A.-9

XBD European Unit of Account 17 Bonds Market Unit—E.U.A.-17

XCD East Caribbean Dollar

XDR Special Drawing Rights International Monetary Fund

Table E.6 ISO currency codes, as specified by ISO 4217 (sorted by code) (continued)

Code Description Notes Discontinued?
continued on next page

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1010 APPENDIX E
Time zone, country, language, and currency codes

XFO Gold-Franc Replaced by XDR Yes

XFU UIC Franc Special settlement currency

XOF West African Franc

XPD Palladium Troy Ounce Precious Metal

XPF CFP Franc

XPT Platinum Troy Ounce Precious Metal

XTS N/A Reserved for testing purposes

XXX N/A No Currency

YER Yemeni Rial

YUM New Yugoslavian Dinar

ZAR South African Rand

ZMK Zambian Kwacha

ZWD Zimbabwean Dollar

Table E.6 ISO currency codes, as specified by ISO 4217 (sorted by code) (continued)

Code Description Notes Discontinued?
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

references
[Alur, Crupi, Malks] Alur, Deepak, John Crupi, and Dan Malks. 2003. Core J2EE Patterns.

Upper Saddle River, NJ: Prentice Hall.

[ASF, Cocoon] Apache Software Foundation. “Cocoon XML web application framework.”
http://cocoon.apache.org.
[ASF, Digester] Apache Software Foundation. “Jakarta Commons Digester (reads XML
files into Java objects).” http://jakarta.apache.org/commons/digester.

[ASF, Jelly] Apache Software Foundation. “Jakarta Commons Jelly Java and XML-based
scripting and processing engine.” http://jakarta.apache.org/commons/jelly.

[ASF, Struts] Apache Software Foundation. “Struts web application framework.”
http://struts.apache.org.

[ASF, Struts-Faces] Apache Software Foundation. “Struts-Faces integration library.”
http://cvs.apache.org/builds/jakarta-struts/nightly/struts-faces.

[ASF, Tapestry] Apache Software Foundation. “Tapestry web application framework.”
http://jakarta.apache.org/tapestry/index.html.

[ASF, Tiles] Apache Software Foundation. “Tiles JSP templating framework.”
http://jakarta.apache.org/struts/userGuide/dev_tiles.html.

[ASF, Tomcat] Apache Software Foundation. “Tomcat web container.”
http://jakarta.apache.org/tomcat/index.html.

[ASF, Velocity] Apache Software Foundation. “Velocity template engine.”
http://jakarta.apache.org/velocity/index.html.
1011

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1012 REFERENCES

[Barcia Series 2004] Barcia, Roland. 2004. “Developing JSF Applications Using WebSphere
Studio V5.1.1 (5-part series).”
http://www-106.ibm.com/developerworks/websphere/techjournal/0401_barcia/barcia.html.

[Bayern] Bayern, Shawn. 2002. JSTL in Action. Greenwich, CT: Manning.

[BEA, WebLogic] BEA. “WebLogic J2EE application server.”
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/server.

[Bergsten] Bergsten, Hans. 2004. “Improving JSF by Dumping JSP.”
http://www.onjava.com/pub/a/onjava/2004/06/09/jsf.html.

[Friedl] Friedl, Jeffrey E. F. 2002. Mastering Regular Expressions. Sebastopol, CA: O’Reilly &
Associates, Inc.

[Fowler, Dependency Injection] Fowler, Martin. 2004. “Inversion of Control Containers and the
Dependency Injection Pattern.” http://www.martinfowler.com/articles/injection.html.

[Fowler, Enterprise] Fowler, Martin. 2003. Patterns of Enterprise Application Architecture. Boston:
Addison-Wesley.

[GoF] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.

[Grand] Grand, Mark. 1998. Patterns in Java, Vol. 1. New York: John Wiley & Sons.

[Groovy] “Groovy Java scripting language.” http://groovy.codehaus.org.

[Hunter] Hunter, Jason. 2001. Java Servlet Programming. Sebastopol, CA: O’Reilly & Associates.

[Husted] Husted, Ted. 2003. Struts in Action. Greenwich, CT: Manning.

[Holmes] Holmes, James. “Faces Console JSF configuration editor.”
http://www.jamesholmes.com/JavaServerFaces/console.

[IBM, WAS] IBM. “WebSphere Application Server.”
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv.

[IBM, WSAD] IBM. “WebSphere Studio Application Developer J2EE IDE.”
http://www.306.ibm.com/software/awdtools/studioappdev.

[Informa] “Informa Java RSS library.” http://informa.sourceforge.net.

[JBoss, Hibernate] JBoss. “Hibernate object/relational persistence and query engine.”
http://www.hibernate.org.

[Jython] “Jython Java-based Python implementation.” http://www.jython.org.

[JSF Central] “JSF Central JavaServer Faces community and FAQ.” http://www.jsfcentral.com.

[JSR 227] “Java Specification Request 227: A Standard Data Binding & Data Access Facility
for J2EE.” http://www.jcp.org/en/jsr/detail?id=227.

[Keel] “Keel meta-framework for server-side applications.” http://www.keelframework.org.

[Kobrix] “Kobrix Software. Tag Interface Component Library.” http://www.kobrix.com.
[Microsoft, ASP.NET] Microsoft. “ASP.NET web application framework.” http://www.asp.net.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

REFERENCES 1013

[MyFaces] “MyFaces open source JSF implementation.” http://www.myfaces.org.

[Nash] Nash, Michael. 2004. “Spinning Your Code with XSLT and JSF in Cocoon.”
http://www.developer.com/lang/article.php/10924_3348311_1.

[New Atlanta, ServletExec] New Atlanta Communications. “ServletExec web container.”
http://www.newatlanta.com/products/servletexec/index.jsp.

[OpenSymphony, SiteMesh] OpenSymphony. “SiteMesh web-page layout and decorating
framework.” http://www.opensymphony.com/sitemesh.

[OpenSymphony, WebWork] “WebWork web application framework.”
http://www.opensymphony.com/webwork.

[Oracle, ADF] Oracle. “Application Development Framework.”
http://otn.oracle.com/products/jdev/index.html.

[Oracle, ADF UIX] Oracle. “ADF UIX components.”
http://otn.oracle.com/products/jdev/collateral/papers/9.0.5.0/adfuix_roadmap/
adfuix_roadmap.html.

[Oracle, AS] Oracle. “Oracle Application Server.”
http://otn.oracle.com/products/ias/index.html.

[Oracle, JDeveloper] Oracle. “JDeveloper J2EE IDE.”
http://otn.oracle.com/products/jdev/index.html.

[Salmon, SOFIA] Salmon. “Salmon Open Framework for Internet Applications.”
http://www.salmonllc.com/website/Jsp/vanity/Sofia.jsp.

[Schalk] Schalk, Chris. 2004. “How to Use JSF with JDeveloper 10g.”
http://otn.oracle.com/products/jdev/howtos/10g/jsf_howto/jsf.html.

[Smile] “Smile open source JSF implementation (with Java views).”
http://smile.sourceforge.net.

[Spring-Faces] “JSF integration code for Spring (open source).” http://jsf-spring.sourceforge.net.

[Sun, Creator] Sun Microsystems. “Java Studio Creator JSF IDE.”
http://wwws.sun.com/software/products/jscreator/index.html.

[Sun, i18n] Sun Microsystems. “Java Tutorial, Internationalization Trail.”
http://java.sun.com/docs/books/tutorial/i18n/index.html.

[Sun, JDO] Sun Microsystems. “Java Data Objects specification.”
http://java.sun.com/products/jdo/index.jsp.

[Sun, JRL] Sun Microsystems. “Java Research License.” http://www.java.net/jrl.html.

[Sun, JSF Spec] Sun Microsystems. “JavaServer Faces specification.”
http://java.sun.com/j2ee/javaserverfaces.

[Sun, JSF RI] Sun Microsystems. “JSF reference implementation.”
http://java.sun.com/j2ee/javaserverfaces.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1014 REFERENCES

[Sun, JSP] Sun Microsystems. “JavaServer Pages specification.”
http://java.sun.com/products/jsp/index.jsp.

[Sun, JSAS] Sun Microsystems. “Java System Application Server.”
http://wwws.sun.com/software/products/appsrvr/home_appsrvr.html.

[Sun, JSTL] Sun Microsystems. “JavaServer Pages Template Library.”
http://java.sun.com/products/jsp/jstl/index.jsp.

[Sun, Portlet] Sun Microsystems. “Portlet specification.” http://www.jcp.org/en/jsr/detail? id=162.

[Sun, Servlet] Sun Microsystems. “Servlet specification.”
http://java.sun.com/products/servlet/index.jsp.

[Syndi8] “Syndic8 RSS and Atom news feed aggregator.” http://www.syndic8.com.

[Szyperski] Szyperski, Clemens. 2002. Component Software, Beyond Object-Oriented Programming.
New York: Addison-Wesley.

[TheServerSide] The Middleware Company. “TheServerSide.com enterprise Java community.”
http://www.theserverside.com.

[W3Schools] Refsnes Data. “W3Schools web technology tutorial site.” http://www.w3schools.com.

[WebMacro] Semiotek. “WebMacro open source template language.” http://www.webmacro.org.

[XUL] The Mozilla Organization. “XML User Interface Language.”
http://www.mozilla.org/projects/xul/.
Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

index
Symbols

???<key>??? 243

A

Abstract Factory (GoF) 643
accessibility 42
accessor methods (getters) 14,

463
Action class 410
action events

action sources 51, 129, 433
execution through

ActionSource instances 448
firing by ActionSource

interface 623
generated by Command

family components 187
generation and firing of 186
handling 432
navigation handler and 129
user command representation

with 428
action listener classes

combining with action
listener methods and action
methods 188

registering 188
action listener methods

action methods compared to
52

activity of 28

combining with action
listener classes and action
methods 188

defined 34
of backing beans

(ProjectTrack) 358
overview 432
registration with an action

source 433
sorting project lists with 371
typical uses 53

action listeners
adding with Java Studio

Creator 926
adding with WebSphere

Studio 904
default 51
relationship with action

listeners 66
types of 51

action methods
activity of 29
combining with action

listener methods and action
listener classes 188

defined 34, 51
invocation by the default

ActionListener 433
navigation cases associated

with 133
of backing beans

(ProjectTrack) 358
organized by function 565

overview 433
pages that reference

(ProjectTrack) 359
reducing dependencies

between sets of objects
and 501

referenced by Inbox page
(ProjectTrack) 377

required class 433
storage or retrieval of objects

with 478
typical uses 52
updating data store with 355

action source components 186,
433

ActionEvent class 429, 432
ActionListener interface 938,

944
implementing 809
overview 433

ActionSource interface 623, 803
overview 448

ActiveX (Microsoft) 21
Adapter pattern 485
adapting objects for use with

JSF 485
ADF Faces Components

(Oracle) 875
ADF UIX (Application

Development Framework),
Oracle 7, 19, 874–875

advanced extensions
registration 98
1015

Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1016 INDEX

advanced features configuration
99

Apache Software Foundation
Cocoon 15, 672
Jelly 672
Struts. See Struts (Apache

Software Foundation)
Tapestry 19
Tiles. See Tiles (Apache

Software Foundation)
Tomcat 8, 12, 89, 92
Velocity 15, 672

APIs (application programming
interfaces)

Informa 759, 762
Portlet 410, 422, 424
Servlet 410, 422, 424, 511,

536
Application class 411, 413, 936
application configuration (JSF)

attributes of elements 961
basic file structure 94, 959
elements of 98, 960
file specifying parameter 94,

959
location in the META-INF

directory 661
location of 959
managed beans in 357
overview 959
pluggable classes 963
segmenting 101, 959
with web.xml 36, 92

application configuration
categories 98

application configuration entry
application 36
categories 98

application configuration files
defined 97
errors 102
locating 101
specifying 101

Application Development
Framework UIX (ADF),
Oracle 7, 19, 874–875

application environment 357
application errors 501

Application instances,
initializing 606

application layer classes
(ProjectTrack) 477

application layers 457
application logic 51, 288, 411,

434, 457, 840
application messages. See

messages
application scopes 80
<application> element 963
application-related classes (JSF)

411, 413
applications

access to pages 360
adding Cascading Style

Sheets 303
adding JavaScript using pass-

through properties 301
client-side JavaScript

integration with JSF 301
commands, executing 219
configuration. See application

configuration, JSF
connecting views to data

sources 355
consistency enforcement 236
development approaches 355
enhancing pages 300
ensuring access to backing

beans 472
error reporting 422
form-centric development of

small 356
internationalization of 235,

398, 424, 551
layered 457
localization of 402
message bundles for 269
messages. See messages
migrating over time 572
object-oriented development

of large system 356
request and response

handling 572
requirements for JSF 289
resource bundles, creating for

238

simple two-layer 457
small 458
splitting into multi-layers

458
states, encapsulation of 419
Struts-Faces 573
text adaptation to locales 236
text strings for specific locales

238
UI component development

compared to code
development for 607

Apply Request Values phase 69,
428, 622

Approve a Project page
(ProjectTrack)

access authorization 546
beans used for 381
integration with application

382
navigation rule update 384
navigation rules for 337, 384
overview 331
project updating 522
purpose of 379

architectures, application
alternatives and consequences

562
consistency of 459
layers 457

ASP.NET Web Forms (Microsoft)
5, 46, 95, 224, 500

<attribute> element 959, 962
attributes, JSF

accessing 443
defined 441
properties compared to 441,

610
authentication 545
authentication keys

(ProjectTrack) 480
AuthenticationBean backing

bean class (ProjectTrack)
action methods of 500
code for 505
initializing and referencing

509
login method code 550
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1017

AuthenticationBean backing
bean class (ProjectTrack)
(continued)

managed bean configuration
509

properties of 500
Visit object creation and

storage 550
authenticationBean scoped

variable (ProjectTrack)
associated views 359
description 358
header page and 365–366
Login page and 360–361
summary 360

AuthenticationFilter 547, 550
authorization 545, 547

filters 547

B

backing beans 39, 48
action methods implemented

by 433, 564
adapters and property

exposure of 460
advantage of 500
application logic organized

into 411
as adapters 460
association with application

views 355
automatic construction of

460
base class for 494
basic structure of 509
binding to a component

instance 46
binding to a component’s

value 46
business objects compared to

460
component wiring to data-

sources with 355
configuring as managed

beans 110, 472
data layer objects treated as

black boxes 540

data-source association with
355

declaring 501
defined 14, 45
event listener methods and

358
event listeners and 186
exposing as scoped variables

472
exposing, using ValueBinding

objects 473
form-centric development

and 355
initializing 565
JavaDocs for 359
JSF compared to other

frameworks 33
keys 480
Managed Bean Creation

facility and 460, 494
not showing up 368
of Project Track 357
organizing by form 564
organizing by function 563
packaging action methods as

properties of 501
properties of 357
property values, converting to

a String 461
registering methods of single

452
relationship with Update

Model Values phase 66
retrieval of business objects

459
serializability 462
similarity to ASP.NET Web

Forms code-behind classes
46

simple layered architecture
and 457

stored as scoped variables
494

storing in request scopes 538
storing in sessions 538
support for validator methods

in 451
thread safety of 501

UI component manipulation
with 441

UI component
synchronization with Java
objects using 6

validation methods and 245
writing to be stateless 538

Barcia, Roland 895
base classes 441, 627
JSTL in Action 104
Bayern, Shawn 104
Bergsten, Hans 672
binary data output 422
bind, defined 46
blogs 757
Borland

C++Builder 5
Delphi 4–5
Delphi Visual Component

Library 21
broadcast method 624
business layers

access alternative 562
defined 458
interaction with views 459
overview 473

business logic 457, 563, 599
business objects

adapting to work with JSF
components 484

backing beans compared to
460

exposing through backing
beans 472

properties of 466
reusable in non-JSF

applications 485
serializability 462
unit testing of 474

Button renderer 728
buttons

associating model objects
with 323

cancel 448
components used for header

320
configured dynamically 321
creating 219
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1018 INDEX

buttons (continued)
highlighting selected 321
localizing labels for 244
navigation rules for header

323
normal compared to rollover

728
reset 221, 736
rollover-enabled 728
using graphics for 301

C

C++Builder (Borland) 5
Camino open source browser

670
cancel buttons 448
Cascading Style Sheets (CSS) 69

adding to JSF applications
303

browsers and 69
class attribute and 143
editors for 143
UI component integration

with 138
CBP (class-based pages) 666
cell phones 5
ChannelDataModel class 765
ChannelIF interface

DataModel class and 764
Informa API and 761
RSS channel representation

in 761
character class 841
characters, regular expression

841
checkboxes, creating 198, 205
child components

accessing 442, 445
ensuring unique client

identifiers 623
manipulating 445
rendering with encoding

methods 815
using standard components

with 758
child-parent relationships 412
choice formats 163–164

class-based pages (CBP) 666
classes

action methods of 433
adapter 477, 485
application layer 477
application-related (JSF) 411
base 441
base, for backing beans 494
context-related (JSF) 411
converter 416
core JSF 936
enumerated type 476
event 429
event-handling (JSF) 411
infrastructure category of

core JSF 936
JSF set of 410
pluggable category of core

JSF 938
renderer-related 637
UI component 411–412, 439,

441
utility 477

classes, shared 92
client certificate authentication

546
client identifiers

defined 30, 64
derivation of 611
referencing components with

73
rendering of 613

client-side validation, JSF and
245, 840

Cocoon (Apache Software
Foundation) 15, 672

combining with value-change
listener 187

combo box, creating 217
Command family components

187
CommandRolloverButtonTag

adding to the tag library 745
tag validator for 744
writing a 741

Common Object Request Broker
Architecture (CORBA) 13

common/lib directory 92

commons-beanutils.jar files 91
commons-collections.jar files 92
commons-digester.jar files 92
commons-logging.jar files 92
component identifiers

referencing in Java code 76
specifying 442
using with findComponent 75

component palettes 145, 246
component tags, JSF 107, 142,

145
component trees 445
<component> element 970
components

defined 21
user interface (UI). See UI

components
composite components 759
com.sun.faces.NUMBER_OF_

VIEWS_IN_SESSION 96
com.sun.faces.validateXml 96
com.sun.faces.verifyObjects 96
configuration elements 961
configuration, JSF

application. See application
configuration

consistency enforcement 236
constants, storing strings as 478
constructors, no-argument 460
consuming feeds 760
containers 12, 21
context 419
context-related classes (JSF)

access to user request data
with 411

FacesContext class 411
summary of 419

controller architecture, JSF 599
controls. See UI components
convenience wrappers around

methods 424
convertClientId method 642
Converter 450
converter classes 416
converter development

need for 854
registration of 461
writing 488, 654, 854
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1019

Converter interface 654, 856
<converter> element 973
converters

accessing 246
application configuration files

for 98, 970
association with components

252
attributes used by 443
custom 252, 854
defined 48
description 39
development of 840, 854
for formatting 48
identifiers for 450
JSP integration of 658, 840,

866
localization 48
manipulating inside JSF IDEs

254
object assignment caution 254
purpose of 252
registration of 252, 416, 491,

657, 865
relationship with renderers 48
specifying 253
standard (JSF) 252, 255, 854
standard for basic Java types

253
states of 620
third-party vendor 252
type conversion, handling by

654
UI component association

with single 654
unit tests for 656
user input conversion by 252

ConverterTag class 659
cookies 12–13, 81
CORBA (Common Object

Request Broker
Architecture) 13

core tag library 142
country codes (ISO) 236, 994
course-grained components 21
Create a Project page

(ProjectTrack)
access authorization 546

action methods referenced by
386

bean used for 386
CreateProjectBean and 528
integration with application

386
navigation rule update 390
navigation rules for 390
overview 341
project updating 522
purpose of 379

CreateProjectBean backing
bean class (ProjectTrack)

code analysis 528
managed bean configuration

532
createProjectBean scoped

variable (ProjectTrack)
associated views 359
Create a Project page and

386
description 358
header page and 366
summary 386

currency codes (ISO) 1002
custom tag handlers 607, 627
custom tag libraries 102, 634
custom tags 102, 822
customizer 14

D

data format types 163
data grids. See HtmlDataTable

component
data layer objects 540
data model events 41, 53, 428
data sets, displaying 223
data sources

backing beans association
with 355

component wiring to 355
form-centric development

and 355
data store 457
data store logic 457
data-aware controls 356, 759
databases 458

working with 407
DataModel class 53, 764
date collection 706
date format patterns 163, 259
date input controls 706
Date objects 251, 708
DateTime converter

description 256
inputting a Date object with

708
properties 257
usage 253, 256
using with date format

patterns 259
DateTime converters 977
decimal format patterns 266
declarative 46
decode method 613, 729, 820
decoding 43, 636
delegated implementation

rendering model 636
Delphi (Borland) 5, 176, 356
Delphi Visual Component

Library (Borland) 21
Dependency Injection pattern

112
deployment descriptors

(web.xml)
basic requirements 290
updating 397
usage 289

<description> element
113–114, 135

design time 21
development approaches (JSF)

355, 457
development tools 145
direct implementation

rendering model 636,
707

directory structures 289, 360
display strings 552
display technologies 15

JavaServer Pages. See JSP
(JavaServer Pages)

Velocity 15
WebMacro 15
XSLT 15
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1020 INDEX

display technologies, alternative
class-based pages (CBP) 666
other options 671
XUL 670

<display-name> element
113–114, 135

doAfterBody method 633
Document Type Definition

(DTD), JSF configuration
959

documentation for front-end
developers 359

doFilter method 549
doInitBody method 633
DoubleRange validator 248, 250
DynaActionForms, Struts-Faces

support for 581
DynaBeans, Struts-Faces

support for 581
dynamic content 11
dynamic includes 103
dynamic resources 317

E

EAR (enterprise archive) 90
EditableValueHolder interface

438, 451, 621, 708
EJBs (Enterprise JavaBeans) 9,

18–19, 458
EL. See expression language (EL)
encodeBegin method 632, 721,

729, 813
encodeChildren method 632,

813
encodeEnd method 632, 813
encodeIcon method 819
encodeItem utility method 816
encoding 43, 636
encoding logic 613
encrypted logins 546
enterprise archive (EAR) 90
Enterprise JavaBeans (EJBs) 9,

18, 458
error messages. See messages
error page (ProjectTrack) 390

adding an 396
navigation rule update 397

navigation rules for 397
errors

classes of 501
handling 501
methods for logging 428
reporting to UI 422
serious 504

evaluation expressions 417
event classes 429
event handling 39, 55, 428,

615, 623
event listeners 28, 49

adding to UI components
615

description 186
event handling with 428
handling by

UIComponentBase 623
method signatures for 432,

434, 436, 502
referencing type-safe

properties 566
registering 186, 437, 593
superclasses and 441

event/listener pairs 430
event-handling classes 411
events 49

action. See action events
broadcasting of 430
data model. See data model

events
generation with UI

components 142
handling 428
important to JSF

development 186
interfaces that fire 623
phase. See phase events
registering for later

broadcasting 431
representation by subclasses

430
types of 428
value-change. See value-

change events
exceptions, handling 502
expression language (EL), JSF

and quotes 78

associating backing beans
with components via 46

embedding expressions 78
evaluation of 411, 417
hooking objects to

components 357
implicit variables 83
in relation to backing beans 78
in relation to JavaBeans 78
in relation to JSP 2.0 EL 76,

81
in relation to JSTL EL 76, 81
in relation to model objects 78
JSF application development

and 86
JSP 2.0 EL and 27
managed beans used with 107
method-binding expressions.

See method-binding
expressions

nested properties 78
relationship with Update

Model Values phase 66
sharing variables with custom

tags 106
usage in JSF applications 76
using with components 86
value-binding expressions. See

value-binding expressions
expressions, JSF EL. See

expression language (EL),
JSF

expressions, regular. See regular
expressions

eXtensible Markup Language
(XML) 15, 148

eXtensible Style Sheet
Language Transformations
(XSLT) 15

extension mapping 93
external environments, access to

424
ExternalContext 420, 424

F

<f:verbatim> element
<from-action> element 133
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1021

<f:verbatim> element
(continued)

<from-view-id> element
132, 134

nesting custom tags within
105

Faces Console (James Holmes)
97, 959

Faces requests 571
Faces responses 571
Faces servlet 30, 57, 93
.faces suffix 93
faces/prefix 93, 290
faces-config.xml. See application

configuration (JSF)
FacesContext class 82, 420, 936
FacesEvent 429–430
FacesMessage 420, 422
<facet> element 959, 963
facets

compared to child
components 143

defined 42
UIComponent methods for

445
using HtmlPanelGroup inside

183
factories (JSF) 936
factory classes 436
factory configuration 99
factory methods 414–415
<factory> element 975
FactoryFinder class 936
families, UI component

defined 141
exposure of 611
list of 141
renderer types and

corresponding 637
renderers and 612

feeds
caching 764
consuming 760
RSS 759

filters, authentication 360
fine-grained 61
Firefox open source browser 670
formatting 48

form-based authentication 546
form-based development

355–356, 457
forms

adding to ProjectTrack 295
components for submitting

320
creating input 331
creating input. See also

HtmlForm component
foundation frameworks 19, 570
foundation technologies 10
frameworks, web development

18
Application Development

Framework UIX 7, 19, 146
Cocoon 15
JSF and 19
request processing lifecycles

of 571
SOFIA 19
Struts. See Struts
Tapestry 19
types of 18, 570
WebWork 17–18

front-end development 457, 501

G

getAsObject method 655
getAsString method 655
getClientId method 611
getter methods (accessors) 14,

463
GMT (Greenwich Mean Time)

977
GridLayout component (Swing)

176
Groovy scripting language 672

H

header page (ProjectTrack)
action methods referenced by

369
AuthenticationBean class and

505
backing beans for 365

CreateProjectBean and 528
integration with application

366
internationalizing 400
navigation rule update 369
navigation rules for 369
properties of 366
purpose of 365

headers
built as dynamic resource 317
button 320, 323
control of text and graphic

links in 318
navigation 317
spacing of buttons in 318
using custom components for

321
HeadlineViewerTableTag 781
Hello, world! application

backing bean referenced by
32

description 22
goodbye page 31
main page 24

hidden fields, declaring 197
Holmes, James 97, 325, 959
HTML component subclasses

439
HTML JSP custom tag library

(JSF) 27, 102, 142
HTML renderers 441
HTML templates 672
HTML views, components for

building 139
HtmlBaseTag class 738
HtmlCommandButton

component
action events generated by

187
buttons, declaring with 219
description 139
for form submission 321
summary 219
UICommand class and 439
using for Submit button in

forms 295, 298
value-binding expressions

and 301
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1022 INDEX

HtmlCommandLink component
action events generated by

187
action links, creating with 221
column headings and 371
description 139
for header buttons 320
functions performed by 370
re-sorting table data with 328
summary 221
UICommand class and 439
using instead of

HtmlCommandButton 301
HtmlDataTable component

association requirement 324
converting from

HtmlPanelGrid 371, 391
data grids 224, 370
data sets, displaying with 224
data tables

creating blank headings,
component used for
328

prototyping with panels 324
re-sorting data, component

used for 328
spanning columns of 335

description 139
displaying dynamic lists of

data with 324
summary 225
UIData class and 439

HtmlForm component
basic usage 191
description 139, 190, 192
<hidden> field 300
method attribute of 192
requirement for header

buttons 320
summary 190
UIForm class and 439
using for Login page 295, 297

HtmlGraphicImage component
basic usage 169
description 139
displaying images with 168
for header buttons 320
summary 168

UIGraphic class and 439
URL rewriting and 168
use in ProjectTrack 292

HtmlInputHidden component
basic usage 198
converter support by 252
description 139, 192
hidden fields, declaring with

197
summary 197
UIInput class and 439

HtmlInputSecret component
basic usage 196
converter support by 252
description 139
password fields, displaying

with 195
summary 195
UIInput class and 439
using for password in forms

295
HtmlInputText component

basic usage 193
converter support by 252
description 139, 192
registering email validators

247
specifying input fields with

345
summary 193
text fields, declaring with 193
UIInput class and 439
using for username in forms

295, 297
value-change events

generated by 187
HtmlInputTextarea component

converter support by 252
description 139, 192
memo fields, creating with 194
summary 194
UIInput class and 439

HtmlMessage component
basic usage 175
debugging with 175
description 139
displaying application

messages with 173

displaying component
messages with 169

showing detail with styles 172
summary 170, 173
UIMessage class and 439
validation messages displayed

with 245
HtmlOutputFormat component

compared to
HtmlOutputText 160

converter support by 252
description 140
message format patterns and

161
parameterizing strings with

243
relationship with

MessageFormat class 162
simple parameter substitution

162
summary 161
UIOutput class and 440
using choice format for

plurals 165
using date format patterns

with 260
using extended syntax for

message format elements
163

using for parameterized text
160

using with number format
patterns 266

HtmlOutputLabel component
basic usage 160
converter support by 252
creating input labels with 158
description 140
for form submission 321
summary 159
UIOutput class and 440

HtmlOutputLink component
and URL rewriting 165
compared to normal

hyperlinks 167
converter support by 252
description 140
displaying hyperlinks with 165
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1023

HtmlOutputLink component
(continued)

linking to relative URL 166
passing URL parameters to

167
summary 166
UIOutput class and 440

HtmlOutputText component
compared to

HtmlOutputFormat 160
converter support by 252
description 140
displaying ordinary text with

153
for header buttons 320
for text in headers 318
referencing localized strings

with 242
summary 154
turning off text escaping 155
UIOutput class and 440
use in ProjectTrack 292
used as placeholder for

application messages 328
HtmlPanelGrid component

as main container for headers
318, 320

basic usage 180
converting to HtmlDataTable

371, 391
creating footers with 333
creating layouts with 333
creating tables with 178
description 140, 176
GridLayout compared to 176
improving layouts with 308
prototyping data tables with

324
simulation of HtmlDataTable

328
summary 179
UIPanel class and 440
using with headers, footers,

and styles 181
HtmlPanelGroup component

as a placeholder 177
as container for combo box in

headers 318

basic usage 177
creating blank table headings

with 328
description 140, 176
grouping components with

176
summary 177
UIPanel class and 440
using with styles 178

HtmlSelectBooleanCheckbox
component

checkboxes, creating with
198

converter support by 253
description 140
summary 198
UISelectBoolean class and

440
HtmlSelectManyCheckbox

component
checkbox groups, displaying

items with 205, 336
converter support by 253
description 141
specifying input fields with

345
summary 206
UISelectMany class and 440
value-change events

generated by 187
HtmlSelectManyListbox

component
converter support by 253
description 141
listboxes, displaying several

items in 208
summary 208
UISelectMany class and 440

HtmlSelectManyMenu
component

converter support by 253
description 141
listboxes, displaying single

items in 210
summary 210
UISelectMany class and 440

HtmlSelectOneListbox
component

converter support by 253
description 141
for language selection 320
single-select listboxes, using

with 215
specifying input fields with

345
summary 215
UISelectOne class and 440

HtmlSelectOneMenu
component

combo boxes, declaring with
217

converter support by 253
description 141
summary 217
UISelectOne class and 440

HtmlSelectOneRadio
component

converter support by 253
description 141
radio buttons, displaying

items with 212
summary 213
UISelectOne class and 440

HTTP 12
HTTP basic authentication 546
HTTP digest authentication

546
HttpRequest 410
HttpResponse 410
HttpServlet 410
HttpSession 410
Husted, Ted 573

I

i18n (internationalization)
abbreviation 236

IBM
WebSphere Application

Developer. See WebSphere
Application Developeer
(IBM)

WebSphere Application
Server 8, 12, 89

<icon> element 113–114, 135,
959, 961
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1024 INDEX

IDEs (Integrated Development
Environments). See
Integrated Development
Environments (IDEs) for
JSF

image files 289
implementations, JSF 89, 92,

95, 936
implicit includes 103
implicit variables 83, 581
Inbox page (ProjectTrack)

access authorization 546
action methods referenced by

378
data table for 325
directory location 360
integration with application

375
listing projects for 511
navigation rule for 329, 378,

519
navigation rule update 378
overview 325
project information listing 541
SelectProjectBean and 519
toolbar button disabling for

464
inboxBean scoped variable

(ProjectTrack)
Inbox page and 370
summary 370

includes, JSP
directory of 360
functions performed by 382
used by project pages 379
using with JSF 103

Informa API 759, 762
infrastructure JSF classes 936
initial request 63
input controls 194

date 706
disabling 194
EditableValueHolder

interface and 621
generation of value-change

events 186
registration of validators for

246

requirements for 192
types of values of 621
UIInput class and 708
validation method

associations 245
validator acceptance by 248
validators and 648

input errors 501
Input family components 192,

249
input forms 379
input validation. See validation
input values, requirement of

249
InputDateTag 718
Integrated Development

Environments (IDEs) for JSF
component palette of 246
importing custom

components 627
importing custom renderers

647
Java Studio Creator. See Java

Studio Creator (Sun)
JDeveloper. See JDeveloper

(Oracle)
JSF support of 874
manipulating converters

inside 254
WebSphere Studio

Application Developer. See
WebSphere Studio (IBM)

integration
ad hoc performance of 359
defined 569
effect of filtering on 360
JSF with Struts applications

572
integration layers 458, 476
Intercepting Filter pattern 547
International Organization of

Standardization (ISO). See
ISO (International
Organization of
Standardization)

internationalization 235
application 398
defined 235, 398

dynamic text and 244
i18n abbreviation 236
informational resources on

241
supporting in code 552
UI extensions 660

Inversion of Control (IoC)
pattern 112

Invoke Application phase 69
ISO (International Organization

of Standardization)
country codes 994
currency codes 1002
language codes 990

isTrue method 721
isValid method 650, 745
items

creating single 200, 453
defining lists of 199
displaying in checkboxes 205
displaying in listboxes 208
displaying single 200
groups of 199, 453
handling multiple 205
lists of 199, 453

J

J2EE. See Java 2, Enterprise
Edition (J2EE)

Jacobi, Jonas 874
JAR files 660
JAR libraries 90
Java 2, Enterprise Edition (J2EE)

containers 10
implementations shipped

with 90
JDeveloper (Oracle) and 874
JSF applications and 89
JSF as part of 4, 19
manipulation of components

during runtime 21
web applications 12, 36

Java Community Process (JCP)
4, 10, 13, 19

Java Studio Creator (Sun)
adding data sources to

backing beans 356
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1025

Java Studio Creator (Sun)
(continued)

description 8
displaying hyperlinks with 165
dockable component palette

of 146
overview 918
page navigation editing in 130
ProjectTrack Login page,

creating with 920
registering validators with 246
table creation with 178
visual editors for 97

Java System Application Server
(Sun) 12

JavaBeans
accessing properties of 463
accessor methods (getters)

14, 463
adapters 460

JavaDocs 359
JavaScript

component referencing with 27
encapsulating functionality

within components 728
image rollover function 301
integrating JSF applications

with client-side 301
JSF expression language and 76
MyFaces configuration

parameters and 96
UI component integration

with 138
JavaServer Faces (JSF)

architecture, extending core
features of 940

as standard Java web
applications 289

benefits of 438
core classes 936
defined 5
display technologies,

handling 666
EL syntax, flexibility of 357
goals of 874
history of 10
IDE support of 874
IDEs and 19

implementations 171
industry support 10
integration with non-Struts

applications 600
Java Studio Creator used with

918
JSP 1.2 and 607
JSP-based pages and JSF tag

library 294
key concepts 41, 57
libraries 91
limitations in functionality 876
main parts of 569
non-JSP display technologies

with 666
Oracle JDeveloper 10g used

with 874
other web frameworks and 19
pluggable architecture of

666, 936
portability of 147
power of 606
purpose of 5, 570–571
RAD and 10
requirements for applications

289
Struts compared to 564
Struts integration with 573
terminology 666
two primary features of 570
underlying technologies 11
using without JSP 570
WebSphere Studio used with

895
when to integrate with other

frameworks 569
JavaServer Pages (JSP). See JSP

(JavaServer Pages)
JavaServer Pages Standard Tag

Library (JSTL)
API classes 92
<c:out> tag compared to

HtmlOutputText
component 155

constraints when using JSF
tags with 109

controlling component
visibility with 108

custom tags and 15
dependence of JSF on 92
dynamic includes and 103
impact of <fmt setLocale>

tag on 110
information about 105
JSF combined with 110
JSF custom tags

demonstration with 104
managed bean referencing

and 111
mixing with JSF tags 80,

104–105
using JSF tags without 109
using with JSF and backing

beans 106
JavaServer Pages Standard

Template Library (JSTL)
104

javax.faces.CONFIG_FILES 94,
101, 959

javax.faces.DEFAULT_SUFFIX
94

javax.faces.LIFECYCLE_ID 94
javax.faces.STATE_SAVING_

METHOD 94
JDeveloper (Oracle)

child component
manipulation with 225

debugging with 894
design-time benefits of 876
JSF and 7, 146
overview 874
ProjectTrack Login page,

creating with 879
workspace 878

JDK 1.5 (Tiger) 798
Jelly (Apache Software

Foundation) 672
JSF Central community site 10,

959
JSF classes, categories of 411
JSF Console (Holmes) 325
JSF implementations 933
JSF RI (reference

implementations), Sun 10
as standard for all

implementations 89
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1026 INDEX

JSF RI (reference
implementations), Sun
(continued)

description 933
effecting configuration

changes 101
ensuring same behavior 181
internationalization and

localization support with 236
JSF library non-support by 92
language support for 269
quirks of 171
RenderKit support by 448
UI extension defining 606

JSF. See JavaServer Faces (JSF)
jsf-api.jar file 91
jsf-impl.jar file 91–92
JSP (JavaServer Pages)

component integration with
822

controlling access to 360
converter integration with

658, 866
custom tag implementation

607
custom tags 718
defined 15
placement in root directory

289
renderer integration with 647
technical restrictions and

“class” 143
Tiles pages, converting to JSF

593
UI component integration

with 627
UI extension integration with

607
UIHeadlineViewer

component integration with
781

UIInputDate component
integration with 718

validator integration with
652, 847

version 1.2 and JSF 89, 607
version 2.0 and JSF 607
writing component tags for 627

JSP custom tags
goal of Struts-Faces 577
removing components used

with conditional 107
JSP includes 317
JSP integration process 737
JSP page directive 110
jstl.jar file 92
Jython scripting language 672

K

Keel meta-framework 672
<key> element 120
keys, storing as constants

(ProjectTrack) 480

L

l10n (localization) abbreviation
236

language codes (ISO) 236, 990
language of views (localization)

151
languages, support for multiple.

See localization
layers, application

separation of 457
types of 457

LDAP (Lightweight Directory
Access Protocol) 546

Length validator 248, 250–251,
345

libraries (JAR) 91
libraries, resale/distribution 840
Lifecycle class 936
<lifecycle> element 974
links, action 221
listboxes, creating 208
listener classes, support for 624
listener methods, support for 624
listeners

parameterizing 516
states of 620

<list-entries> element 968
lists of data

controls for displaying
dynamic 324

lists of items
configuring dynamically 465
exposing objects from

business tier in 466
selecting items from 465

local values 621
<locale-config> element 964
locales 151

configuration of 237
defined 235–236, 977
determining user 238
displaying numbers for 262
importance of specifying 238
keeping track of supported

414
overriding JSF selected 238
resource bundles and 238

localization 235
application 402
defined 235, 398, 552
informational resources on 241
JSF handling of 447
l10n abbreviation 236

logic
business 457–458, 563, 599
converter 847
data store access 457
encoding 613
intermixing, problems with

458
separating validation logic

from application 840
logical outcomes 34, 129,

132–133
login failures 363
Login page (ProjectTrack)

action listeners, adding with
Java Studio Creator 926

action listeners, adding with
WebSphere Studio 904

AuthenticationBean class and
505

components, binding to
backing beans with
JDeveloper 890

components, binding to
backing beans with
WebSphere Studio 902
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1027

Login page (ProjectTrack)
(continued)

components, binding to
properties with Java Studio
Creator 924

configuration file editing with
JDeveloper 890

creating page with Java
Studio Creator 920

creating page with
JDeveloper 879

creating page with
WebSphere Studio 898

input field requirements 305
integration with application 361
layout 292
layout improvement 308
navigation rule for 364
navigation rule update 364
navigation, adding with Java

Studio Creator 928
navigation, adding with

JDeveloper 892
navigation, adding with

WebSphere Studio 912
outcome possibilities 364
overview 291
testing with Java Studio

Creator 932
testing with JDeveloper 894
testing with WebSphere

Studio 913
validation, adding with Java

Studio Creator 923
validation, adding with

JDeveloper 888
validation, adding with

WebSphere Studio 901
logins, encrypted 546
LongRange validator 248,

250–251

M

Managed Bean Creation
facility 47

automatic bean creation with
460

automatic bean exposure with
472

benefits of 111
combining backing beans

with 494
description 98
initializing backing bean

properties with 565
object creation with 482
purpose of 110

managed beans
at application startup 112
configuration with XML

elements 111
configuring backing beans as

472
converting types used for

map keys 122
defined 35, 47, 110
Dependency Injection pattern

and 112
expressions used with 107
implicit variables associating

with 128
Inversion of Control (IoC)

pattern and 112
JSTL and referencing 111
referenced beans 114
restricted scoped variables,

associating with 128
Setter Injection pattern and

112
web application scopes 113

<managed-bean> element
114, 965

<managed-bean-class>
element 113

<managed-bean-name>
element 113

<managed-bean-scope>
element 113

<managed-property> element
114, 966

<map-entries> element 120,
967

<map-entry> element 120, 967
mapping prefix 93
mapping suffix 93

McClanahan, Craig 19
memo fields, creating 194
message bundles 269
message format elements

161–163
message format patterns 161
message format styles 163
message format types 163
MessageFormat class 162
messages

adding to a user interface 304
application 169–170, 328
conversions and 252
customizing validation 307
description 40
for application errors 55
informational 56
internationalizing 557
localizing for Russian 561
login failures 364
methods for logging 428
overriding default 414
overriding standard 270
properties of 557
reporting to UI 422
severity levels of 169, 269, 423
sources of 55
standard (JSF RI) 307
standard (JSF) 270
user input errors 55
validation and conversion 27,

236, 414
validation error 30

MethodBinding class 413,
417–418

method-binding expressions 79
encapsulation of 415
method-binding expressions 85

methods
action listener. See action

listener methods
component decoding 612
component encoding 612
convenience wrappers around

424
event handling 615
validator. See validator

methods
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1028 INDEX

methods (continued)
value-change. See value-

change methods
Microsoft

ActiveX 21
ASP.NET 5
ASP.NET Web Forms 5, 95,

500
.NET Framework 5
Visual Basic 4, 8, 37, 176
Visual Studio.NET 5, 918

model objects
as managed beans 47
binding to a component’s

value 47
defined 47
HtmlNavigator custom

component and 323
properties exposure 357, 359
relationship with Update

Model Values phase 66
SelectItem class 453
working with UIComponents

compared to 828
Model-View-Controller (MVC)

design pattern
defined 17
enforcing architecture of 41
Model 2 variation 18

Mozilla open source browser
670

mutator methods (setters) 14,
463

MVC. See Model-View-Controller
(MVC) design pattern

MyFaces open-source JSF
implementation 90, 95, 933

myfaces_allow_designmode 96
myfaces_allow_javascript 96
myfaces_pretty_html 96
myfaces.jar files 92

N

naming containers 72–73, 623
NamingContainer interface

439, 623
Nash, Michael 672

navigation
adding with Java Studio

Creator 928
adding with JDeveloper 892
adding with WebSphere

Studio 912
control 188
defined 56
description 40
global rules 134
headers for 317
logical outcomes 41, 51, 129,

132–133
redirecting to the next view

132
separate configuration files

134
similarity to Struts 57
visual configuration in an IDE

130
navigation cases

defined 36, 56
selection of 129
storage of 57

navigation handlers 56, 129
navigation rules

defined 36, 56, 98, 129
global 134
hardcoding 288
union of rules for all pages

329
<navigation-case> element

130, 133
NavigationHandler class 938
<navigation-rule> element

130, 969
Navigator_ToolbarTag custom

tag handler class
configuration via JSP tags

826
properties 822
referencing value-binding

expressions for 826
tag handler for 823
tag library descriptor for 831

NavigatorActionListener
custom component helper
class 809

NavigatorItem custom
component model class 796

NavigatorItemList custom
component model class
798, 834

NavigatorItemTag custom tag
handler class

NavigatorItemList
initialization with 834

tag handler 827
tag library descriptor for 833

nested tags 104–105
.NET Framework (Microsoft) 5,

223
Netscape browser 670
New Atlanta

ServletExec 89
news sites 757
none scope 113
Non-Faces requests 571
Non-Faces responses 571
<null-value> element 114,

117, 120
Number converter 110

description 256
displaying proper currency

signs 265
properties 262
using the 253, 262
using with decimal format

patterns 266

O

object-based development 356
object-oriented development

356
objects

accessed through value-
binding expressions 462

associating with each other
565

business layer 458
conversion into strings for

display 252
custom converters for 461
exposing properties 462
hooking to components 357
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1029

objects (continued)
JavaBean property exposure

and JSF-integrated 460
JSF application 413
property publishing and JSF

interaction 460
reducing dependencies

between action methods and
sets of 501

requirements for sharing or
persisting to disk 462

retrieval by value-binding
expressions 566

retrieval from application
scopes 478, 566

retrieval from data stores 476
storage 428, 478

OpenSymphony
SiteMesh 317
WebWork 17–18

Operation model object
(ProjectTrack) 475

Operations 475
Oracle

access with integration layers
458

Application Development
Framework UIX 7, 19,
874–875

Application Server 8, 89
JDeveloper. See JDeveloper

(Oracle)
view on JSF 875

P

page code 909
panel components 176
parent forms 820
pass-through properties 142,

301
pass-through rule exception

143
password input fields

creating 195
displaying 292

PDA (Personal Digital
Assistant) 5

Perl language 841
phase events 55, 428, 435
phase listener registration 99,

974
PhaseId 430
PhaseListeners 436
phone numbers, expressions for

841
plain old java objects (POJOs)

18, 458
pluggable JSF classes

configuring 942
decorating 943
extending 940
overview 938
replacing 947

POJOs (plain old java objects)
18, 458

portal 13
Portlet API 410, 422, 424
portlets 14
postback 61, 192, 300, 837
PowerBuilder (Sybase) 4
prefix mapping 93
Previous buttons 448
Process Validations phase 69,

622, 642
Project Details page

(ProjectTrack)
bean used for 390
components used by 390
integration with application

390
navigation rule for 352, 395
navigation rule update 395
overview 347
ShowHistoryBean and 390,

534
Project Manager, role of 317
Project model object

(ProjectTrack) 374, 379
ProjectTrack case study

adding a form to 295
adding rollover effects to 301
adding validator error

messages to 304
application layer classes 476
application logic of 434

Approve a Project page. See
Approve a Project page
(ProjectTrack)

backing bean construction
505

backing beans for 357
business (domain) model 283
business layer 473
business object retrieval 459
conceptual model 281
configuration file 290
controlling access to pages

547
converters 491
custom authentication of 505
default page for 290
deployment descriptors 397
directory structure 360
enhancing pages 300
environment segmentation

357
error page 396
formatting text with

Cascading Style Sheets 303
header page. See header page

(ProjectTrack)
Inbox page. See Inbox page

(ProjectTrack)
includes used by 379
initial directory structure 289
input form integration 379
integration layer 476
integration process 357
internationalizing 398, 551
listing projects 511
localizing for Russian 402,

556, 561
Login page. See Login page

(ProjectTrack)
main menu 370
messages of 557
model object properties

exposure 357, 359
model objects of 366, 374,

379, 390
multiple layers of 459
navigation headers 317
object model 475
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1030 INDEX

ProjectTrack case study
(continued)

object-based development
approach 356

operation pages 379
organizing code into backing

beans 500
page requirements 317
paging through history 534
parameterizing listeners for

516
password field for 291
project approval and rejection

511
Project Details page. See

Project Details page
(ProjectTrack)

project lists, views of 324
Project Manager, role of 317
project updating 522
projects, creating new 528
Reject a Project page. See

Reject a Project page
(ProjectTrack)

required functions 290
security for 360, 545
selecting language for 320
Show All page. See Show All

page (ProjectTrack)
storage of constants 478
synchronization and 501
system entities 281
system requirements 278
toolbar used in 795
toString method of business

objects 462
user interface 283
User object converter for 854
views, list of 359
Visit class 492

properties
attributes compared to 610
read-only 464

<property> element 959, 961
<property-class> element 115
<property-name> element 114
PropertyResolver class 938
prototypes (UI) 317

R

RAD. See Rapid Application
Development (RAD)

radio buttons, creating 212
Rapid Application

Development (RAD)
building emphasis 145
developers 288
tools 4

RDF Site Summary. See RSS
(Rich Site Summary)

read-only access 545
read-only properties 464
read-write access 545
<redirect> element 132
reference implementations, JSF.

See JSF RI (reference
implementations), Sun

referenced beans 98, 114
<referenced-bean> element

968
referrer 60
RegexpValidatorTag custom tag

handler class
regular expression validators

and 842
tag library entry for 851
writing the 848

regular expressions
characters for 841
defined 841
expressions, regular 841
JSP tag handler for 842
validator classes needed to

build 842
RegularExpression validator 345
RegularExpression validator

custom validator class
core converter logic 847
JSP integration of 847
properties 843
registration of 842, 847
registration with UIInput

component 852
StateHolder interface and 842
tag handler for 848
using 852

writing the 842
Reject a Project page

(ProjectTrack)
access authorization 546
beans used for 381
integration with application

385
navigation rule for 341, 385
navigation rule update 385
overview 338
purpose of 379

release method 653, 660
render kits

adding renderers to 971
default 414
defined 99
methods for handling 447
renderer types for standard

636
renderers and 44, 148

Render Response phase 69, 421
Renderer class 641, 728
<renderer> element 972
renderer-neutral behavior 42
renderers

adding to render kits 971
application configuration files

for 970
attributes of 730
attributes used by 443
classes and elements required

for custom 639
components with rendering

functionality compared to
729

components, indirect
associations with 636

configuring 644
decorating existing 750
defaults for components 778
defined 43
description 39
encoding and decoding

components with 728
IDEs and importing custom

647
JSP integration 647
overview 636
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1031

renderers (continued)
purpose of 728
registration 644
relationship with converters

48
render kits 44, 148
RenderKit and 643, 936
replacing default 639
retrieving instances of current

615
simple components and 615
single 972
types (list of) for the standard

render kits 637
UI component families and

corresponding 637
UI components compared to

615
when to write new 640
wrapping existing 750
writing new 639

rendering
defined 41
delegated implementation

model 43
direct implementation model

43
rendering models 636, 707
RenderKit class 643, 936
<render-kit> element 971
Request Processing Lifecycle

Apply Request Values phase
59, 64, 428, 622

defined 57
execution with Lifecycle class

936
goal of 571
Invoke Application phase 59,

66–68
methods for component-

based processing 616
phase events 428
possible event listener effects

upon 59
Process Validations phase 59,

65, 622, 642
Render Response phase 59,

68–69

Render View stage 571
request and response faces of

571
Restore View phase 59
Update Model Values phase

66
request scope 501, 538
resource bundle keys 480
resource bundles

components used with 241
configuring application-wide

414
creating in Java 238
creating programmatically

241
defined 238
internationalization with 398,

400
internationalizing text with

552
localization with 402
location of 241
usage 236
utility methods used with 414

resource paths, accessing 424
ResponseWriter class 613
Restore View phase 69
restoreAttachedState method

620
restoreState method 618, 717,

808
result sets, JDBC 541
RI, JSF. See JSF RI (reference

implementations), Sun
rollover buttons 301, 728
rollover function, JavaScript

301
RolloverButton renderer

classes and configuration files
for 728

using the 748
RolloverButtonDecorator-

Renderer custom renderer
class 750

RolloverButtonRenderer
custom renderer class

attributes for 729
decoding 735

encoding 731
JSP integration and 737
registration 736
tag handler for 740

RSS (Really Simple Syndication)
757

RSS feeds
challenges of 760
channels 761
Informa API and 759
multiple versions of 760
third-party libraries for 760
UIHeadlineViewer and

See UIHeadlineViewer
component

runtime 21

S

<s:form> tag 593, 599
saveAttachedState method 619
saveState method 618, 717
Scalable Vector Graphics (SVG)

43–44, 148
scoped variables

changing names of 494
implicit variables for 81
looking up beans stored as

494
overview 80
using with JSP and JSTL 81

scripting languages 672
scrolling, control of 395
SDO (Service Data Objects) 895
Secure Sockets Layer (SSL) 546
security

authentication 545
authorization 545
custom 547
organizing pages for 360
web container-based 546

SelectItem class 453, 465, 468
SelectItemGroup class 454
selectItems scoped variable

(ProjectTrack)
associated views 359
description 358
summary 380
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1032 INDEX

SelectMany family components
200, 248, 380

populating lookup lists for
487

value of instances 468
working with 465

SelectOne family components
200, 212, 380

populating lookup lists for
487

working with 465
SelectProjectBean backing bean

class (ProjectTrack)
code analysis 511
listing project information

with 541
managed bean configuration

519
selectProjectBean scoped

variable (ProjectTrack)
associated views 359
description 358

Service Data Objects (SDO) 895
Servlet API 410, 422, 424, 547,

572
servlet classes 410
servlet container. See web

containers
servlet filter 132

for authorization 547
servlet models 410
ServletContext interface 410
ServletContextListener

interface 112
ServletExec (New Atlanta) 89
servlets

defined 13
entry points for primary 410
lifecycles 289
relationship with JSF 13

session scopes 501
sessions

defined 13
servlet 491
states, visit objects for 491

Setter Injection pattern 112
setter methods (mutators) 14,

463

shared classes 92
Show All page (ProjectTrack)

324, 330, 378, 541
showAllBean scoped variable

(ProjectTrack) 370
showHistoryBean scoped

variable (ProjectTrack)
associated views 359
code analysis 534
description 358
managed bean configuration

538
reusing 538
summary 390

Simplica ECruiser 933
singletons 476, 487
SiteMesh (OpenSymphony) 317
skin (alternate look and feel) 43
Smile 667, 933
social security numbers,

expressions for 841
SOFIA (Salmon) 19
special characters 266
SQL queries 542
SQL Server 458
SSL (Secure Sockets Layer) 546
Standard Widget Toolkit

(SWT) 7
standard.jar file 92
StateHolder interface 439, 617,

717, 842, 856
StateHolder methods 807
stateless protocols 11
StateManager class 938
static content 11
static includes 103
static methods 480
static text 288
strings

accessing from bundles 241
conversion of 461
converting objects into 252
display 552
locale specific text 238
message 552
storing as constants 478
value-binding expressions

and localized 244

Struts (Apache Software
Foundation)

ActionForwards 129, 134
as foundation framework 18
controller architecture 599
HTML and Bean tag

equivalents 578
JSF directory structure

compared to 90
JSF integration with 16, 500,

564, 572
JSF navigation compared to

129
JSF rule setting compared to

134
overlap with JSF 19

Struts Actions, invoking from
JSF event handlers 598

struts implicit variable 581
Struts in Action (Husted) 573
struts-config.xml 90
Struts-Faces example application

adding proper libraries 575
converting complicated pages

585
converting JSP Tiles pages

593
converting simple pages 582
converting Struts JSPs to use

JSF components 599
importing the tag library 577
invoking Struts Actions from

JSF event handlers 598
migrating Struts JSP pages

577
scenarios 573
using JSF action methods 597
using JSF managed beans 597
version 5.0 575

Struts-Faces integration library
decorating functionality of

943
development of 572
extending JSF with 944
goal of 573
tags of 577
versions of 582

submitted values 63, 621
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1033

suffix mapping 93–94
Sun

Java Studio Creator. See Java
Studio Creator (Sun)

Java System Application
Server 12

JSF RI. See JSF RI (reference
implementation), Sun

superclasses and HTML
components 441

SVG (Scalable Vector Graphics)
43–44, 148

Swing
defined 21
event listener interface

requirement 34
JavaBean enabling of 14
JSF compared to 7, 49

SWT (Standard Widget
Toolkit) 7

symbols, date format pattern 260
synchronization, need for 501

T

tag classes 629
tag handler classes 628
tag handlers 628, 630, 718, 741,

822
tag libraries 737, 745
tag library definitions (TLDs)

627, 842
Tapestry (Apache Software

Foundation) 19
template languages 672
template text, using 150
terminology (JSF) 39, 666
text

externalizing into resource
bundles 398

internationalizing from back-
end code 244

internationalizing with
resource bundles 552

JSF applications and static 288
text fields, creating 193
thread safety 501
threading conflicts 501

Tiles (Apache Software
Foundation) 317, 594

Tiles pages, JSP, integrating
with JSF 593

time zone codes 977
time zone identifiers 977
TLDs (tag library definitions)

627, 842
Tomcat (Apache Software

Foundation) 8, 12, 89, 92
ToolbarRenderer class

UINavigator and 811, 822
ToolbarRenderer custom

renderer class
attributes for 811
component tag for 822
decoding 820
encoding 811
registration of 821
sample display of 795
UINavigator and 795, 822

toolbars, componentization of
795

toString method 461
<to-view-id> element 132
two-way editors 145
type conversion

defined 235
handling by converters 654
JSF support for 461
support for 450
web framework feature 654

U

UI component development
adding event listeners 615
application code

development compared to
607

attribute and property
retrieval 610

component configuration 624
component tree management

617
declaring output in a

template 613
decoding methods for 612

defining families and types 611
elements of 609
encoding methods for 612
event handling methods 615
event handling with method-

bindings 623
handling component values

621
interpretation of client input

613
JSP integration 627
overview 607
registration 624
renderers, setting default 615
rendering the client identifier

613
retrieval of current renderer

615
skill set for 607
state saving 617
state saving helper methods

619
subclassing base classes for 627
UI development compared to

607
UIComponentBodyTag and

633
UIComponentTag and 627
value-binding enabling

properties 616
when to write UI components

608
writing properties 616

UI components
accepted types for value

Property 464
accessing properties of 443
action source 186
application configuration files

for 970
associating Date objects with

256
associating validators with 251
association of converters with

252
association with single

converters 654
base class for 440
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1034 INDEX

UI components (continued)
behavior of standard 288
behaviors and property

settings 145
binding a value to a backing

bean 46
binding to backing beans 28,

46
binding to backing beans with

JDeveloper 890
binding to backing beans with

WebSphere Studio 902
binding to properties with

Java Studio Creator 924
binding value properties to

backing beans 469
classes 411–412, 439, 441
client identifiers. See client

identifiers
component identifiers. See

component identifiers
composite 759
conditionally displayed with

JSTL tags 107
created by standard JSP

component tags 438
creating and initializing in

property accessor 470
data-aware 356
defined 21, 41
delegated rendering

implementation of standard
636

development. See UI
component development

development with
ActionListener 433

disabled 614
dynamic building of graphs

471
dynamically creating and

manipulating in views 469
encapsulating JavaScript

functionality within 728
encoding and decoding

methods for 636
encoding and decoding with

renderers 728

families and renderers 612
families of 139
families, exposure of 611
finding on a page 445
handling JavaScript with JSF

302
hooking objects to 357
hooking up directly to data

service objects 541
HTML subclasses 439
identification by client

identifiers 421
IDEs and importing custom

627
importance of 142
integrating Struts

applications with JSF 573
integrating with correct

properties 379
integration with CSS 138, 143
integration with development

tools 145
integration with JavaScript

138
interfaces 438, 441
javax.faces prefix and

standard 612
list of standard 139
localized strings and 244
manipulating in a view 438
manipulating in code 34, 76
manipulation in a view 460
manipulation without JSP 667
model-driven 795
postbacks to 837
properties specific to HTML

141
property associations with

value-binding expressions
142

purpose of 607
referencing on the client 75
registration 99, 970
relationship between classes

and interfaces 441
renderer types and

corresponding families of
637

renderer-independent
attributes of 610

renderer-independent
properties of 610

renderer-neutral behavior 42
renderers (default) for 778
renderers compared to 615
renderers compared to

rendering functional 729
renderers, indirect

associations with 636
replacing default 611
resemblance to standard

HTML controls 138
resource bundles used with 241
setting parameters 151
state 42
state retrieval/change 438
states of, storage and retrieval

617
subclasses of 612
subclassing naming

containers 623
support for 138
tags associated with 142
tree representation 149
trees of 617
type 443, 611
updating of local values 622
using value-binding

expressions for 368
using with expressions 86
using with JavaScript 75
validators and custom 246
validators and third-party 246
value memory between

requests 717
value validity 452
visibility indication 444
with visual representation 138

UI extensions (JSF)
adding configuration entries

to configuration files 606
classes, subclassing the 606
configuration 959
converters 654
corresponding configuration

entries 606
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1035

UI extensions (JSF) (continued)
defined 606
development 96
directory structure 661
implementing interfaces 606
integrating classes with

display technology 607
integrating with JSP 636
internationalization 660
JAR files for 660
key steps to implementation

606
packaging 660
reference implementation

defining for default 606
renderers 636
UI components 607
validators 648

UI frameworks 19, 224, 570
UI layers 457
UIColumn component 139, 439
UICommand component

adding rollover functionality
to 301, 728

image rollover support with
728

UIComponent class
description 439
instance container 412
JavaScript output with 840
overview 442
subclassing UIComponentBase

compared to subclassing 611
UI component attribute and

property retrieval through
610

ValueHolder interface
implementation with 449

working with model objects
compared to 828

UIComponentBase class
439–440, 610, 636

UIComponentBodyTag 627, 633
UIComponentTag 627
UIData component

DataModel object and 541
listing projects with 511
paging through data with 534

UIHeadlineViewer custom
component usage compared
to 758, 789

using Informa API with 762
UIHeadlineViewer custom

component
adding styles to 790
configuration/registration of

780
displaying RSS feeds with 757
encapsulation of declared

components in 764
goal of 768
HeadlineViewerTableTag and

781
implementation elements 759
JSP integration of 781
properties of 769
subclassing UIData

component for 759
UIData component usage

compared to 758, 789
UIHeadlineViewer class for

768
usage 789
using Informa API with 762

UIHeadlineViewer custom
component class 768

UIInput class 708
UIInput component 852
UIInputDate custom component

classes and configuration files
for 707

configuration 718
decoding 715
encoding 709
InputDateTag 718
invoking 724
JSP custom tag for 718
JSP custom tag library 722
JSP integration 718
overview 706
registration 718
state management 717
tag handler for 718
UIInputDate class for 708

UIInputDate custom
component class 708

UINavigator custom
component

benefits of 323
default CSS style for 819
elements for building 795
encoding methods for 813
for headers 321
JSP component tag for 795
layout of 817
model classes for 796
overview 795
parent UIForm for 820
purpose of 834
registration of 810
ToolbarRenderer class for 811
usage 834

UINavigator custom
component class

custom ActionListener for 809
methods for 803
overriding

UIComponentBase
methods 806

state management for 807
writing the 801

UINavigator-ToolbarRenderer
pair

component tag for 822
sample display of 795

UIOutput class 440
UIOutput component

description 140
embedding custom tags and

markups 158
escaping large blocks of body

text 157
summary 156
using with verbatim tag 155

UIParameter class 440
UIParameter component

configuration of 517
description 140
setting component

parameters with 151
summary 151
using inside IDEs 152
using with HtmlOutputLink

167
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1036 INDEX

UISelectItem component
description 140
item list configuration with 453
list specification with 465
requirement of special type

for value-binding properties
485

single items, displaying with
200

summary 201
UISelectItems component

description 140
item list configuration with

453
list specification with 465
required association 453
requirement of special type

for value-binding properties
485

summary 204
UIViewRoot class 412, 446
UIViewRoot component

changing locale for 151
description 141
page control with 110, 149
summary 149

UIX (Oracle) 7, 19, 874–875
Unix command line 841
Update Model Values phase 69
updateProjectBean scoped

variable (ProjectTrack)
associated views 359
code analysis 522
description 358
managed bean configuration

526
summary 381

URLs
encoding with

ExternalContext 427
rewriting 12–13, 165, 168

user commands 432
user input

storage of 621
translating into custom types

488
user interface (UI)

adding validators to 304

binding a value to a backing
bean 46

binding to a backing bean 46
building without Java code

288, 317
component identifier 42
components. See UI

components
creating 145
declaring with display

technology 416
declaring with templates 438
deployment descriptors and

development of 290
developing separately,

benefits of 288
event-firing by 623
extensions 970
family 141
first steps in creating a 288
helpers 840
integration of 356
interaction with 428
internationalizing 398
object display 252
prototypes in JSF 317
referencing on the client 75
renderer-neutral behavior 42
state 42
UI component behaviors and

145
UI component development

compared to development
of 607

using panels for layout 308
using with expressions 86
using with JavaScript 75
without application logic 288

user interface extension
registration 99

User model object
(ProjectTrack) 366

user requests
access to current data 411
processing 410

UserConverter custom
converter class

browser view 854

JSP integration of 866
registration of 865
tag handler for 866
using 870
writing the 856

UserConverterTag class 866
users

authenticated 360
changing status of Projects

475
credential validation 545
disabling toolbar items for

particular 369
resource access authorization

545
roles of 475

V

validation
behavior handling by input

components 249
customizing error messages

307
defined 235, 648
importance of 245
in backing beans 648
integration with Struts 585
JSF support for 304
message displays 245

validation logic 840
Validator interface 648
validator methods 45, 85

backing beans and 245
compared to validator clases

840
support in

EditableValueHolder
interface 451

usage 245
<validator> element 973
validators

accessing 246
adding with Java Studio

Creator 923
adding with JDeveloper 888
adding with WebSphere

Studio 901
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

INDEX 1037

validators (continued)
application configuration files

for 970
associating components with

251
attributes used by 443
combining different 251
component validation 45
custom 247, 251
data entry errors and 501
description 39
developing 840
evaluating value-binding

expressions for 850
external 45
input control acceptance of

248
JavaScript emitting 840
JSP integration of 652, 840
Length 345
order of execution 251
output and 840
overview 648
purpose of 28
registering 650
registering multiple for

controls 251
registration 99
RegularExpression 345
SelectMany family

components and standard
248

setting properties of standard
248

stand-alone 840
standard JSF 245, 247, 840
states of 620
Struts 585, 840
third-party 251
usage 245
using 246
using with form input fields

345
validator methods. See

validator methods
writing 648, 840

ValidatorTag class 652
value property 464, 622

<value> element 114, 117, 120
ValueBinding class

overview 417
storing objects in application

scopes with 428
summary 413

value-binding enabled
properties/attributes 444

value-binding expressions
association of 444
components that accept 244
encapsulation of 415
evaluating for validators 850
object retrieval by 566
objects accessed through 462
property norms for 779
retrieval of 444
support of 444
value property support for

720
value-change events 51

defined 50
firing after the Process

Valiations phase 65
firing by EditableValueHolder

interface 623
generation and firing of

186–187
handling 434
representation of component

value changes 428
value-change listener

method. See value-change
listener methods

value-change listener classes
combining with single value-

change listener methods
187

declaring 187
registering multiple 187

value-change listener methods
50, 434

combining with value-change
listener classes 187

comparing with value-change
listener classes registering
187

writing 434

ValueChangeEvent class 429,
434

ValueChangeListener interface
429, 434

ValueHolder interface 438, 449
VariableResolver class 938
VBScript (Microsoft) 9
Velocity (Apache Software

Foundation) 15, 410, 672
<verbatim> tag 155
view state 95
ViewHandler class 938
views

component organization in
446

component trees for 617
composition of 411
defined 42, 149, 666
forwarding to other 550
identifier 61
implementation of structure

of 444
implicit variable 83
interaction with business layer

459
representation by component

tree 421
state saving options 61

Visit backing bean class
(ProjectTrack) 492

visit scoped variable
(ProjectTrack)

associated views 359
description 357
header page and 365–366
summary 365

Visual Basic (Microsoft) 4, 8, 37,
176

visual editors 959
Visual Studio.NET (Microsoft)

5, 918

W

WAR (web archive) 90
web application scopes 27, 113
web applications

directory structure of 289
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

1038 INDEX

web applications (continued)
specifiying default pages for

290
start-up code 483
user information storage in

servlet sessions 491
web archive (WAR) 90
web browsers, open source 670
web containers

Java System Application
Server 12

Oracle Application Server 8,
89

ServletExec 89
Tomcat 8, 12, 89, 92
WebSphere Application

Server 8, 89
web servers

services handled by 19
serving static content with

HTTP 12
web sites, content/headline

syndication of 757
WEB-INF directory 289
WEB-INF/classes directory 241

WEB-INF/faces-config.xml file
959

WEB-INF/lib directory 289
weblogs 757
WebMacro 15
WebObjects (Apple) 5
WebSphere Application Server

(IBM) 8, 12, 89
WebSphere Studio (IBM)

adding parameters with 152
binding components to

backing beans with 902
building JSF pages with 147
CSS style creation with 144
JSF and 895
mixing JSF and JSTL tags in

104
overview 896
ProjectTrack Login page,

creating with 898
setting labels with 166
support for JSF applications 6

WebWork (OpenSymphony)
17–18

web.xml 289

Wireless Markup Language
(WML) 43–44, 148

X

XML (eXtensible Markup
Language) 15, 148, 670

XML configuration files 606,
959

XML dialects, custom 672
XML elements 98
XML processing frameworks

672
XML scripting engines 672
XML, XUL and 670
XSLT (eXtensible Style Sheet

Language Transformations)
15

XUL display technology
(Mozilla) 570, 670

XUL ViewHandler 948
Index entries with page numbers 703 and higher refer to the online extension.

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

M A N N I N G $49.95 US/$74.95 Canada

JavaServer Faces helps streamline your web development
through the use of UI components and events (instead of
HTTP requests and responses). JSF components—buttons,

text boxes, checkboxes, data grids, etc.—live between user requests,
which eliminates the hassle of maintaining state. JSF also synchro-
nizes user input with application objects, automating another
tedious aspect of web development.

JavaServer Faces in Action is an introduction, a tutorial, and a handy
reference. With the help of many examples, the book explains what
JSF is, how it works, and how it relates to other frameworks and
technologies like Struts, Servlets, Portlets, JSP, and JSTL. It provides
detailed coverage of standard components, renderers, converters,
and validators, and how to use them to create solid applications.
This book will help you start building JSF solutions today.

What’s Inside
How to

■ Use JSF widgets
■ Integrate with Struts and existing apps
■ Benefit from JSF tools by Oracle, IBM, and Sun
■ Build custom components and renderers
■ Build converters and validators
■ Put it all together in a JSF application

An independent enterprise architect and developer, Kito D. Mann
runs the JSFCentral.com community site and is a member of the
JSF 1.2 and JSP 2.1 Expert Groups. He lives in Stamford, Connec-
ticut with his wife, two parrots, and four cats.

JAVA

JAVASERVER FACES IN ACTION
Kito D. Mann • foreword by Ed Burns

“Can’t wait to make it available
to the people I teach.”

—Sang Shin, Java Technology Evangelist,
Sun Microsystems Inc.

“This book unlocks the full
power of JSF ... It’s a necessity.”

—Jonas Jacobi
Senior Product Manager, Oracle

“... explains advanced topics
in detail. Well-written and a
quick read.”

—Matthew Schmidt, Director,
Advanced Technology, Javalobby

“... by a programmer who knows
what programmers need.”

—Alex Kolundzija, Columbia House

“A great reference and tutorial!”
—Mike Nash, JSF Expert Group Member,

Author, Explorer's Guide to Java Open
Source Tools

+!7J1JD2-djebcc!:p;O;T;t;p
ISBN 1-932394-12-5

www.manning.com/mann

Ask the Author Ebook edition

AUTHOR
✔

ONLINE

✔

ONLINE BONUS!

Exclusive to owners of this book: free
online access to over 300 additional pages
of substantial content. That’s a total of over
1,000 pages of JavaServer Faces in Action!

Licensed to JOSE CARLOS ROMERO FIGUEROA <jose.romero@galicia.seresco.es>

	foreword
	preface
	acknowledgments
	about this book
	How to use this book
	References
	Conventions
	Source code and the online extension
	Author Online
	About the author

	about the title and cover
	About the title
	About the cover illustration

	Part 1 - Exploring JavaServer Faces
	Introducing JavaServer Faces
	1.1 It’s a RAD-ical world
	1.1.1 So, what is JavaServer Faces?
	1.1.2 Industry support

	1.2 The technology under the hood
	1.2.1 Hypertext Transfer Protocol (HTTP)
	1.2.2 Servlets
	1.2.3 Portlets
	1.2.4 JavaBeans
	1.2.5 JSP and other display technologies

	1.3 Frameworks, frameworks, frameworks
	1.3.1 Why do we need frameworks?
	1.3.2 She’s a Model 2
	1.3.3 JSF, Struts, and other frameworks

	1.4 Components everywhere
	1.5 Hello, world!
	1.5.1 Dissecting hello.jsp
	1.5.2 Dissecting goodbye.jsp
	1.5.3 Examining the HelloBean class
	1.5.4 Configuration with faces-config.xml
	1.5.5 Configuration with web.xml

	1.6 Summary

	JSF fundamentals
	2.1 The key pieces of the pie
	2.1.1 User interface components
	2.1.2 Renderers
	2.1.3 Validators
	2.1.4 Backing beans
	2.1.5 Converters
	2.1.6 Events and listeners
	2.1.7 Messages
	2.1.8 Navigation

	2.2 The Request Processing Lifecycle
	2.2.1 Phase 1: Restore View
	2.2.2 Phase 2: Apply Request Values
	2.2.3 Phase 3: Process Validations
	2.2.4 Phase 4: Update Model Values
	2.2.5 Phase 5: Invoke Application
	2.2.6 Phase 6: Render Response

	2.3 Understanding component and client identifiers
	2.3.1 Naming containers
	2.3.2 Referencing identifiers

	2.4 Exploring the JSF expression language
	2.4.1 Understanding scoped variables
	2.4.2 Using implicit variables
	2.4.3 Using the EL with components

	2.5 Summary

	Warming up: getting around JSF
	3.1 Setting up your JSF environment
	3.1.1 Basic requirements
	3.1.2 Choosing a JSF implementation
	3.1.3 Directory structure
	3.1.4 Configuration

	3.2 The role of JSP
	3.2.1 Using JSP includes
	3.2.2 Using JSF with JSTL and other JSP custom tags

	3.3 Creating and initializing beans
	3.3.1 Declaring managed beans
	3.3.2 Declaring Lists and Maps as managed beans
	3.3.3 Setting values with value-binding expressions

	3.4 Navigating the sea of pages
	3.5 Summary

	Getting started with the standard components
	4.1 It’s all in the components
	4.1.1 Using HTML attributes
	4.1.2 Understanding facets
	4.1.3 The power of tools
	4.1.4 The render kit behind the scenes

	4.2 Common component properties
	4.3 Controlling the page with UIViewRoot
	4.4 Setting component parameters with UIParameter
	4.5 Displaying data with the Output components
	4.5.1 Displaying ordinary text with HtmlOutputText
	4.5.2 Using UIOutput with the <f:verbatim> tag
	4.5.3 Creating input labels with HtmlOutputLabel
	4.5.4 Using HtmlOutputFormat for parameterized text
	4.5.5 Displaying hyperlinks with HtmlOutputLink

	4.6 Displaying images with HtmlGraphicImage
	4.7 Displaying component messages with HtmlMessage
	4.8 Displaying application messages with HtmlMessages
	4.9 Grouping and layout with the Panel components
	4.9.1 Grouping components with HtmlPanelGroup
	4.9.2 Creating tables with HtmlPanelGrid

	4.10 Summary

	Using the input and data table components
	5.1 Registering event listeners
	5.1.1 Declaring value-change listeners
	5.1.2 Declaring action listeners

	5.2 Common component properties
	5.3 Handling forms with HtmlForm
	5.4 Handling basic user input
	5.4.1 Declaring basic text fields with HtmlInputText
	5.4.2 Using HtmlInputTextarea for memo fields
	5.4.3 Displaying password fields with HtmlInputSecret
	5.4.4 Declaring hidden fields with HtmlInputHidden

	5.5 Using HtmlSelectBooleanCheckbox for checkboxes
	5.6 Defining item lists
	5.6.1 Using UISelectItem for single items
	5.6.2 Using UISelectItems for multiple items

	5.7 Handling multiple-item selections
	5.7.1 Using HtmlSelectManyCheckbox for checkbox groups
	5.7.2 Displaying listboxes with HtmlSelectManyListbox
	5.7.3 Using HtmlSelectManyMenu for single-item listboxes

	5.8 Handling single-item selections
	5.8.1 Using HtmlSelectOneRadio for radio button groups
	5.8.2 Using single-select listboxes with HtmlSelectOneListbox
	5.8.3 Declaring combo boxes with HtmlSelectOneMenu

	5.9 Executing application commands
	5.9.1 Declaring buttons with HtmlCommandButton
	5.9.2 Creating an action link with HtmlCommandLink

	5.10 Displaying data sets with HtmlDataTable
	5.11 Summary

	Internationalization, validators, and converters
	6.1 Internationalization and localization
	6.1.1 Looking into locales
	6.1.2 Creating resource bundles
	6.1.3 Using resource bundles with components
	6.1.4 Internationalizing text from back-end code

	6.2 Input validation
	6.2.1 Using validator methods
	6.2.2 Using validators
	6.2.3 Using the standard validators
	6.2.4 Combining different validators

	6.3 Type conversion and formatting
	6.3.1 Using converters
	6.3.2 Working with the standard converters

	6.4 Customizing application messages
	6.5 Summary

	Part 2 - Building user interfaces
	Introducing ProjectTrack
	7.1 Requirements
	7.2 The conceptual model
	7.3 User interface
	7.4 Development team
	7.5 Summary

	Developing a user interface without Java code: the Login page
	8.1 Getting started
	8.1.1 Setting up web.xml
	8.1.2 Setting up faces-config.xml

	8.2 Creating the Login page
	8.2.1 Starting with HtmlGraphicImage and HtmlOutputText components
	8.2.2 Adding a form

	8.3 Sprucing things up
	8.3.1 Using an image for the button
	8.3.2 Integrating with JavaScript
	8.3.3 Adding Cascading Style Sheets

	8.4 Adding validators
	8.4.1 Customizing validation messages

	8.5 Improving layout with HtmlPanelGrid
	8.6 Summary

	Developing a user interface without Java code: the other pages
	9.1 Building the header with a custom component
	9.1.1 Using a custom toolbar component
	9.1.2 Configuring the navigation rule

	9.2 Prototyping data tables with panels
	9.2.1 The Inbox page
	9.2.2 Configuring the navigation rule
	9.2.3 The Show All page
	9.2.4 Configuring the navigation rule

	9.3 Creating input forms
	9.3.1 The Approve a Project page
	9.3.2 Configuring the navigation rule
	9.3.3 The Reject a Project page
	9.3.4 Configuring the navigation rule
	9.3.5 The Create a Project page
	9.3.6 Configuring the navigation rule

	9.4 The Project Details page
	9.4.1 Configuring the navigation rule

	9.5 Summary

	Integrating application functionality
	10.1 Understanding JSF development approaches
	10.2 Exploring the application environment
	10.3 Reorganizing pages for security
	10.4 The Login page
	10.4.1 Updating the navigation rule

	10.5 The header
	10.5.1 Updating the navigation rule

	10.6 Integrating data grids
	10.6.1 The Inbox page
	10.6.2 The Show All page

	10.7 Integrating input forms
	10.7.1 Updating the includes
	10.7.2 The Approve a Project page
	10.7.3 The Reject a Project page
	10.7.4 The Create a Project page

	10.8 The Project Details page
	10.8.1 Updating the navigation rule

	10.9 Adding an error page
	10.9.1 Updating web.xml
	10.9.2 Updating the navigation rule

	10.10 Internationalizing and localizing the UI
	10.10.1 Externalizing text into the resource bundle
	10.10.2 Internationalizing the header
	10.10.3 Localizing for Russian

	10.11 Summary

	Part 3 - Developing application logic
	The JSF environment
	11.1 From servlets to JSF
	11.2 The application foundation
	11.2.1 Application
	11.2.2 Evaluation expressions

	11.3 It’s all in the context
	11.3.1 FacesContext
	11.3.2 FacesMessage
	11.3.3 ExternalContext

	11.4 Event handling
	11.4.1 FacesEvent
	11.4.2 Handling action events
	11.4.3 Handling value-change events
	11.4.4 Handling phase events

	11.5 Components revisited
	11.5.1 UIComponent
	11.5.2 UIViewRoot
	11.5.3 ValueHolder
	11.5.4 EditableValueHolder
	11.5.5 SelectItem and SelectItemGroup model beans

	11.6 Summary

	Building an application: design issues and foundation classes
	12.1 Layers of the pie
	12.2 Roasting the beans
	12.2.1 The importance of toString
	12.2.2 Serialization for breakfast
	12.2.3 It’s all in the properties
	12.2.4 Exposing beans

	12.3 Exploring the business layer and data layers
	12.4 Developing the application layer
	12.4.1 Handling constants
	12.4.2 Organizing utility methods
	12.4.3 Initializing singletons
	12.4.4 Adapting business objects

	12.5 Writing a visit object for session state
	12.6 Developing a base backing bean class
	12.7 Summary

	Building an application: backing beans, security, and internationalization
	13.1 Writing backing beans
	13.1.1 Thread safety
	13.1.2 Handling errors
	13.1.3 Performing authentication
	13.1.4 Listing projects with UIData and parameterizing listeners
	13.1.5 Updating projects
	13.1.6 Creating new projects
	13.1.7 Paging through the project history with UIData
	13.1.8 Working with JDBC ResultSets and UIData

	13.2 Adding security
	13.2.1 Container-based vs. custom security
	13.2.2 Using custom security

	13.3 Supporting internationalization in code
	13.3.1 Internationalizing text with resource bundles
	13.3.2 Internationalizing messages

	13.4 Design consequences and alternatives
	13.4.1 Accessing the business layer
	13.4.2 Organizing beans by function
	13.4.3 Action methods implemented by backing beans
	13.4.4 Initializing backing bean properties with the Managed Bean Creation facility

	13.5 Summary

	Integrating JSF with Struts and existing applications
	14.1 What integration means
	14.2 When to use JSF with other frameworks
	14.3 The many faces of requests and responses
	14.4 Integrating JSF with Struts applications
	14.4.1 First steps
	14.4.2 Migrating Struts JSP tags
	14.4.3 Using JSF action methods and managed beans
	14.4.4 Who’s controlling whom?

	14.5 Integrating JSF with non-Struts applications
	14.6 Summary

	Part 4 - Writing custom components, renderers, validators, and converters
	The JSF environment: a component developer’s perspective
	15.1 Three steps to UI extension nirvana
	15.2 Developing UI components
	15.2.1 Deciding when to write a UI component
	15.2.2 Classes and interfaces
	15.2.3 Event handling with method bindings
	15.2.4 Registration
	15.2.5 JSP integration

	15.3 Developing renderers
	15.3.1 Deciding when to write a renderer
	15.3.2 Renderer
	15.3.3 RenderKit
	15.3.4 Registration
	15.3.5 JSP integration

	15.4 Developing validators
	15.4.1 Validator
	15.4.2 Registration
	15.4.3 JSP integration

	15.5 Developing converters
	15.5.1 Converter
	15.5.2 Registration
	15.5.3 JSP integration

	15.6 Handling internationalization
	15.7 Packaging UI extensions
	15.8 Summary

	Using JSF without JSP
	A.1 How JSF handles display technologies
	A.2 Creating views with class-based pages
	A.3 Creating views with XUL
	A.4 Other options

	references
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Part 5 - Writing custom components, renderers, validators, and converters: examples
	UIInputDate: a simple input component
	16.1 Writing the UIInputDate class
	16.1.1 Encoding
	16.1.2 Decoding
	16.1.3 Implementing StateHolder methods

	16.2 Registering the component
	16.3 JSP integration
	16.3.1 Writing the JSP custom tag
	16.3.2 Validating the tag
	16.3.3 Adding the tag to the tag library

	16.4 Using the component
	16.5 Summary

	RolloverButton renderer: a renderer with JavaScript support
	17.1 Writing the RolloverButtonRenderer class
	17.1.1 Encoding
	17.1.2 Decoding
	17.1.3 Registering the renderer

	17.2 JSP Integration
	17.2.1 Writing the HtmlBaseTag class
	17.2.2 Writing the JSP custom tag
	17.2.3 Validating the tag
	17.2.4 Adding the tag to the tag library

	17.3 Using the renderer
	17.4 Wrapping an existing renderer
	17.4.1 Developing the RolloverButtonDecoratorRenderer class

	17.5 Summary

	UIHeadlineViewer: a composite, data-aware component
	18.1 RSS and the Informa API
	18.2 Using UIData with Informa
	18.3 Subclassing DataModel
	18.4 Writing the UIHeadlineViewer class
	18.5 Registering the component
	18.6 JSP integration
	18.6.1 Writing the JSP custom tag
	18.6.2 Adding the tag to the tag library

	18.7 Using the component
	18.8 Summary

	UINavigator: a model-driven toolbar component
	19.1 Writing the model classes
	19.2 Writing the UINavigator class
	19.2.1 Implementing ActionSource methods
	19.2.2 Overriding UIComponentBase methods
	19.2.3 Implementing StateHolder methods
	19.2.4 Developing NavigatorActionListener: a custom ActionListener

	19.3 Registering the component
	19.4 Writing the ToolbarRenderer class
	19.4.1 Encoding
	19.4.2 Decoding

	19.5 Registering the renderer
	19.6 JSP integration
	19.6.1 Writing the Navigator_ToolbarTag component tag
	19.6.2 Writing the NavigatorItemTag tag handler
	19.6.3 Adding the tags to the tag library

	19.7 Using the component
	19.8 Summary

	Validator and converter examples
	20.1 Validator methods vs. validator classes
	20.2 Developing a validator
	20.2.1 Writing the RegularExpressionValidator class
	20.2.2 Registering the validator
	20.2.3 Integrating with JSP
	20.2.4 Using the validator

	20.3 When custom converters are necessary
	20.4 Developing a converter
	20.4.1 Writing the UserConverter class
	20.4.2 Registering the converter
	20.4.3 JSP integration
	20.4.4 Using the converter

	20.5 Summary

	A survey of JSF IDEs and implementations
	B.1 Using JSF with Oracle JDeveloper
	B.1.1 Oracle’s view on JSF
	B.1.2 What are ADF Faces Components?
	B.1.3 Exploring JDeveloper
	B.1.4 Building ProjectTrack’s Login page
	B.1.5 Wrapping up

	B.2 Using JSF with WebSphere Studio
	B.2.1 Exploring WebSphere Studio
	B.2.2 Building ProjectTrack’s Login page
	B.2.3 Wrapping up

	B.3 JSF and Java Studio Creator
	B.3.1 Using Java Studio Creator
	B.3.2 Building ProjectTrack’s Login page
	B.3.3 Wrapping up

	B.4 JSF implementations

	Extending the core JSF classes
	C.1 The classes behind the scenes
	C.2 Replacing or extending the pluggable classes
	C.2.1 Configuring a pluggable class
	C.2.2 Decorating a pluggable class
	C.2.3 Replacing a pluggable class

	JSF configuration
	D.1 Common attributes
	D.2 Common elements
	D.2.1 <icon>
	D.2.2 <property>
	D.2.3 <attribute>
	D.2.4 <facet>

	D.3 Everyday configuration and pluggable classes
	D.3.1 <application>
	D.3.2 <managed-bean>
	D.3.3 <referenced-bean>
	D.3.4 <navigation-rule>

	D.4 User interface extensions
	D.4.1 <component>
	D.4.2 <render-kit>
	D.4.3 <validator>
	D.4.4 <converter>

	D.5 Advanced features
	D.5.1 <lifecycle>
	D.5.2 <factory>

	Time zone, country, language, and currency codes
	E.1 Time zone codes
	E.2 Language codes
	E.3 Country codes
	E.4 Currency codes

	references
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

